
Genetic Algorithm Combined with Tabu Search in a Holonic Multiagent
Model for Flexible Job Shop Scheduling Problem

Houssem Eddine Nouri1, Olfa Belkahla Driss1,2 and Khaled Ghédira1
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Abstract: The Flexible Job Shop scheduling Problem (FJSP) is an extension of the classical Job Shop scheduling Prob-
lem (JSP) presenting an additional difficulty caused by the operation assignment problem on one machine out
of a set of alternative machines. The FJSP is an NP-hard problem composed by two complementary problems,
which are the assignment and the scheduling problems. In this paper, we propose a combination of a genetic
algorithm with a tabu search in a holonic multiagent model for the FJSP. In fact, firstly, a scheduler agent ap-
plies a genetic algorithm for a global exploration of the search space. Then, secondly, a local search technique
is used by a set of cluster agents to guide the research in promising regions of the search space and to improve
the quality of the final population. To evaluate our approach, numerical tests are made based on two sets of
well known benchmark instances in the literature of the FJSP: Kacem and Brandimarte. The experimental
results show that our approach is efficient in comparison to other approaches.

1 INTRODUCTION

Scheduling is a field of investigation which has known
a significant growth these last years. The scheduling
problems appear in all the economic areas, from com-
puter engineering to industrial production and manu-
facturing. The Job Shop scheduling Problem (JSP),
which is among the hardest combinatorial optimiza-
tion problems (Sonmez and Baykasoglu, 1998), is a
branch of the industrial production scheduling prob-
lems. The JSP is known as one of the most popu-
lar research topics in the literature due to its potential
to dramatically decrease costs and increase through-
put (Jones and Rabelo, 1998). The Flexible Job Shop
scheduling Problem (FJSP) is an extension of the clas-
sical JSP that allows to process operations on one ma-
chine out of a set of alternative machines. Hence,
the FJSP is more computationally difficult than the
JSP. Furthermore the operation scheduling problem,
the FJSP presents an additional difficulty caused by
the operation assignment problem to a set of available
machines. This problem is known to be strongly NP-
Hard even if each job has at most three operations and
there are two machines (Garey et al., 1976).

To solve this problem, standard metaheuristic
methods are used for an approximate resolution and to
find near-optimal solutions for the FJSP with accept-

able computational time. (Brandimarte, 1993) pro-
posed a hierarchical algorithm based on Tabu Search
metaheuristic for routing and scheduling with some
known dispatching rules to solve the FJSP. (Hurink
et al., 1994) developed a Tabu Search procedure for
the job shop problem with multi-purpose machines.
(Dauzère-Pérès and Paulli, 1997) presented a new
neighborhood structure for the problem, and a list of
Tabu moves was used to prevent the local search from
cycling. (Mastrolilli and Gambardella, 2000) used
Tabu Search techniques and presented two neighbor-
hood functions allowing an approximate resolution
for the FJSP. (Bozejko et al., 2010a) presented a Tabu
Search approach based on a new golf neighborhood
for the FJSP, and in the same year, (Bozejko et al.,
2010b) proposed another new model of a distributed
Tabu Search algorithm for the FJSP, using a cluster ar-
chitecture consisting of nodes equipped with the GPU
units (multi-GPU) with distributed memory. A new
version of Tabu Search algorithm with a fast Pub-
lic Critical Block neighborhood structure (TSPCB)
was proposed by (Li et al., 2011) to solve the FJSP.
For the Genetic Algorithm, it was adopted by (Chen
et al., 1999), where their chromosome representation
of solutions for the problem was divided into two
parts. The first part defined the routing policy and
the second part took the sequence of operations on
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each machine. (Kacem et al., 2002a) used a Genetic
Algorithm with an approach of localization to solve
jointly the assignment and job shop scheduling prob-
lems with partial and total flexibility, and a second
hybridization of this evolutionary algorithm with the
fuzzy logic was presented in (Kacem et al., 2002b).
(Jia et al., 2003) proposed a modified Genetic Algo-
rithm for the FJSP, where various scheduling objec-
tives can be achieved such as minimizing makespan,
cost and weighted multiple criteria. (Ho et al., 2007)
developed a new architecture named LEarnable Ge-
netic Architecture (LEGA) for learning and evolv-
ing solutions for the FJSP, allowing to provide an
integration between evolution and learning in an ef-
ficient manner within a random search process. In
addition, other types of metaheuristics were devel-
oped in this last few years, such as (Yazdani et al.,
2010) implementing a Parallel Variable Neighbor-
hood Search (PVNS) algorithm to solve the FJSP us-
ing various neighborhood structures. A Knowledge-
Based Ant Colony Optimization (KBACO) algorithm
was presented by (Xing et al., 2010) for the FJSP.
Moreover, another branch of metaheuristic optimiza-
tion approaches appeared, by combining two or more
complementary approaches in order to create a supe-
rior solution procedure allowing to offer a more effi-
cient resolution for complex problems. That is why,
(Glover et al., 1995) elaborated a study about the na-
ture of connections between the genetic algorithm and
tabu search metaheuristics, searching to show the ex-
isting opportunities for creating a hybrid approach
with these two standard methods to take advantage
of their complementary features and to solve difficult
optimization problems. After this pertinent study, the
combination of these two metaheuristics has become
more well-known in the literature and is used to solve
many complex problems, such as the FJSP. An im-
proved genetic algorithm combined with local search
is proposed by (Zhang et al., 2008) to solve the FJSP.
In fact, this combination introduced a time-varying
the crossover probability for the genetic algorithm
and a time-varying maximum step size for the tabu
search, allowing to control the local search process
and the convergence to the global optimal solution.
After two years, (Zhang et al., 2010) presented a sec-
ond combined proposition of genetic algorithm with
tabu search to solve the multi-objective FJSP. They
adopted an additional external memory to save and
update the non-dominated solutions during the opti-
mization process. (Gao et al., 2008) adapted a hybrid
Genetic Algorithm (GA) and a Variable Neighbor-
hood Descent (VND) for FJSP. The GA used two vec-
tors to represent a solution and the disjunctive graph
to calculate it. Then, a VND was applied to improve

the GA final individuals. (Thamilselvan and Balasub-
ramanie, 2009) developed a new algorithm integrating
Genetic Algorithm and Tabu Search methods to solve
the JSP. The proposed algorithm is based on the net-
work central-clients node architecture inspired from
(Andresen et al., 2002), where the genetic algorithm
is run on a central node to generaten initial solutions,
to be used byn client nodes as a starting solution
for the Tabu Search algorithm. (Zhang et al., 2014)
proposed a model of low-carbon scheduling in the
FJSP considering three factors, the makespan, the ma-
chine workload for production and the carbon emis-
sion for the environmental influence. A metaheuristic
hybridization algorithm was proposed combining the
original Non-dominated Sorting Genetic Algorithm II
(NSGA-II) with a Local Search algorithm based on a
neighborhood search technique. Moreover, the Par-
ticle Swarm Optimization was implemented by (Xia
and Wu, 2005) in a metaheuristic hybridization ap-
proach with the Simulated Annealing for the multi-
objective FJSP. A combined Particle Swarm Opti-
mization and a Tabu Search algorithm were proposed
by (Zhang et al., 2009) to solve the multi-objective
FJSP. (Moslehi and Mahnam, 2011) presented a meta-
heuristic approach based on a hybridization of the
Particle Swarm Optimization and Local Search algo-
rithm to solve the multi-objective FJSP. Furthermore,
a new heuristic was developed by (Ziaee, 2014) for
the FJSP. This heuristic is based on a constructive pro-
cedure considering simultaneously many factors hav-
ing a great effect on the solution quality. Furthermore,
distributed artificial intelligence techniques were used
for this problem, such as the multiagent model pro-
posed by (Ennigrou and Ghédira, 2004) composed by
three classes of agents, job agents, resource agents
and an interface agent. This model is based on a lo-
cal search method which is the tabu search to solve
the FJSP. Also, this model was improved in (Enni-
grou and Ghédira, 2008) where the optimization role
of the interface agent was distributed among the re-
source agents. Similarly, (Azzouz et al., 2012) de-
veloped a combination of a tabu search and a ge-
netic algorithm based on a multiagent system to solve
the FJSP. This approach used two classes of agents,
a first class grouping resource agents responsible of
processing a local optimization technique based on
the tabu search of (Ennigrou and Ghédira, 2008) and
a second class containing an interface agent responsi-
ble of processing a global optimization by a genetic
algorithm. (Henchiri and Ennigrou, 2013) proposed
a multiagent model based on a hybridization of two
metaheuristics, a local optimization process using the
tabu search to get a good exploitation of the good ar-
eas and a global optimization process integrating the
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Particle Swarm Optimization (PSO) to diversify the
search towards unexplored areas.

In this paper, we present a combination of a ge-
netic algorithm with a tabu search in a holonic multi-
agent model for the flexible job shop scheduling prob-
lem. This new combined approach follows two prin-
cipal steps. In the first step, a scheduler agent ap-
plies a genetic algorithm for a global exploration of
the search space. Then, in the second step, a local
search technique is used by a set of cluster agents to
improve the quality of the final population. Numer-
ical tests were made to evaluate the performance of
our approach based on two data sets of (Kacem et al.,
2002b) and (Brandimarte, 1993) for the FJSP, where
the experimental results show its efficiency in com-
parison to other approaches.

The rest of the paper is organized as follows. In
section 2, we define the formulation of the FJSP with
its objective function and a simple problem instance.
Then, in section 3, we detail the proposed combined
approach with its holonic multiagent levels. The ex-
perimental and comparison results are provided in
section 4. Finally, section 5 rounds up the paper with
a conclusion.

2 PROBLEM FORMULATION

The flexible job shop scheduling problem (FJSP)
could be formulated as follows. There is a set ofn
jobs J = {J1, . . . ,Jn} to be processed on a set ofm
machinesM = {M1, . . . ,Mm}. Each jobJi is formed
by a sequence ofni operations{Oi,1,Oi,2, . . . ,Oi,ni}
to be performed successively according to the given
sequence. For each operationOi, j , there is a set of al-
ternative machinesM(Oi, j ) capable of performing it.
The main objective of this problem is to find a sched-
ule minimizing the end date of the last operation of
the jobs set which is the makespan. The makespan
is defined byCmax in equation (1), whereCi is the
completion time of a jobJi .

Cmax= max1≤i≤n(Ci) (1)

The FJSP scheduling problem is divided in two
sub-problems:

• The operations assignment sub-problem that as-
signs each operation to an appropriate machine.

• The operations sequencing sub-problem that de-
termines a sequence of operations on all the ma-
chines.

Furthermore, the adopted hypotheses in this prob-
lem are:

• All the machines are available at time zero;

• All jobs are ready for processing at time zero;

• The order of operations for each job is predefined
and cannot be modified;

• There are no precedence constraints among oper-
ations of different jobs;

• The processing time of operations on each ma-
chine is defined in advance;

• Each machine can process only one operation at a
time;

• Operations belonging to different jobs can be pro-
cessed in parallel;

• Each job could be processed more than once on
the same machine;

• The interruption during the process of an opera-
tion on a machine is negligible.

To explain the FJSP, a sample problem of three
jobs and five machines is shown intable 1, where the
numbers present the processing times and the tags “–
” mean that the operation cannot be executed on the
corresponding machine.

Table 1: A simple instance of the FJSP.

Job Operation M1 M2 M3 M4 M5

J1 O1,1 2 9 4 5 1
O1,2 – 6 – 4 –

J2 O2,1 1 – 5 – 6
O2,2 3 8 6 – –
O2,3 – 5 9 3 9

J3 O3,1 – 6 6 – –
O3,2 3 – – 5 4

3 GENETIC ALGORITHM
COMBINED WITH TABU
SEARCH IN A HOLONIC
MULTIAGENT MODEL

(Glover et al., 1995) elaborated a study about the na-
ture of connections between the genetic algorithm and
tabu search metaheuristics, searching to show the ex-
isting opportunities for creating a hybrid approach
with these two standard methods to take advantage
of their complementary features and to solve diffi-
cult optimization problems. After this pertinent study,
the combination of these two metaheuristics has be-
come more well-known in the literature, which has
motivated many researchers to try the hybridization
of these two methods for the resolution of different
complex problems in several areas.

(Ferber, 1999) defined a multiagent system as an
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artificial system composed of a population of au-
tonomous agents, which cooperate with each other to
reach common objectives, while simultaneously each
agent pursues individual objectives. Furthermore, a
multiagent system is a computational system where
two or more agents interact (cooperate or compete, or
a combination of them) to achieve some individual or
collective goals. The achievement of these goals is be-
yond the individual capabilities and individual knowl-
edge of each agent (Botti and Giret, 2008).

(Koestler, 1967) gave the first definition of the
term “holon” in the literature, by combining the two
Greek words “hol” meaning whole and “on” meaning
particle or part. He said that almost everything is both
a whole and a part at the same time. In fact, a holon
is recursively decomposed at a lower granularity level
into a community of other holons to produce a hol-
archy (Calabrese, 2011). Moreover, a holon may be
viewed as a sort of recursive agent, which is a super-
agent composed by a sub-agents set, where each sub-
agent has its own behavior as a complementary part
of the whole behaviour of the super-agent. Holons
are agents able to show an architectural recursiveness
(Giret and Botti, 2004).

In this work, we propose a combined metaheuris-
tic approach processing two general steps: a first step
of global exploration using a genetic algorithm to find
promising areas in the search space and a clustering
operator allowing to regroup them in a set of clusters.
In the second step, a tabu search algorithm is applied
to find the best individual solution for each cluster.
The global process of the proposed approach is imple-
mented in a two hierarchical holonic levels adopted
by a recursive multiagent model, named Genetic Al-
gorithm combined with Tabu Search in a Holonic
Multiagent model (GATS+HM), seefigure 1. The
first holonic level is composed by a Scheduler Agent
which is the Master/Super-agent, preparing the best
promising regions of the search space, and the sec-
ond holonic level containing a set of Cluster Agents
which are the Workers/Sub-agents, guiding the search
to the global optimum solution of the problem. Each
holonic level of this model is responsible to process a
step of the hybrid metaheuristic algorithm and to co-
operate between them to attain the global solution of
the problem.

In fact, the choice of this new metaheuristic com-
bination is justified by that the standard metaheuristic
methods use generally the diversification techniques
to generate and to improve many different solutions
distributed in the search space, or by using local
search techniques to generate a more improved set of
neighbourhood solutions from an initial solution. But
they did not guarantee to attain promising areas with

good fitness converging to the global optimum despite
the repetition of many iterations, that is why they need
to be more optimized. So, the novelty of our approach
is to launch a genetic algorithm based on a diversifica-
tion technique to only explore the search space and to
select the best promising regions by the clustering op-
erator. Then, applying the intensification technique of
the tabu search allowing to relaunch the search from
an elite solution of each cluster autonomously to at-
tain more dominant solutions of the search space.

The use of a multiagent system gives the opportu-
nity for distributed and parallel treatments which are
very complimentary for the second step of the pro-
posed approach. Indeed, our combined metaheuris-
tic approach follows the paradigm of “Master” and
“Workers” which are two recursive hierarchical lev-
els adaptable for a holonic multiagent model, where
the Scheduler Agent is the Master/Super-agent of its
society and the Cluster Agents are its Workers/Sub-
agents.

Figure 1: Genetic algorithm combined with tabu search in a
holonic multiagent model.

3.1 Scheduler Agent

The Scheduler Agent (SA) is responsible to process
the first step of the hybrid algorithm by using a genetic
algorithm called NGA (Neighborhood-based Genetic
Algorithm) to identify areas with high average fitness
in the search space. In fact, the goal of using the NGA
is only to explore the search space, but not to find
the global solution of the problem. Then, a clustering
operator is integrated to divide the best identified ar-
eas by the NGA in the search space to different parts
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where each part is a clusterCLi ∈CL the set of clus-
ters, whereCL = {CL1,CL2, . . . ,CLN}. In addition,
this agent plays the role of an interface between the
user and the system (initial parameter inputs and final
result outputs). According to the number of clustersN
obtained after the integration of the clustering opera-
tor, the SA createsN Cluster Agents (CAs) preparing
the passage to the next step of the global algorithm.
After that, the SA remains in a waiting state until the
reception of the best solutions found by the CA for
each cluster. Finally, it finishes the process by dis-
playing the final solution of the problem.

3.1.1 Individual’s Solution Presentation

The flexible job shop problem is composed by two
sub-problems: the machine assignment problem and
the operation scheduling problem, that is why the
chromosome representation is encoded in two parts:
Machine Assignment part (MA) and Operation Se-
quence part (OS).

Figure 2: The chromosome representation of a scheduling
solution.

The first part MA is a vectorV1 with a length
L equal to the total number of operation and where
each index represents the selected machine to pro-
cess an operation indicated at positionp, seefig-
ure 2 (a). For examplep = 2, V1(2) is the se-
lected machineM4 for the operationO1,2. The sec-
ond part OS is a vectorV2 having the same length
of V1 and where each index represents an operation
Oi, j according to the predefined operations of the

job set, seefigure 2 (b). For example the opera-
tion sequence 1−2−1−3−2−3−2 can be trans-
lated to: (O1,1,M5) → (O2,1,M1) → (O1,2,M4) →
(O3,1,M3)→ (O2,2,M3)→ (O3,2,M1)→ (O2,3,M2).

To convert the chromosome values to an active
schedule, we used the priority-based decoding of
(Gao et al., 2008). This method considers the idle
time which may exist between operations on a ma-
chinem, and which is caused by the precedence con-
straints of operations belonging to the same jobi. Let
Si, j is the starting time of an operationOi, j (which
can only be started after processing its precedent op-
erationOi,( j−1)) with its completion timeCi, j . In ad-
dition, we have an execution time interval [tS

m, tE
m]

starts formtS
m and ends attE

m on a machinem to al-
locate an operationOi, j . So, if j = 1, Si, j takestS

m,
else if j ≥ 2, it takesmax{tS

m,Ci,( j−1)}. In fact, the
availability of the time interval [tS

m, tE
m] for an oper-

ationOi, j is validated by verifying if there is a suffi-
cient time period to complete the execution timepi jm
of this operation, seeequation (2):

i f j = 1, tS
m+ pi jm ≤ tE

m (2)

i f j ≥ 2,max{tS
m,Ci,( j−1)}+ pi jm ≤ tE

m

The used priority-based decoding method allows
in each case to assign each operation to its reserved
machine following the presented execution order of
the operation sequence vectorV2. Also, to schedule
an operationOi, j on a machinem, the fixed idle time
intervals of the selected machine are verified to find
an allowed available period to its execution. So, if a
period is found, the operationOi, j is executed there,
else it is moved to be executed at the end of the ma-
chinem.

Noting that the chromosome fitness is calculated
by Fitness(i) which is the fitness function of each
chromosomei and Cmax(i) is its makespan value,
wherei ∈ {1, . . . ,P} andP is the total population size,
seeequation (3).

Fitness(i) =
1

Cmax(i)
(3)

3.1.2 Population Initialization

The initial population is generated randomly follow-
ing a uniform law and based on a neighborhood pa-
rameter to make the individual solutions more diver-
sified and distributed in the search space. In fact, each
new solution should have a predefined distance with
all the other solutions to be considered as a new mem-
ber of the initial solution. The used method to deter-
minate the neighborhood parameter is inspired from
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(Bozejko et al., 2010a), which is based on the per-
mutation level of operations to obtain the distance be-
tween two solutions. In fact, the dissimilarity distance
is calculated by verifying the difference between two
chromosomes in terms of the placement of each op-
erationOi, j on its alternative machine set in the ma-
chine assignment vectorV1 and its execution order in
the operation sequence vectorV2. So, if there is a dif-
ference in the vectorV1, the distance is incremented
by M(Oi, j ) (is the number of possiblen placement
for each operation on its machine set, which is the
alternative machine number of each operationOi, j )
because it is in the order ofO(n). Then, if there
is a difference in the vectorV2, the distance is in-
cremented by 1 because it is in the order ofO(1).
Let Chrom1(MA1,OS1) andChrom2(MA2,OS2) two
chromosomes of two different scheduling solutions,
M(Oi, j ) the alternative number of machines of each
operationOi, j , L is the total number of operations of
all jobs andDist is the dissimilarity distance. The
distance is calculated firstly by measuring the differ-
ence between the machine assignment vectorsMA1
andMA2 which is in order ofO(n), then by verify-
ing the execution order difference of the operation
sequence vectorsOS1 andOS2 which is in order of
O(1), we give here how to proceed:

Noting that Distmax is the maximal dissimilar-
ity distance and it is calculated byequation (4), rep-
resenting 100% of difference between two chromo-
somes.

Distmax=
i,ni

∑
i,1

[M(Oi, j)]+L (4)

3.1.3 Selection Operator

The selection operator is used to select the best par-
ent individuals to prepare them to the crossover step.
This operator is based on a fitness parameter allow-
ing to analyze the quality of each selected solution.
But progressively the fitness values will be similar
for the most individuals. That is why, we integrate

the neighborhood parameter, where we propose a new
combined parent selection operator named Fitness-
Neighborhood Selection Operator (FNSO) allowing
to add the dissimilarity distance criteria to the fitness
parameter to select the best parents for the crossover
step. The FNSO chooses in each iteration two parent
individuals until engaging all the population to cre-
ate the next generation. The first parent takes succes-
sively in each case a solutioni, wherei ∈ {1, . . . ,P}
andP is the total population size. The second par-
ent obtains its solutionj randomly by the roulette
wheel selection method based on the two Fitness and
Neighborhood parameters relative to the selected first
parent, wherej ∈ {1, . . . ,P} \ {i} in theP population
and wherej 6= i. In fact, to use this random method,
we should calculate the Fitness-Neighborhood total
FN for the population, seeequation (5), the selec-
tion probabilityspk for each individualIk, seeequa-
tion (6), and the cumulative probabilitycpk, seeequa-
tion (7). After that, a random numberr will be gener-
ated from the uniform range [0,1]. Ifr ≤ cp1 then the
second parent takes the first individualI1, else it gets
the kth individual Ik ∈ {I2, . . . , IP} \ {Ii} and where
cpk−1 < r ≤ cpk.

• The Fitness-Neighborhood total for the popula-
tion:

FN =
P

∑
k=1

[1/(Cmax[k]×Neighborhood[i][k])]

(5)

• The selection probabilityspk for each individual
Ik:

spk =
1/(Cmax[k]×Neighborhood[i][k])

FN
(6)

• The cumulative probabilitycpk for each individ-
ual Ik:

cpk =
k

∑
h=1

sph (7)

=⇒ For equations (5), (6) and (7), k =
{1,2, . . . ,P} \ {i}

3.1.4 Crossover Operator

The crossover operator has an important role in the
global process, allowing to combine in each case the
chromosomes of two parents in order to obtain new
individuals and to attain new better parts in the search
space. In this work, this operator is applied with
two different techniques successively for the parent’s
chromosome vectors MA and OS.
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Machine Vector Crossover. A uniform crossover
is used to generate in each case a mixed vector
between two machine vector parents, Parent1-MA1
and Parent2-MA2, allowing to obtain two new chil-
dren, Child1-MA1′ and Child2-MA2′. This uniform
crossover is based on two assignment cases, if the
generated number is less than 0.5, the first child gets
the current machine value of parent1 and the second
child takes the current machine value of parent2. Else,
the two children change their assignment direction,
first child to parent2 and the second child to parent1.

Operation Vector Crossover. An improved prece-
dence preserving order-based on crossover (iPOX),
inspired from (Lee et al., 1998), is adapted for the
parent operation vector OS. This iPOX operator is ap-
plied following four steps, a first step is selecting two
parent operation vectors (OS1 andOS2) and generat-
ing randomly two job sub-setsJs1/Js2 from all jobs.
A second step is allowing to copy any element in
OS1/OS2 that belong toJs1/Js2 into child individual
OS′1/OS′2 and retain them in the same position. Then
the third step deletes the elements that are already in
the sub-setJs1/Js2 from OS1/OS2. Finally, fill orderly
the empty position inOS′1/OS′2 with the reminder ele-
ments of OS2/OS1 in the fourth step, see the example
in thefigure 3.

Figure 3: An iPOX crossover example.

3.1.5 Mutation Operator

The mutation operator is integrated to promote the
children generation diversity. In fact, this operator is
applied on the chromosome of the new children gen-
erated by the crossover operation. Also, each part of a
child chromosome MA and OS has separately its own
mutation technique.

Machine Vector Mutation. This first operator uses
a random selection of an index from the machine vec-
tor MA. Then, it replaces the machine number in the
selected index by another belonging to the same alter-
native machine set, seefigure 4.

Figure 4: A machine vector mutation example.

Operation Vector Mutation. This second operator
selects randomly two indexes index1 and index2 from
the operation vector OS. Next, it changes the position
of the job number in the index1 to the second index2
and inversely.

3.1.6 Replacement Operator

The replacement operator has an important role to
prepare the remaining surviving population to be con-
sidered for the next iterations. This operator replaces
in each case a parent by one of its children which has
the best fitness in its current family.

Figure 5: The final population transformation by applying
the clustering operator.

3.1.7 Clustering Operator

By finishing the last iteration of the genetic algorithm,
the Scheduler Agent applies a clustering operator us-
ing the hierarchical clustering algorithm of (Johnson,
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1967) to divide the final population intoN Clusters,
seefigure 5, to be treated by the Cluster Agents in
the second step of the global process. The clustering
operator is based on the neighbourhood parameter
which is the dissimilarity distance between individu-
als. The clustering operator starts by assigning each
individual Indiv(i) to a clusterCLi , so if we haveP
individuals, we have nowP clusters containing just
one individual in each of them. For each case, we
fixe an individualIndiv(i) and we verify successively
for each next individualIndiv( j) from the remaining
population (wherei and j ∈ {1, . . . ,P}, i 6= j) if the
dissimilarity distanceDist between Indiv(i) and
Indiv( j) is less than or equal to a fixed threshold
Dist f ix (representing a percentage of difference X%
relatively to Distmax, see equation (8)) and where
Cluster(Indiv(i)) 6= Cluster(Indiv( j)). If it is the
case, Merge(Cluster(Indiv(i)),Cluster(Indiv( j))),
else continue the search for new combination with
the remaining individuals. The stopping condition is
by browsing all the population individuals, where we
obtained at the endN Clusters.

Dist f ix= Distmax×X% (8)

Figure 6: Distribution of the Cluster Agents in the different
clusters of the search space.

3.2 Cluster Agents

Each Cluster AgentCAi is responsible to apply suc-
cessively to each clusterCLi a local search technique
which is the Tabu Search algorithm to guide the re-
search in promising regions of the search space and to

improve the quality of the final population of the ge-
netic algorithm. In fact, this local search is executed
simultaneously by the set of the CAs agents, where
each CA starts the research from an elite solution of
its cluster searching to attain new more dominant in-
dividual solutions separately in its assigned cluster
CLi , seefigure 6. The used Tabu Search algorithm is
based on an intensification technique allowing to start
the research from an elite solution in a clusterCLi (a
promising part in the search space) in order to collect
new scheduling sequence minimizing the makespan.
Let E the elite solution of a clusterCLi , E′ ∈ N(E) is
a neighbor of the elite solutionE, eachCLi plays the
role of the tabu list with a dynamic length andCmax
is the makespan of the obtained solution. So, this al-
gorithm applies in each case two steps, amove and
insert first step inspired from (Mastrolilli and Gam-
bardella, 2000) to generate new scheduling combina-
tion and a second step to save the best found solution
in the tabu list (which isCLi) after each generation
case. The stopping condition is by attaining the max-
imum allowed number of neighbors for a solutionE
without improvement. We give here how to proceed:

By finishing this local search step, the CAs agents
terminate the process by sending their last best solu-
tions to the SA agent.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

The proposed GATS+HM is implemented in java lan-
guage on a 2.10 GHz Intel Core 2 Duo processor and 3
Gb of RAM memory, where we use the Integrated De-
velopment Environment (IDE)eclipseto code the al-
gorithm and the multiagent platformJade(Bellifem-
ine et al., 1999) to create the different agents of our
holonic model. To evaluate its efficiency, numerical
tests are made based on two sets of well known bench-
mark instances in the literature of the FJSP:
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Table 2: Results of the Kacem instances (part 1).

Instance
Problem
n×m AL+CGA (2002) LEGA (2007) KBACO (2010)

MOPSO+LS
(2011)

Best
Dev
(%) Best

Dev
(%) Best

Dev
(%) Best

Dev
(%)

case 1 4×5 16 13,250 11 0 11 0 16 31,25
case 2 8×8 15 6,666 N/A – 14 0 14 0
case 3 10×7 15 26,666 11 0 11 0 15 26,666
case 4 10×10 7 0 7 0 7 0 7 0
case 5 15×10 23 52,173 12 8,333 11 0 11 0

Table 3: Results of the Kacem instances (part 2).

Instance
Problem
n×m

Hybrid NSGA-II
(2014) Heuristic (2014) GATS+HM

Best
Dev
(%) Best

Dev
(%) Best

Avg
Cmax

Avg CPU
(in seconds)

case 1 4×5 11 0 11 0 11 11,00 0,05
case 2 8×8 15 6,666 15 6,666 14 14,20 0,36
case 3 10×7 N/A – 13 15,384 11 11,40 0,72
case 4 10×10 7 0 7 0 7 7,60 1,51
case 5 15×10 11 0 12 8,333 11 11,60 29,71

• Kacem Data(Kacem et al., 2002b): The data set
consists of 5 problems considering a number of
jobs ranging from 4 to 15 with a number of op-
erations for each job ranging from 2 to 4, and a
number of operations for all jobs ranges from 12
to 56, which will be processed on a number of
machines ranging from 5 to 10.

• Brandimarte Data(Brandimarte, 1993): The data
set consists of 10 problems considering a number
of jobs ranging from 10 to 20 with a number of
operations for each job ranging from 5 to 15, and
a number of operations for all jobs ranges from
55 to 240, which will be processed on a number
of machines ranging from 4 to 15.

Due to the non-deterministic nature of the pro-
posed algorithm, we run it five independent times for
each case of the two data instances in order to ob-
tain significant results. The computational results are
presented by four metrics such as the best makespan
(Best), the average of makespan(Avg Cmax), the av-
erage of CPU time in seconds(Avg CPU), and the
standard deviation of makespan(Dev%) which is cal-
culated byequation (9). The Mko is the makespan
obtained byOur algorithm andMkc is the makespan
of an algorithm that we chose toCompare to.

Dev= [(Mkc−Mko)/Mkc]×100% (9)

The used parameter settings for our algorithm are
adjusted experimentally and presented as follow:

• Crossover probability 1.0

• Mutation probability 1.0

• Maximum number of iterations 1000

• The population size ranged from 15 to 300 de-
pending on the complexity of the problem.

4.2 Experimental Comparisons

To show the efficiency of our GATS+HM algorithm,
we compare its obtained results from the two previ-
ously cited data sets with other well known algorithms
in the literature of the FJSP. The chosen algorithms
are the TS of (Brandimarte, 1993), the AL+CGA of
(Kacem et al., 2002b), the LEGA of (Ho et al., 2007),
the MATSLO+ of (Ennigrou and Ghédira, 2008), the
KBACO of (Xing et al., 2010), the TS3 of (Bozejko
et al., 2010a), the MOPSO+LS of (Moslehi and Mah-
nam, 2011), the MATSPSO of (Henchiri and Enni-
grou, 2013), the Hybrid NSGA-II of (Zhang et al.,
2014) and the Heuristic of (Ziaee, 2014). The differ-
ent comparative results are displayed in thetables 2,
3, 4 and5, where the first column takes the name of
each instance, the second column gives the size each
instance, withn the number of jobs andm the num-
ber of machines(n×m), and the remaining columns
detail the experimental results of the different chosen
approaches in terms of the best Cmax(Best)and the
standard deviation(Dev %). The bold values in the
tables signify the best obtained results and theN/A
means that the result is not available.

By analyzing thetable 2 and table 3, it can be
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Table 4: Results of the Brandimarte instances (part 1).

Instance
Problem
n×m TS (1993) LEGA (2007)

MATSLO+
(2008) KBACO (2010)

Best
Dev
(%) Best

Dev
(%) Best

Dev
(%) Best

Dev
(%)

MK01 10×6 42 4,761 40 0 40 0 39 -2,564
MK02 10×6 32 15,625 29 6,896 32 15,625 29 6,896
MK03 15×8 211 3,317 N/A – 207 1,449 204 0
MK04 15×8 81 20,987 67 4,477 67 4,477 65 1,538
MK05 15×4 186 6,989 176 1,704 188 7,978 173 0
MK06 10×15 86 24,418 67 2,985 85 23,529 67 2,985
MK07 20×5 157 8,280 147 2,040 154 6,493 144 0
MK08 20×10 523 0 523 0 523 0 523 0
MK09 20×10 369 15,718 320 2,812 437 28,832 311 0
MK10 20×15 296 25 229 3,056 380 41,578 229 3,056

Table 5: Results of the Brandimarte instances (part 2).

Instance
Problem
n×m TS3 (2010) MATSPSO (2013) Heuristic (2014) GATS+HM

Best
Dev
(%) Best

Dev
(%) Best

Dev
(%) Best

Avg
Cmax

Avg CPU (in
seconds)

MK01 10×6 40 0 39
-

2,564 42 4,761 40 40,80 0,93
MK02 10×6 29 6,896 27 0 28 3,571 27 27,80 1,18
MK03 15×8 204 0 207 1,449 204 0 204 204,00 1,55
MK04 15×8 65 1,538 65 1,538 75 14,666 64 65,60 4,36
MK05 15×4 173 0 174 0,574 179 3,351 173 174,80 8,02
MK06 10×15 68 4,411 72 9,722 69 5,797 65 67,00 110,01
MK07 20×5 144 0 154 6,493 149 3,355 144 144,00 19,73
MK08 20×10 523 0 523 0 555 5,765 523 523,00 11,50
MK09 20×10 326 4,601 340 8,529 342 9,064 311 311,80 79,68
MK10 20×15 227 2,202 299 25,752 242 8,264 222 224,80 185,64

seen that our algorithm GATS+HM is the best one
which solves the fives instances of Kacem. In fact,
the GATS+HM outperforms the AL+CGA in four out
of five instances, the LEGA, the MOPSO+LS and the
Hybrid NSGA-II in two out of five instances, and
the Heuristic in three out of five instances. Also,
our algorithm attains the same results obtained by
the KBACO, but the efficiency of GATS+HM can
be noted by the average of the CPU time in sec-
onds which is very acceptable for a real manufactur-
ing case.

From table 4 and table 5, the comparison re-
sults show that the GATS+HM obtains nine out of
ten best results for the Brandimarte instances. In-
deed, our algorithm outperforms the TS in nine out
of ten instances. Moreover, our GATS+HM outper-
forms the LEGA and the MATSLO+ in eight out of
ten instances. For the comparison with the KBACO,
the GATS+HM obtains the best solutions for the
MK02, MK04, MK06 and MK10 instances, but it gets
slightly worse result for the MK01 instance. Also, our
hybrid approach outperforms the TS3 in five out of ten

instances. Furthermore, the MATSPSO attained the
best result for the MK01 instance, but our algorithm
obtains a set of solutions better than it for the remain-
ing instances. In addition, our algorithm outperforms
the Heuristic in all the Brandimarte instances. By
solving this second data set, our GATS+HM attains
the same results obtained by some approaches such
as the MK01 for LEGA, MATSLO+ and TS3; the
MK02 for MATSPSO; the MK03 for KBACO, TS3
and Heuristic; the MK05 and MK07 for KBACO and
TS3; the MK09 for KBACO; the MK08 for all the
algorithms only it is not the case for the Heuristic.

By analyzing the computational time in seconds
and the comparison results of our algorithm in term
of makespan, we can distinguish the efficiency of the
new proposed GATS+HM relatively to the literature
of the FJSP. This efficiency is explained by the flex-
ible selection of the promising parts of the search
space by the clustering operator after the genetic al-
gorithm process and by applying the intensification
technique of the tabu search allowing to start from an
elite solution to attain new more dominant solutions.
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5 CONCLUSIONS

In this paper, we present a new combination of a ge-
netic algorithm with a tabu search in a holonic multi-
agent model, called GATS+HM, for the flexible job
shop scheduling problem (FJSP). In this approach,
a Neighborhood-based Genetic Algorithm is adapted
by a Scheduler Agent (SA) for a global exploration
of the search space. Then, a local search technique is
applied by a set of Cluster Agents (CAs) to guide the
research in promising regions of the search space and
to improve the quality of the final population. Numer-
ical tests are made to measure the performance of the
proposed approach using two well known data sets
from the literature of the FJSP. The experimental re-
sults show that the proposed approach is efficient in
comparison to others approaches. In the future work,
improvements will be done on the tabu search of each
Cluster Agent. In fact, if a Cluster AgentCAi finds
a new dominant solutionE′ and it does not attain the
allowed number of neighbors from its current solu-
tion E, it does not stop, but it creates in each case a
new Sub-Cluster AgentSCAi, j allowing to relaunch
the search from the new obtained solutionE′. Then
it continues to generate the remaining allowed neigh-
bors from its solutionE searching other dominant so-
lutions. In other words, each Cluster Agent distributes
the new found solutionsE′ from its elite solutionE
on a new sub-set of Sub-Cluster AgentsSCAi, j to
launch from them their new search processes, which
enhances more the search in the selected promising
areas and shows more the efficient use of the notion of
the holonic agents (recursive agents) in our proposed
solution for the FJSP problem. Also, we will search
to treat other extensions of the FJSP, such as by inte-
grating new transportation resources constraints in the
shop process. So, we will make improvements to our
approach to adapt it to this new transformation and
study its effects on the makespan.
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