
Towards a Model-driven based Security Framework

Rouwaida Abdallah, Nataliya Yakymets and Agnes Lanusse
CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems, Gif-sur-Yvette Cedex, France

Keywords: Security, Model-driven, UML Profiles, EBIOS, Attack Trees, Papyrus Tool.

Abstract: In this paper, we propose a model-driven framework for security analysis. We present a security analysis
process that begins from the design phase of the system architecture then allows performing several security
analysis methods. Our approach presents mainly two advantages: First, it allows the traceability of the
security analysis methods with the system architecture. Second, this framework can include several security
analysis methods. Moreover it allows information reuse which is complicated when we use separate
methods dedicated tools. Thus, we can have more consistent and accurate security analysis results for a
system. We chose to implement two methods: A qualitative method named EBIOS which is simple and
helps to identify areas of focus within the system. Then, to get more accurate results, we implement a
quantitative method, the Attack trees. Attack trees can be automatically generated from the Ebios analysis
phase and can be completed later on to get more specific results.

1 INTRODUCTION

Today Model Driven Engineering (MDE) has
proven its efficiency to cope with the ever-growing
system complexity (Bernardi, 2013), (Bran and
Gérard, 2014). In particular, there has been
substantial research on model-based security
analysis (Basin, 2011). The use of models in security
engineering offers more focused views of complex
systems, and several levels of abstraction to assist
non-security experts to implement security
efficiently.

Several risk management methods have been
established to improve the security of information
systems. These methods identify areas of focus
within the project that need special attention and
security and privacy measures. These methods can
be broken down mainly into two essential types:
qualitative (e.g. NIST SP 800-30 (Stoneburner,
2002), CORAS (den Braber, 2007), OCTAVE
(Alberts, 2003), EBIOS (Secrétariat Général de la
Défense Nationale,2004), etc.) and quantitative (e.g.
CORA (International Security Technology, 2002),
ISRAM (Karabacaka and Songukpinar, 2005),
AttackTree (Schneier, 1999), etc.). Some approaches
can be applied to all types of risks, while others are
specific to particular risks like for instance risks
related to information security. Qualitative methods
implement no mathematical computations in general

and thus they are considered as simpler but less
precise than quantitative methods. Then, if an
organization is concerned with simplicity rather than
accuracy, qualitative methods are good fit, otherwise
the choice will be quantitative methods (Behnia,
2102).

In this paper, we present the first steps towards a
model-driven process for risk analysis in order to get
accurate results but in a simpler way. This process is
twofold: First, we proceed by a qualitative method to
assess the risks that we consider as dangerous or
unacceptable relatively to the threshold we have
preliminary fixed for the system. This step will
reduce the perimeter of the risk analysis. Then we
apply a quantitative method considering only the
reduced perimeter to get more precise and accurate
results for all the system.

Our approach presents many advantages: First,
as it is a model driven approach we can benefit from
the architecture of the system realized at the design
phase to apply the risk analysis methods. Second,
having the two methods in the same environment
allows us to reuse information which is complicated
when we use special methods dedicated tools. Most
existing risk analysis methods rely on separate tools
or models etc. Using separate tools requires a lot of
experience and extra effort and may lead to
inconsistencies between the different analyses.
Similar challenges have been solved in software

639Abdallah R., Yakymets N. and Lanusse A..
Towards a Model-driven based Security Framework.
DOI: 10.5220/0005368706390645
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (SPIE-2015), pages 639-645
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

engineering by model-driven approaches. The core
idea is to reuse as much information as possible
from earlier design stages in later stages of the
development cycle. This idea is already very
successfully being used for the development of
software intensive systems (Gudemann and
Ortmeier, 2011)

In this paper we present the first steps towards a
model-driven process for security analysis. It is
structured as follows: Section 2 provides the
background of this work. Section 3 describes the
process and the model driven approach. Section 4
presents related works. Finally, the conclusions are
in section 5.

2 BACKGROUND

In this section, we present first the two security
analysis methods: EBIOS and Attack Tree. Then we
give the motivation of this work.

2.1 EBIOS Method

One of the well-known qualitative methods
dedicated to manage risks in information systems
operating in steady environments is called EBIOS
(Expression of Needs and Identification of Security
Objectives). EBIOS is used by many organizations
in both public and private sectors to conduct
Information System Security (ISS) risk analyses.
EBIOS method (Secrétariat Général de la Défense
Nationale, 2010) provides uniform vocabulary and
concepts that allows attending security objectives. It
can be adapted to the context of each organization
(its tools and methodologies) and then used to
develop either a complete global study of the
information system or a detailed study of a particular
system. Some efforts have been made to automate
the EBIOS method. It helps the user to perform risk
analysis and management steps according to the five
EBIOS phases and to automatically generate reports:

 Phase 1 deals with context analysis. It establishes
the environment, purpose and operation of the
target system and identifies the essential
elements (assets) on which they are based.

 Phase 2 conducts the security needs analysis. The
identified security needs of the essential elements
are evaluated in terms of availability, integrity
and confidentiality, etc. In other terms we
identify the Feared Events of the system. We
also define a severity level to this Feared Event
based on the harm that it may induce.

 Phase 3 consists of identifying and describing the
threats affecting the system. This is done by
studying the attack methods and threat agents
using them by exploiting existing vulnerabilities
of the elements of the system. We associate to
each threat the likelihood of occurrence.

 Phase 4 contributes to risk evaluation and
treatment. It formalizes the real risks affecting
the system by comparing the threats with the
security needs.

 Phase 5 determines how to specify security
countermeasures allowing the security objective
to be fulfilled and how to validate these measures
and the residual risk. Actually, for each Feared
Event we associate a risk level. This level is
computed based on the severity “sev” (possible
values for sev : Negligible, Limited, Important,
etc.) of the Feared event concerned by the risk
and the maximal value “lik” (possible values for
lik : Minimal, Significant, Heavy, etc.) between
the likelihoods of the threats that lead to this
Feared Event (possible values for the risk level:
Negligible, Significant, Intolerable, etc.). The
risk level is deduced from a predefined matrix
RiskLevel(sev,lik). A residual risk is the risk after
applying existing or new countermeasures what
may decrease the severity and/or the likelihoods
and so it may decrease the risk level.

Figure 1: EBIOS analysis method.

Some efforts have been made to automate the
EBIOS method. It helps the user to perform risk

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

640

analysis and management steps according the five
EBIOS phases and to automatically generate reports.
However, such tools are disconnected from the
design model and do not provide an overview of the
system or its layers. Besides, they do not offer the
possibility to perform any further security analysis
methods which can be important to get a more
complete security analysis of the system.

Although EBIOS is dedicated to ISS, it can be
adapted to different contexts such as (Mcdonald et
al., 2011). Besides, EBIOS meets the risk
management described in ISO 27001 and supports
entirely ISO 27005 and ISO 31000 (Secrétariat
Général de la Défense Nationale, 2010).

2.2 Attack Tree Quantitative Method

Attack trees (the term is introduced by Schneier in
(Schneier, 1999)) can be used to model potential
attacks on a system and corresponding risks
associated with each attack path.

Attack trees describe attacks towards any system
as a logical function of atomic attacks. The top node
of an Attack tree is the ultimate goal with
combinations of sub-goals. Children of a node are
refinements of this goal, and leaf nodes therefore
represent attacks that can no longer be refined. An
Attack leaf can be an element of different intrusion
scenarios, depending on the node connectivity
associated with it. We have two types of node
connectivity: “OR” nodes represent different ways
to achieving the same goal (in Figure 2 the top node
is an OR node). “And” nodes represent different
steps in achieving a goal (in Figure 2 the node
labeled by “Eavesdrop” is an AND node).

Figure 2: Example of an Attack Tree (Schneier, 1999).

Figure 3 presents the procedure that we follow in
general in an Attack tree based analysis inspired
from (Ten et al., 2008). Once a tree is created, we
can compute all the scenarios that lead to its top
node. Moreover, Attack trees allow several
parameters values to be associated to leaf nodes
(cost, time to achieve, likelihood of occurrence, etc.,
or qualitative statements such as “possible”
“impossible”, etc.). These parameters are used to
compute the value of the vulnerability index (or
index) associated to an Attack tree.

Figure 3: General Attack tree analysis process.

We distinguish between three types of indices:
First, the index (li) associated to a leaf node li
which is computed based on a formula F that we
choose and the set of parameters values Pi of this as
shown in (1). Second, the index V(sm) of an Attack
scenario sm concerning a subset Lm = {l1,l2,..,lp} of p
leaf nodes is computed as shown in (2). Finally, the
index of a top node Vt is determined from the
scenarios as shown in (3) where S= {s1, s2,…,sk} is
the set of the scenarios and k is the total number of
scenarios.

Towards�a�Model-driven�based�Security�Framework

641

 (li) = F(Pi) (1)

V(sm) = ∏ 	, 	∊ (2)

Vt = max{ V(s1), V(s2) , …, V(sk) } (3)

2.3 Motivation

In many engineering disciplines, model building is
at the heart of any system design. But model
building is not an end in itself and certainly does not
come for free. There is an important added value so
that this effort becomes worthwhile. In (Basin,
2011), the authors summarize in four activities what
models can be used for in the development of secure
systems: (1) Precisely documenting security
requirements together with design requirements; (2)
Analyzing security requirements; (3) Model-based
transformation, such as migrating security policies
on application data to policies for other system
layers or artifacts; (4) Generating code, including
complete, configured security infrastructures. These
four activities can be used to automate EBIOS and
Attack trees in the following way.

(1) Models, especially graphical ones, give a clear
overview of the system or a part of it. The core
idea is to reuse as much information as possible
from earlier design stages in later stages of the
system development cycle. Existing EBIOS tools
do not present any graphical representation of the
system, the security analysis performed with
EBIOS is not based on any other document or
support used in the system design phase.
Moreover, the contextual information about the
system and its environment are entered from
scratch. For Attack trees we find several
graphical tools (e.g. SecureITree (Saini et al.,
2008)) however they are not related to the design
phase either.

(2) EBIOS presents a very robust process for
analyzing security requirements. However, we
believe that a global overview and several
viewpoints of the system, or subsystems can
offer to the security engineer a better recognition
of the hazards. Attack trees method is not as
robust as the EBIOS method at this point.

(3) To perform a robust security analysis we need to
run several analysis security methods. Each
method has its own and independent model.
Consequently, to conduct several methods, the
model transformation remains very important.
Model transformation plays a key role in model-
based software development. It describes the
relationship between models, more specifically

the mapping of information from one model to
another which allows traceability. This
traceability allows tracking changes in models
and how it affects other models.

(4) Some model-based environments (for instance,
Papyrus (Gérard et al., 2011)) offer the
possibility of code generation.

On the other side, implementing several methods in
the same environment allows the reuse of
information. This remains particularly difficult,
when we use separate method dedicated tools as it
requires a lot of experience and extra effort and may
lead to inconsistencies between the different
analyses. Besides, this approach allows to
automatically generating skeletons or even a full
body for the next methods to be applied. This is
what we will show in the next section where we
explain how to automatically generate partial Attack
trees from an EBIOS analysis study.

3 MODEL DRIVEN APPROACH

In this section we present the process that we
propose and the way to implement it.

3.1 Process Description

The process that we propose (see Figure 4) is
described as follows:

Phase 1: We design or use an existing architecture
design of the system.

Phase 2: We apply the EBIOS analysis by following
the five phases described in the previous section
(section 2.1): We first define the context. Second we
define the Feared Events. Third, we describe the
threats and relate them to the existing Feared Events
so that for each defined Feared Event we have a list
of threats where each of them can lead to the
occurrence of this Feared Event. Fourth we
appreciate the risk level for each Feared Event.
Fifth, we consider the existing security
countermeasures in the system to compute the
residual risk level for each Feared Event. At this
phase, we do not only apply a classical EBIOS
analysis but we also relate it to the design
architecture of the system. Actually, we relate the
Feared Events, threats and vulnerabilities to the
concerned assets (a component in the system
architecture: function, software, hardware, etc.) in
the system architecture. This allows visualizing the
critical components in a system, and keeps the
traceability between all the phases.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

642

Phase 3: We automatically retrieve the Feared
Events that have the residual risk level higher than a
threshold that we have already fixed.

Phase 4: We generate an Attack tree for each Feared
Event as follows: The top node of the tree is the
Feared Event. This node is an OR node, and its
children are the threats that lead to this Feared Event
as defined in the EBIOS Analysis step (It is an OR
node because as it is defined in EBIOS method any
of these threats can lead to the Feared Event). Then
those threats nodes are AND nodes based on the
description in the EBIOS Analysis: Each Threat can
exploit one or several vulnerabilities of an asset.
Besides the generation of the structure of the tree we
also generate some parameters that might help in the
evaluation of the Attack tree: For instance for each
vulnerability corresponding node we keep the
concerned asset information (parameter A). This
allows us to keep the traceability of the Attack tree
with the system architecture. Second, in the EBIOS
analysis we associate likelihood for each threat. But,
as in Attack trees, parameters are associated only to
leaf nodes that represent vulnerabilities in our case,
we will associate to each vulnerability node a new
parameter which is the set of likelihoods of all
threats that can exploit this vulnerability (parameter
P). Finally, another parameter is the
countermeasures that are related to the assets in the
EBIOS analysis. Then, as in an Attack tree, a
vulnerability node is related to one asset, we can
deduce the set of countermeasures that are
concerned (parameter M). The structure of a
generated tree is presented in Figure 5.

Phase 5: We can complete the tree in three manners.
First we might add some new nodes: to add new
threats that may be missed in the EBIOS Analysis
step, or to detail some nodes, or maybe to go deeper
in the description of the Attack tree (more than 3
levels depth). Second, we can add new parameters to
the nodes. Actually, in the EBIOS analysis level the
evaluation of risk is computed as described in
section 2. It is based on the severity level parameter
associated to a Feared Event and the likelihood
parameters associated to threats. However we might
define new formulas to have more precise evaluation
or even to consider other criteria to evaluate the
Attack tree. For instance, in the Magerit (Ministerio
de Administraciones Publicas, 2006) method they
also consider a third parameter to compute the risk
which is vulnerability level, as for (Ten et al., 2008)
their evaluation of the Attack tree is based on the
existing countermeasures in the system only. Third
we define the formula to compute the evaluation of
the tree. We notice that we didn’t define any formula

by default to compute the evaluation of the tree we
only extract the parameters from the EBIOS analysis
phase that we consider that might be useful for the
evaluation.

Phase 6: At this level we can compute the different
indices based on the Attack tree and the parameters
that we have associated to their nodes. Then we
propose countermeasures to minimize indices that
are higher than the threshold we decided.

Figure 4: The structure of a generated Attack tree.

We model the system architecture in the Papyrus
environment which is an Eclipse based environment
supporting UML and SysML modelling standards.
Besides, Papyrus can serve as a modelling platform
for other tools dedicated to different analysis and
specific domains and this by using UML profile (e.g.
RobotML (Dhouib et al., 2012)). Profile is a
powerful extension mechanism for UML that allows
introducing specific concepts to the model.

We implement a framework that allows
integrating security analysis methods into uniform

Towards�a�Model-driven�based�Security�Framework

643

Papyrus. This framework includes profiles and tools
to automate typical security analysis methods. Thus,
we propose to implement EBIOS method and Attack
Tree method based on UML profiles. We can also
generate tables and documents as in the EBIOS
Tool. Besides the complete analysis study and the
architecture of the system can also be generated in
documents that we can customize.

Figure 5: Generated Attack Tree structure.

4 RELATED WORKS

There are several model-based technologies and
tools for security analysis in general. For instance,
Coras, Magerit, Mehari, these methods similar to
EBIOS, propose a model based analysis of the
system. However, with these tools we can only
model security concepts and Attack scenarios, but
not the design of the system. For Attack trees, we
can find several graphical tools, but the analysis is
still independent of the system architecture and of
other security analysis methods.

The use of UML Profiles becomes very
widespread in several domains: In (Panesar-
Walawege et al., 2013), the authors provide a
generalizable and tool-supported solution to support
the verification of compliance to safety standards
IEC 61508. The Object Management Group (OMG)
has standardized the UML Profile for Modelling and
Analysis of Real-time and Embedded Systems
(MARTE) (Bran and Gérard, 2014). In (OMG,
2003), authors present a UML Profile for modelling
QoS and Fault Tolerance Characteristics and
Mechanisms (QFTP), etc.

An existing framework named Sophia
(Yakymets et al., 2013) based on UML Profiles,
presents a similar approach but for safety. Sophia
framework extends generic Papyrus environment to
safety domain. Sophia includes facilities (i) to
automatically perform various Safety Analysis
methods (SA), (ii) to make semantic connections
with formal SA tools, (iii) to represent SA results in

the system modelling environment. Our approach is
a security approach for Sophia framework.

Our framework considers a part of the RMF
(Risk Management Framework) proposed by NIST
SP 800-160 (National Institute of Standards and
Technology, 2014). RFM provides a process that
integrates information security and risk management
activities into the system development life cycle.
RFM considers 6 steps: (1) Categorize information
system, (2) Select security controls, (3) Implement
security controls, (4) Assess security controls, (5)
authorize information system, (6) Monitor security
controls. In our framework, we consider steps (1)
and (2). Phases 1 to 5 in our Process are included in
step (1): we describe the system, and the existing
security controls (or countermeasures) of the system
(Figure 4 - Phase 2: we consider these existing
controls to compute the residual risk in the EBIOS
analysis), and we compute the risk level. Phase 6 is
included in step (2) where based on the previous step
results we select the controls to apply. Documents
related to the security plan considered by RFM can
be partially generated as we don’t have for the
moment the implementation related to process
management.

5 CONCLUSION,
PERSPECTIVES

In this work, we propose a model-driven based
framework for security analysis. We implement
several security analysis methods into uniform
Papyrus modelling environment as UML profiles.
We choose to implement two methods: The first is a
qualitative method named EBIOS which is widely
used and that supports entirely ISO 27005 standard.
This method allows identifying the most critical
Feared Events for the system. Then we apply the
second method we have implemented, the
quantitative Attack trees method, which gives more
accurate results

Our approach presents many advantages: from
one side, it keeps the traceability with the design
architecture. From the other side, it keeps the
traceability in overall the security as the Attack trees
are partially automatically generated from the
EBIOS analysis phase. These generated Attack trees
can then be completed to fit our needs from this
study (adding parameters, formulas, etc.).

This work presents several perspectives: One
perspective is to merge this framework with Sophia
to get a safety and security. Another perspective is to

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

644

improve the qualitative analysis phase to be able to
generate more complete Attack trees. Besides, many
other methods can still be added to our process.

ACKNOWLEDGEMENTS

The work in this paper is funded by SesamGrids
project (The consortium Sesam-Grids, 2012) and
Risc project (The consortium RISC, 2013).

We want to thank the Phd student Anas Motii for
his important participation to a part of this work.

REFERENCES

Bernardi, S., Merseguer, J., & Petriu, D. C. (2013). Model-
Driven Dependability Assessment of Software
Systems. Springer.

Bran, S., Gérard, S. (2014): Modeling and Analysis of
Real-Time and Embedded Systems with UML and
MARTE. Elsevier.

Stoneburner, G., Goguen, A., & Feringa, A. (2002). Risk
management guide for information technology
systems. Nist special publication, 800(30), 800-30.

Alberts, C., Dorofee, A., Stevens, J., & Woody, C. (2003).
Introduction to the OCTAVE Approach. Pittsburgh,
PA, Carnegie Mellon University.

Secrétariat Général de la Défense Nationale (2004).
EBIOS- Expression des Besoins et Identification des
Objectifs de Sécurité.

Gérard, S., Dumoulin, C., Tessier, P., & Selic, B. (2011).
19 Papyrus: A UML2 tool for domain-specific
language modeling. In Model-Based Engineering of
Embedded Real-Time Systems (pp. 361-368). Springer
Berlin Heidelberg.

Mcdonald, J., Decroix, H., Caire, R., Sanchez, J., Chollet,
S., Oualha, N., Puccetti, A., Hecker, A., Chaudet, C.,
Piat, H., others (2013): The SINARI project: security
analysis and risk assessment applied to the electrical
distribution network.

Basin, D., Clavel, M., & Egea, M. (2011, June). A decade
of model-driven security. In Proceedings of the 16th
ACM symposium on Access control models and
technologies (pp. 1-10). ACM.

Panesar-Walawege, R. K., Sabetzadeh, M., & Briand, L.
(2013). Supporting the verification of compliance to
safety standards via model-driven engineering:
Approach, tool-support and empirical validation.
Information and Software Technology, 55(5), 836-864.

OMG, U. (2003). Profile for modeling quality of service
and fault tolerance characteristics and mechanisms.
Revised submission, Object Management Group.

den Braber, F., Hogganvik, I., Lund, M. S., Stølen, K., &
Vraalsen, F. (2007). Model-based security analysis in
seven steps—a guided tour to the CORAS method. BT
Technology Journal, 25(1), 101-117.

Behnia, A., Rashid, R. A., & Chaudhry, J. A. (2012). A
Survey of Information Security Risk Analysis
Methods. Smart CR, 2(1), 79-94.

Gudemann, M., & Ortmeier, F. (2011, June). Towards
model-driven safety analysis. In Dependable Control
of Discrete Systems (DCDS), 2011 3rd International
Workshop on (pp. 53-58). IEEE.

Schneier, B. (1999). Attack trees: Modeling security
threats. Dr. Dobb’s Journal, vol. 12, no 24, p. 21–29.

International Security Technology (IST), (2002). A brief
history of CORA.

http://www.ist-usa.com Accessed 16-6-2013.
Karabacaka B, Songukpinar I., (2005), ISRAM:

Information security risk analysis method, Computer
& Security, March, pp. 147-169.

Ten, C. W., Liu, C. C., & Manimaran, G. (2008).
Vulnerability assessment of cybersecurity for SCADA
systems. Power Systems, IEEE Transactions on,23(4),
1836-1846.

Saini, V., Duan, Q. & Paruchuri, V., (2008). Threat
modeling using Attack trees. J. Comput. Small Coll.,
23(4), 124-131.

Ministerio de Administraciones Publicas (2006). Magerit -
version 2 - Methodology for Information Systems Risk
Analysis and Management - Book I - The Method,
Madrid, 20 June.

Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., & Ziane,
M. (2012). Robotml, a domain-specific language to
design, simulate and deploy robotic applications. In
Simulation, Modeling, and Programming for
Autonomous Robots (pp. 149-160). Springer Berlin
Heidelberg.

Yakymets, N., Dhouib, S., Jaber, H., Lanusse, A. (2013).
Model-driven safety assessment of robotic systems. In:
Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, pp.1137-1142.

Secrétariat Général de la Défense Nationale (2010).
EBIOS- Expression des Besoins et Identification des
Objectifs de Sécurité, Méthode de Gestion des risques.
http://www.ssi.gouv.fr/IMG/pdf/EBIOS-1-
GuideMethodologique-2010-01-25.pdf.

The consortium Sesam-Grids (2012), The Sesam-Grids
Project, In http://www.sesam-grids.org/.

The consortium RISC (2013), The RISC Project,
http://risc.sec4scada.com/

National Institute of Standards and Technology (2014).
Systems Security Engineering, An Integral Approach
to Building Trustworthy Resilient Systems. NIST
Special Publication 800-160.

Towards�a�Model-driven�based�Security�Framework

645

