
PM-DB: Partition-based Multi-instance Database System forMulticore
Platforms

Fang Xi1, Takeshi Mishima2 and Haruo Yokota1
1Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan

2Software Innovation Center, NTT Japan, Tokyo, Japan

Keywords: DBMS, Multicore, Middleware, TPC-W.

Abstract: The continued evolution of modern hardware has brought several new challenges to database management
systems (DBMSs). Multicore CPUs are now mainstream, while the future lies in massively parallel comput-
ing performed on many-core processors. However, because they were developed originally for single-core
processors, DBMSs cannot take full advantage of the parallel computing that uses so many cores. Several
components in the traditional database engines become new bottlenecks on multicore platforms. In this pa-
per, we analyze the bottlenecks in existing database engines on a modern multicore platform using the mixed
workload of the TPC-W benchmark and describe strategies for higher scalability and throughput for exist-
ing DBMSs on multicore platforms. First, we show how to overcome the limitations of the database engine
by introducing a partition-based multi-instance database system on a single multicore platform without any
modification of existing DBMSs. Second, we analyze the possibility of further improving the performance
by optimizing the cache performance of concurrent queries. Implemented by middleware, our proposed PM-
DB can avoid the challenging work of modifying existing database engines. Performance evaluation using
the TPC-W benchmark revealed that our proposal can achieve at most 2.5 times higher throughput than the
existing engine of PostgreSQL.

1 INTRODUCTION

In recent years, the technology of multicore proces-
sors has been improving dramatically. On the mul-
ticore platform, software cannot benefit from the in-
creasing of clock speed anymore, but has to improve
performance by exploiting thread-level parallelism.
Thus, greater emphasis is placed on the paralleliza-
tion of software than ever before.

Most database management systems (DBMSs)
were designed in the 1980s, when only uniprocessors
were available. Queries were optimized and executed
independently of each other in a query-at-a-time pro-
cessing model with few of the queries actually run-
ning simultaneously. Moreover, traditional DBMSs,
which are dedicated to improving database perfor-
mance through I/O optimization, fail to utilize mod-
ern processor and memory resources efficiently. The
increasingly powerful concurrent processing ability
of multicore platforms is stressing these DBMSs.
An increasing number of concurrent database pro-
cesses share resources both at the hardware (caches
and memory) and at the software (locks) levels, and

any inefficient resource sharing will create new bot-
tlenecks in database systems (Cieslewicz and Ross,
2008). Therefore, performance analysis and opti-
mization for existing DBMSs on multicore platforms
has become an important research topic (Hardavellas
et al., 2007), (Ailamaki et al., 1999).

Tremendous efforts have been invested in the effi-
cient utilization of many processor cores for different
database applications. There are proposals for over-
coming the memory–CPU gap for complex sort and
join operations for OLAP applications (Kim et al.,
2009), (Ye et al., 2011), and there has been research
on solving contention in lock and log functions for
concurrent updates in OLTP applications (Johnson
et al., 2009). Moreover, the development of multicore
platforms has motivated some work to analyze how
and when to employ sharing for concurrent queries
rather than optimizing each query independently for
different kinds of workloads. For example, a proposal
to provide work sharing between concurrent queries
(Psaroudakis et al., 2013), and a solution for im-
proving processor cache performance for concurrent
queries (Xi et al., 2014) have been proposed.

128 Xi F., Mishima T. and Yokota H..
PM-DB: Partition-based Multi-instance Database System for Multicore Platforms.
DOI: 10.5220/0005370901280138
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 128-138
ISBN: 978-989-758-096-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



However, mixed workloads such as those modeled
in the TPC-W benchmark (Menasce, 2002) are differ-
ent from both typical OLAP and OLTP applications
(Giannikis et al., 2012), (Salomie et al., 2011). There
are neither as many complex queries as in OLAP ap-
plications, nor as many severe update operations as
in typical OLTP workloads. To this end, the opti-
mization of mixed workloads on multicore platforms
is still a challenge for existing database engines.

In this paper, we have analyzed the performance
of a mixed workload on a modern Intel E7 multicore
platform, and proposed new middleware called PM-
DB to improve the performance for database systems
on multicore platforms by treating the multicore ma-
chine as an extremely low latency distributed system.
PM-DB provides a single database image to the users
while coordinating query executions across several
shared-nothing database instances deployed on a sin-
gle multicore machine. Moreover, PM-DB can man-
age the binding relationships between the database
engines and the underlying processor cores to im-
prove the throughput further by reducing processor
cache misses. Because it requires no modifications to
existing DBMSs or OSs, our PM-DB is simpler and
more practical than most existing proposals.

Our research was motivated by a performance
analysis of the TPC-W workload on a modern mul-
ticore platform. The experiment showed that the
shared-memory function of existing engines is be-
coming the system bottleneck. We therefore pro-
posed a middleware of PM-DB to maintain multiple
database engines running in parallel on the multicore
machine, rather than a single database engine, to re-
duce the shared-memory contention and provide high
scalability. The main contribution of this paper is
to demonstrate how a partition-based multi-instance
database system performs on modern multicore plat-
forms. By introducing the system architecture that
was originally widely used by distributed database
systems to a single multicore platform, the contention
in a single database instance is solved and the comput-
ing capacity of the multicore platforms is more fully
exploited. Experiments show our proposal can pro-
vide much better throughput and scalability on multi-
core platforms.

Moreover, the PM-DB can further reduce the
contentions in cache levels by maintaining better
cache locality for each core’s private cache. As the
processor–memory gap is becoming larger on mod-
ern multicore platforms, we analyzed the possibility
of optimizing the processor cache performance for
concurrent queries. Optimizing cache performance
to achieve better overall performance is a challenge,
and it often requires very careful tuning of the data

Figure 1: Scalability of TPC-W on a multicore platform.

structures and algorithms. However, we have pro-
posed a solution to this problem that requires no
changes to existing software implementations and we
reduced the cache misses by improving the corun-
ning strategies for better data sharing between con-
current queries in different processor cache levels. We
pointed out that by assigning simple queries and com-
plex queries to different cores, we could achieve much
better cache performance and higher system through-
put. Our detailed analysis of cache performance at
different levels provides several insights on multicore
processor cache optimization for mixed workloads.

The remainder of this paper is organized as fol-
lows: In Section 2, we describe our motivating ex-
periments. In Section 3, we describe our proposed
PM-DB in detail. In Section 4, we discuss the cache
optimization solution for the basic PM-DB system.
We conducted extensive experiments to show the ef-
ficiency of our proposal in different aspects and these
are described in Section 5. Finally, Section 6 con-
cludes the paper.

2 MOTIVATION

We analyzed the scalability of the mixed workload us-
ing the TPC-W benchmark with the Browsing work-
load mix on a modern Intel E7 multicore platform
with 80 hardware contexts. A detailed description of
the hardware platform and the workload can be found
in Section 5. We evaluated the PostgreSQL DBMS

PM-DB:�Partition-based�Multi-instance�Database�System�for�Multicore�Platforms

129



separately with the default query plan and the opti-
mized query plan, in which we greatly reduced the
response time for the “Best Seller” and “New Prod-
uct” transactions, which are two relatively complex
queries with high frequency of occurrence in the TPC-
W benchmark. However, we must emphasize that
our optimization is based on the execution of a sin-
gle query as we usually do in traditional performance
tuning. The throughput of these two Baseline systems
while increasing the number of concurrent clients is
shown in Figure 1 (a).

This figure shows that both systems encounter se-
vere scaling problems. There are 80 hardware threads
on the multicore platform, although the Baseline sys-
tem could only scale to 40 concurrent clients. More-
over, the optimized Baseline system cannot achieve
better throughput than the unoptimized system and it
can only scale to 10 concurrent clients. We believe
that the scaling problem is not caused by overload in
the system, as the 80 hardware contexts are far beyond
the needs of the software. The system must encounter
some bottlenecks that waste CPU time or force the
CPU to be idle. We further analyzed the CPU utiliza-
tion for the optimized Baseline system using the per-
formance monitoring tool Perf (de Melo, 2010), and
the results are shown in Figure 1 (b). As the number
of concurrent clients increases, the “slock function”
in PostgreSQL becomes the system bottleneck.

Each database engine holds one shared buffer
in memory and the concurrent loads access the
shared memory space through specific synchroniza-
tion functions. The “slock” function is the hardware-
dependent implementation of a spin lock and it is used
to control access to the shared memory-critical sec-
tions in PostgreSQL. For example, every page search
in the memory buffer must access several critical sec-
tions: one to lock the hash bucket to prevent the page
being moved to other buckets during the search, one
to pin the page to prevent its eviction from the mem-
ory buffer, and finally one to request a latch on the
page to prevent concurrent modification to this page.
For hot pages (metadata and high-level index pages),
the critical sections become the bottleneck, as many
threads compete for them, even if they access the page
in read mode (Johnson et al., 2009). Even though the
“Best Seller” and “New Product” transactions have no
update operation, they access a large number of pages
when they perform their join operations. Moreover,
these queries lock a large amount of memory-critical
sections. With these queries running concurrently in
the workload, the database becomes blocked from ac-
cessing the hot pages in the shared memory space.
This problem was also observed by Salomie (Salomie
et al., 2011) and Boy-Wickizer (Boyd-Wickizer et al.,

2010). They reported similar bottlenecks for other
database engines besides PostgreSQL or MySQL.

From these experimental results, we can conclude
that the contention for the shared memory signifi-
cantly degrades the scalability of the database en-
gine on a multicore platform that could otherwise
offer rich true concurrency not provided on single-
core platforms. One solution to this problem is to
rewrite existing database engines to fix all synchro-
nization problems. The existing system SharedDB
(Giannikis et al., 2012) takes this roadmap by creat-
ing a query plan for the whole workload, and the new
engine merges the concurrent queries into one sin-
gle query to reduce the concurrent access to the hot
pages in the shared memory space. However, these
kind of proposals require a complete rewrite of ex-
isting database engines. Considering the complexity
of most commercial database engines, the rewriting
will be a very challenging and time-consuming task.
The other solution is to exploit the parallelism offered
by multicore through the combined performance of
a collection of unmodified database engines, rather
than through the optimization of a single engine mod-
ified to run on multicores as the proposal of Multimed
(Salomie et al., 2011). Salem et al. proposed in-
troducing multidatabase instances on a single multi-
core platform to solve the single instance contention
and evaluated their proposal as Multimed, which is
a master–slave structure conventionally used in com-
puter clusters. However, their proposal requires much
memory space, as they hold a whole or partial copy
of the database on each slave.

In this paper, we analyzed a different way to de-
ploy the multi-instance architecture and introduced a
partition-based multi-instance solution that was orig-
inally used in shared-nothing parallel database sys-
tems (Mehta and DeWitt, 1997). The proposed PM-
DB has less contention in shared memory compared
with the single instance database system since con-
current queries which compete for the shared mem-
ory critical sections are distributed to execute on sev-
eral different instances. With less queries simultane-
ously accessing the critical sections in each single in-
stance, the concurrent queries will not be blocked in
the “s lock” function in our PM-DB system. Our pro-
posal requires much less memory space and avoids
the complex work of maintaining consistency for
master and slaves compared with the Multimed so-
lution. Moreover, our solution can be implemented
as middleware, thus avoiding the hard work of mod-
ifying existing database engines as required by the
SharedDB proposal.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

130



Figure 2: PM-DB system deployed on a single multicore
platform.

3 THE PARTITIONED
MULTI-INSTANCE SYSTEM

The multi-instance architecture was originally widely
used in distributed systems and database clusters.
However, in this paper, we are introducing this archi-
tecture into a multicore platform to overcome bottle-
necks in existing database engines. We propose the
PM-DB middleware to manage the database partition
information in the different database instances, and to
coordinate query execution between all of the under-
lying database instances. By distributing concurrent
queries to different database instances, our proposal
can ease the pressure on a single database engine.

3.1 Architecture Overview

The architecture of the PM-DB system deployed on a
single multicore platform is shown in Figure 2. We set
up several database instances rather than one on the
multicore platform and partition the whole database
into the different database instances. The detailed
database partition information is stored in the local
data structure as a Range Index. The PM-DB of-
fers a single system image to the clients, which do
not require any knowledge about the partition infor-
mation in the underlying database instances, and the
only change to the client is that it communicates with
the middleware instead of directly connecting to the
database engine. The database instances then receive
queries from the middleware and execute the queries
in their dedicated query buffers.

The partitioned architecture has some advantages
compared with the master–slave architecture used in
the related research Multimed (Salomie et al., 2011).

The biggest advantage is that the partitioned architec-
ture saves memory space. In the master–slave archi-
tecture, some tables will be copied many times in the
memory space, as each slave holds an independent
copy in its local shared memory. This can easily cause
the system to have insufficient memory. However, in
the partitioned architecture, each database only holds
part of the whole table and this saves a lot of mem-
ory space. On the other hand, in the master–slave ar-
chitecture, the system must use snapshot isolation as
a consistency criterion. Each update must be copied
into all of the slaves. Queries are assigned a times-
tamp and dispatched to the appropriate slave that has
all the updates committed up to that timestamp. This
mechanism increases the complexity of the middle-
ware. In the partitioned solution, this complex snap-
shot isolation mechanism is unnecessary, and we fol-
low a simple two-phase commit protocol (Samaras
et al., 1993) to manage update transactions in the
multi-instances.

3.2 Query Processing in PM-DB

In our approach, the middleware manages multiple in-
stances on a single multicore platform and each in-
stance holds only part of the whole database. For a
specific transaction, the required data are only stored
in one specific database instance; therefore, in our
middleware, we must dispatch the transactions to the
instance that holds the required data; this is done by
PM-DB’s Query Dispatcher function. If we can parti-
tion the whole database cleanly between the database
instances so that the data required by each transaction
are all stored by a single instance, our middleware can
simply dispatch each transaction to one specific in-
stance. However, for some applications, it will be dif-
ficult to provide such a clean partition; that is, some
transactions will require data that are stored in differ-
ent instances. Therefore, our middleware must man-
age the transaction execution over multiple database
instances. We offer a variety of optimized mecha-
nisms to handle these cross-instance transactions, as
any inefficient management of queries over multiple
instances will cause large overheads and the loss of
the advantage of the multi-instance architecture on
multicore platforms.

First, for the update transactions that access mul-
tiple instances, we use the two-phase commit pro-
tocol to ensure that either all the instances are up-
dated or none of them; therefore, the database in-
stances can remain synchronized with each other. The
multicore-based two-phase commit has much lower
overhead than that in traditional distributed environ-
ments, as the data communication is much faster

PM-DB:�Partition-based�Multi-instance�Database�System�for�Multicore�Platforms

131



through the interconnections in the single multicore
platform than in network communications. Second,
even though we can achieve faster data transfer in
multicore platforms, large amounts of data transmis-
sion will cause contention in the interconnections. For
applications with frequent crossing-instance join op-
erations, the data transfer between different instances
will slow down the transactions and cause a system
bottleneck. Therefore, our middleware provides data
duplication to avoid intensive data transfers between
different instances by redundantly storing the data for
joins in different database instances. Moreover, the
update queries accessing the redundant data will be
propagated to all of the related database instances by
our middleware, following the two-phase protocol ac-
cording to the data duplication information. With this
efficient management of concurrent queries over mul-
tidatabase instances, our middleware can achieve dra-
matic advantages compared with the Baseline system,
with smaller overheads on the multicore platform.

The Query Dispatcher component in PM-DB uses
these mechanisms to coordinate transaction execu-
tion between the different database instances. The
Query Dispatcher process receives requests from the
clients and finds the required data by parsing each
query. Then the Query Dispatcher process refers to
the database partition information stored in the Range
Index and selects the appropriate instance to receive
the query, and then queues the query in the database
instance’s Query Buffer. Each database instance’s
process monitors its Query Buffer, and takes the query
from the buffer when it arrives. After execution, the
query result will be written back into the query buffer
and the Query Dispatcher then returns the answer to
the client.

3.3 Database Partition

A horizontal partition is adopted for each table and a
suitable field for a table is chosen as its partition key.
Theoretically, any field of a table can serve as a parti-
tion key. In practice, however, our experiments have
shown that the fields of the primary key of the table or
even a subset of them can achieve good results. For
multiple tables, it is better to choose common keys
that can be used to partition most of the main (i.e.,
comparatively big and frequently accessed) tables.
A good partition solution is to minimize the cross-
partition update transactions and join operations.

For example, we partition the TPC-W database us-
ing the “Customer ID” and the “Item Subject”. The
“Customer ID” based partition can minimize the cross
partition update operations. The order and order-
line information related to a specific customer will

be stored in a single database partition. Adding a
new customer only requires access to a single parti-
tion. On the other hand, the “Item Subject” based par-
tition can distribute the concurrent complex queries
with join operations to different database instances.
The two queries with join operations, which are the
“Best Seller” and “New Product” transactions, have
as their selection criteria the column Subject of the
Item table. If we partition this table according to the
column Subject, the “Best Seller” and “New Product”
queries can be distributed into different database in-
stances and each query can be answered using a sin-
gle database instance. With less concurrent complex
queries in each database engine, the shared memory
contention can be reduced in each instance.

Different partition solutions may result in differ-
ent performances. As the TPC-W benchmark mon-
itors the typical application of an online book store,
a large range of similar Web applications can follow
the same partition method as we used in the TPC-
W example. Moreover, we can find much help with
achieving good partition solutions from the existing
research on distributed database systems (Mehta and
DeWitt, 1997), (DeWitt and Gray, 1992), (DeWitt
et al., 1990), (Chen et al., 2013).

For the “Best Seller” and “New Product” queries,
the Item table must join with the Author table and
the Order-line table. Therefore, we must redundantly
store part of the Author table and the Order-line table
in all of the partitions to avoid cross-partition joins.
Moreover, the “New Order” query, which updates the
Order-line table, will accordingly be sent to all of the
partitions.

Even though we must redundantly store some ta-
bles in our system, we still require much less mem-
ory space than does the existing Multimed (Salomie
et al., 2011), with its master–slave architecture. In
Multimed for the same TPC-W benchmark, in the
memory-optimized setting, each slave requires 5.6
GB of memory for a database with 20 GB of data. If
Multimed uses a four-instance system, it requires a to-
tal of 36.8 GB of memory, which is 84% more mem-
ory than is required for the original single-instance
system. In our architecture, for a 10 GB database, the
four-instance system requires 11 GB of total mem-
ory, which is only 10% more memory space. As a
partitioned-based solution can avoid to redundantly
store the big tables several times, our proposal needs
less memory space compared with the Multimed for
nearly all of the applications. Therefore, with the
same memory size, our system has the advantage to
handle much more database instances and provide the
possibility to higher scalability and throughput.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

132



Figure 3: Cache-optimized query scheduling strategy.

4 CACHE OPTIMIZATION

Memory sizes have increased rapidly along with mi-
croprocessor performance, and memory can now play
the role of the disk for many applications. How-
ever, memory bandwidth has not kept pace with
the increasing number of cores and has become an-
other bottleneck for higher performance. Therefore,
the cache levels become critical for overcoming the
processor–memory gap. Cache-efficient solutions for
arranging the execution of concurrent queries on mul-
ticore platforms are very attractive, as better data shar-
ing in cache levels can reduce the time-consuming
memory access operations and improve the system
performance. We analyzed how to improve cache per-
formance by binding different database processes to
different processor cores (Muneeswari and Shunmu-
ganathan, 2011). The optimized core binding strategy
is shown in Figure 3.

We consider a modern multisocket and multicore
platform, and propose two strategies to manage the
running of the concurrent database processes on the
multicore platform.

• First, we propose to run the database processes
that access the data in different database instances
on different processors. This strategy can avoid
forcing queries that access data in different data
partitions to compete for Last Level Cache (LLC)
resources.

• Second, for the database processes in each
database instance, we propose to separate differ-
ent types of queries to run on different processor
cores. This strategy can increase the performance
of private cache levels.

With modern multicore processors, it is usual to
provide two levels of cache for the private use of each
processor core (private cache levels) in addition to a
shared LLC. The simple queries which access several
table lines, usually do an index based data search. If
we run simple queries together on the same proces-
sor core, there will be a higher possibility that these
queries can share high-level index data in the private

cache levels. However, if complex queries (with join
operations) run together with simple queries on the
same core, the one-time accessed hash data or a big
range of table data of complex query will evict the
frequently used index data of simple queries from the
private cache. Therefore, we suggest to assign queries
with different types to different cores. As shown
in Figure 3, we assign the of “New Product” query,
“Best Seller” query, “Orders” query to different pro-
cessor cores.

We create separate queues for queries of different
types, and assign a group of database processes to ex-
ecute only the queries in a specific queue. We then
bind the database processes that access the different
query queues to different processor cores. The effi-
ciency of these cache-efficient core binding strategies
are analyzed in the experiment section in detail.

5 PERFORMANCE EVALUATION

In this section, we analyze the efficiency of our pro-
posed PM-DB system on a modern Intel multicore
platform. We implemented our middleware in the
C language for the Linux operating system and the
PostgreSQL DBMS, and compared the performance
with an unchanged PostgreSQL system that serves as
the Baseline system. Both systems used the TPC-W
benchmark. Our experiments cover different data sets
with different sizes and workloads with different sce-
narios. The detailed hardware, software settings and
results are introduced in the following subsections.

5.1 Experimental Setup

We introduce the hardware, software and benchmark
used in the following experiments in this subsection.
The hardware of the DB server is a 40-core Intel Xeon
system that serves as 80 virtual CPUs with Hyper-
Threading. It has four processor sockets and one 10-
core Intel Xeon E7-4860 processor per socket (Intel,
64). Each core runs at a clock speed of 2.27 GHz with
a 64 KB L1 cache (32 KB data cache + 32 KB instruc-
tion cache) and a 256 KB L2 cache. All 10 cores of
one processor share a 24 MB L3 cache. The server
that we used to evaluate the benchmark has 32 GB of
off-chip memory, and a 200 GB Hard Disk Drive. The
client part is four machines and each machine has an
Intel Xeon E5620 CPU and 24 GB of memory.

We use the TPC-W benchmark throughout this pa-
per, which monitors the Web application of an on-
line book store (Menasce, 2002). There are typical
OLTP transactions of ordering new books and simple
analysis transactions to collect detailed information

PM-DB:�Partition-based�Multi-instance�Database�System�for�Multicore�Platforms

133



Figure 4: Throughput for the Baseline and the PM-DB systems.

about the latest new books and best-selling books on
a specific topic (the “New Product” and “Best Seller”
transactions). The benchmark specifies three work-
load mixes: the Browsing mix (5% updates), Shop-
ping mix (20% updates) and Ordering mix (50% up-
dates). The Ordering mix with heavy concurrent up-
date operations stresses the log and I/O of the whole
system before the system faces the slock contention.
Therefore, we focus on the two scenarios of Brows-
ing mix and Shopping mix. Our evaluation used data
sets of 2 GB and 10 GB. The benchmark specifies
both the application and the database level and we im-
plemented only the database level to avoid the influ-
ence of the application layers. The system throughput
and transaction response time are all calculated by the
client machines.

5.2 Efficiency of the PM-DB

In this experiment, we set up a four-instance PM-
DB system to demonstrate the effectiveness of our
approach. The experiments cover two different data
sets, and optimized and unoptimized Baseline sys-
tems. In the optimized system, we optimized the
“Best Seller” and “New Products” queries as we have
done in the motivation experiments. By creating
appropriate indexes and tuning the query plan, we
greatly reduced the execution time for both queries.
However, we did not do any cache-efficient core bind-
ing for either the Baseline or the PM-DB systems.
Figure 4 shows the throughput results with varying
loads of the three different systems for the Browsing
mix.

Our proposal shows dramatic advantages over all
of the different settings. Figure 4 shows that our
proposal can provide better scalability and higher
throughput. In Figure 4 (a), the Baseline sys-
tem scales to 20 concurrent clients, while our four-
instance system can scale to 80 concurrent clients.
Moreover, the PM-DB system can improve the

Figure 5: PM-DB systems with different database instances.

throughput by 1.8 times compared with the Baseline
system. We can also observe the dramatic advantage
of our proposal for the larger data set of 10 GB in
Figure 4 (b) and Figure 4 (c).

As we observed in the motivation section, the tra-
ditional single-query optimization cannot provide bet-
ter performance (comparing the Figure 4 (b) and Fig-
ure 4 (c)). When more queries run together con-
currently, the interactions between the queries be-
come severe and the optimization should consider all
the concurrent queries. The traditional single-query-
based optimization may negatively impact on other
concurrent queries and slow down the whole system.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

134



Figure 6: Highest throughputs and response times.

We do not limit the maximum number of connec-
tions in our PM-DB system as it is the same situa-
tion in the Baseline system. Therefore, even though
our four-instance system can ease the pressure on
the single database engine, the original contention in
the shared memory of each instance will also affect
the bottleneck when there are too many concurrent
queries. This is why we observed a performance de-
crease in our PM-DB system when there were more
than 40 concurrent clients in Figure 4 (c).

5.3 Increased Database Instances in
PM-DB

The above results show that a four-instance PM-DB
system achieved both higher scalability and through-
put than the Baseline system, demonstrating the ef-
fectiveness of our proposal. However, in the early ex-
periments, we observed that the four-instance system
could not handle large numbers of clients for some
settings. Therefore, in this subsection, we introduce
eight-instance and 12-instance systems to explore the
possibility of achieving better performance.

Figure 5 shows that more database instances can
provide further improvement to the scalability and
the throughput. The throughput of the PM-DB eight-
instance systems are separately 3.3 times (Figure 5
(a)) and 3.5 times (Figure 5 (b)) as high as that of the
Baseline system.

We then further analyzed the throughput of a 12-
instance PM-DB system with the 10 GB data set and
optimized queries (Figure 6 (a)). The 12-instance
system does not achieve higher throughput than the
eight-instance system. The “Best Seller” and the
“New Product” transactions, which access a large
amount of the table and index data, benefit greatly
from our proposal (Figure 6 (b-1) and Figure 6 (b-
2)). However, we observed that the queries that access
multi-instances following the two-phase commit pro-

Figure 7: Performance for the scenario Shopping mix.

tocol take much more time in the 12-instance system
and these queries slowed down the system. For exam-
ple, the typical update transaction of “Buy Confirm”,
which adds a customer’s new order to the database,
must be copied to all of the database instances. With
more database instances, the “Buy Confirm” transac-
tion requires much more execution time as shown in
Figure 6 (b-3).

These experimental results indicate that increas-
ing the number of database instances in the PM-DB
system can further reduce the contention in each sin-
gle instance and increase the possibility of achiev-
ing higher throughput and scalability. On the other
hand, increasing the number of instances in the PM-
DB system will increase the middleware overhead.
Therefore, more instances do not necessarily equate
to higher performance in our PM-DB system, and the
users should find the most appropriate settings based
on their specific applications.

5.4 Different Scenarios

We changed the scenario from the Browsing mix to
the Shopping mix, which has more update operations.
We evaluated the throughput of the Shopping mix

PM-DB:�Partition-based�Multi-instance�Database�System�for�Multicore�Platforms

135



with the 10 GB data set and unoptimized transactions.
Figure 7 shows that our proposal retains its advan-
tage with increased update operations and the four-
instance PM-DB system increased the throughput by
1.4 times over the Baseline system.

5.5 Cache Optimizations

In this section, we analyze the efficiency of our cache-
efficient core binding strategies. The experiments are
based on the four-instance PM-DB system. We bound
the database processes of the four different database
instances to four processors and each of those pro-
cessed the queries from a specific database instance.
With the 10 GB database without query optimization,
we observed that the “New Product” transaction oc-
curs very frequently and it has a longer response time
than the other transactions. That is, the “New Prod-
uct” transaction is relatively more complex than the
other transactions. Therefore, we bound the “New
Product” transaction and other transactions to be exe-
cuted to different processor cores.

The appropriate core numbers for different trans-
actions are strongly related to the specific applica-
tion. We analyzed the core binding (10, 10) system
in which the “New Product” transactions were bound
to 10 virtual CPUs and another 10 virtual CPUs were
used for the other transactions in each processor. We
also analyzed two other core binding systems with in-
creased core numbers assigned to the “New Product”
transaction; these are the core binding (14, 6) and core
binding (16, 4) systems.

The throughput with 60 concurrent clients is
shown in Figure 8. We found that our cache-efficient
core binding strategies further improved the through-
put for the naive PM-DB system by 21% (with Core
binding (14, 6)). The response times of the “New
Product” and the “Best Seller” transactions are shown
in Figure 9. We observed that the response time of
the “Best Seller” transaction could be greatly reduced
by the cache-efficient solution. This is because, by
assigning this relatively simple query to run on dif-
ferent cores from the complex “New Product” query,
much more reusable data could be cached in the pri-
vate cache levels and the “Best Seller” query benefited
greatly from this improved data caching.

The cache performances are shown in Figure 10,
which was calculated using Oprofile (Levon and Elie,
2004). We evaluated the cache miss ratio (the per-
centage of cache misses in the total number of cache
requests) for the different cache levels. As we ex-
pected, the cache miss ratio in the private cache of
the L2 cache is reduced by 18.37%. By binding the
database processes of different database instances to

Figure 8: Efficiency of cache-efficient core binding strate-
gies.

Figure 9: Response times for different cache-efficient core
binding strategies.

Figure 10: Cache performance for different cache-efficient
core binding strategies.

different processor sockets, the miss ratio in the L3
cache was also reduced by 26.78%.

Comparing the different core binding systems, we
found the response time of the “New Product” trans-
action becomes worse in the core binding (10, 10)
system (Figure 9). This is because 10 cores are not
sufficient for dealing with so many concurrent “New
Product” transactions in the system. As we used more
cores to process the “New Product” transactions in
the core binding (14, 6) system, the response time of
the “New Product” transaction was greatly reduced.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

136



The proper setting of the core numbers for different
queries can be found by performing load balancing
on our system. However, we leave these studies to
future work.

6 CONCLUSIONS

In this paper, we have proposed the middleware of
PM-DB to improve the performance of database sys-
tems on modern multicore platforms. The strongest
advantage of our proposal is that it can be im-
plemented as middleware using existing OSs and
DBMSs, so it is more practical than some other pro-
posals, which require existing database engines to
be rewritten. Moreover, the shared-nothing architec-
ture used in PM-DB requires much less memory than
the solutions using the master–slave architectures as
Multimed. The PM-DB middleware can provide a
partition-based multi-instance architecture on a single
multicore platform to solve the contention in shared
memory functions for existing database systems. The
middleware can efficiently manage query execution
over multiple instances by offering the two-phase
commit protocol and partial data replication. By dis-
tributing the concurrent queries to different database
instances, our proposal can ease the pressure on a sin-
gle database instance and provide better utilization of
modern multicore platforms. Moreover, PM-DB can
further improve the performance of database appli-
cations through cache-efficient query scheduling on
multisocket multicore platforms. The introduced ex-
periences can provide a useful reference as optimiz-
ing a variety of database applications on modern and
upcoming multicore platforms.

By setting up more database instances, the con-
tention in the single database engine can be reduced
and experiments using the typical mixed workload of
TPC-W benchmark show that our proposal achieved
at most 2.5 times higher throughput than the Baseline
system. However, increasing the number of database
instances will not always lead to higher system per-
formance, as we observed the middleware overhead
in synchronizing the transactions across different in-
stances will also be increased by setting up more
database instances. Moreover, the cache-efficient
query dispatching for concurrent queries provided by
the PM-DB can further improve the system through-
put by 21% and result in 26.78% less L3 cache miss.

In future, we plan to introduce load-balancing so-
lutions into our middleware, and provide a dynamic
performance tuning function to automatically gen-
erate the proper settings for different applications.
We believe not only the PostgreSQL, but also other

database engines can benefit from our proposal and
for another future work, we intend to verify the ad-
vantage of PM-DB with different DBMSs.

REFERENCES

Ailamaki, A., DeWitt, D. J., Hill, M. D., and Wood, D. A.
(1999). DBMSs on a modern processor: Where does
time go? InVLDB, pages 266–277.

Boyd-Wickizer, S., Clements, A. T., Mao, Y., Pesterev,
A., Kaashoek, M. F., Morris, R., and Zeldovich, N.
(2010). An analysis of linux scalability to many cores.

Chen, S., Ng, A., and Greenfield, P. (2013). A performance
evaluation of distributed database architectures.Con-
currency and Computation: Practice and Experience,
25(11):1524–1546.

Cieslewicz, J. and Ross, K. A. (2008). Database optimiza-
tions for modern hardware.Proceedings of the IEEE,
96(5):863–878.

de Melo, A. C. (2010). The new linux perf tools. InSlides
from Linux Kongress.

DeWitt, D. and Gray, J. (1992). Parallel database sys-
tems: the future of high performance database sys-
tems.Communications of the ACM, 35(6):85–98.

DeWitt, D. J., Ghandeharizadeh, S., Schneider, D. A.,
Bricker, A., Hsiao, H.-I., and Rasmussen, R. (1990).
The gamma database machine project.Knowl-
edge and Data Engineering, IEEE Transactions on,
2(1):44–62.

Giannikis, G., Alonso, G., and Kossmann, D. (2012).
SharedDB: killing one thousand queries with one
stone. InVLDB, pages 526–537.

Hardavellas, N., Pandis, I., Johnson, R., Mancheril, N. G.,
Ailamaki, A., and Falsafi, B. (2007). Database servers
on chip multiprocessors: Limitations and opportuni-
ties. InCIDR, pages 79–87.

Intel, I. (64). IA-32 architectures software developers man-
ual volume 3b: System programming guide.Part,
1:2007.

Johnson, R., Pandis, I., Hardavellas, N., Ailamaki, A., and
Falsafi, B. (2009). Shore-MT: A scalable storage man-
ager for the multicore era. InEDBT, pages 24–35.

Kim, C., Kaldewey, T., Lee, V. W., Sedlar, E., Nguyen,
A. D., Satish, N., Chhugani, J., Blas, A. D., and
Dubey, P. (2009). Sort vs. hash revisited: fast join im-
plementation on modern multi-core cpus. InVLDB,
pages 1378–1389.

Levon, J. and Elie, P. (2004). Oprofile: A system profiler
for linux.

Mehta, M. and DeWitt, D. J. (1997). Data placement in
shared-nothing parallel database systems.The Inter-
national Journal on Very Large Data Bases, 6(1):53–
72.

Menasce, D. (2002). TPC-W: A benchmark for e-
commerce.Internet Computing, IEEE, 6(3):83–87.

Muneeswari, G. and Shunmuganathan, K. L. (2011). A
novel hard-soft processor affinity scheduling for mul-

PM-DB:�Partition-based�Multi-instance�Database�System�for�Multicore�Platforms

137



ticore architecture using multi agents.European Jour-
nal of Scientific Research, 55(3):419–429.

Psaroudakis, I., Athanassoulis, M., and Ailamaki, A.
(2013). Sharing data and work across concurrent ana-
lytical queries. InVLDB, pages 637–648.

Salomie, T. I., Subasu, I. E., Giceva, J., and Alonso, G.
(2011). Database engines on multicores, why paral-
lelize when you can distribute? InEuroSys, pages
17–30.

Samaras, G., Britton, K., Citron, A., and Mohan, C.
(1993). Two-phase commit optimizations and trade-
offs in the commercial environment. InData Engi-
neering, 1993. Proceedings. Ninth International Con-
ference on, pages 520–529. IEEE.

Xi, F., Mishima, T., and Yokota, H. (2014). CARIC-DA:
Core affinity with a range index for cache-conscious
data access in a multicore environment. InDASFAA,
pages 282–296.

Ye, Y., Ross, K. A., and Vesdapunt, N. (2011). Scalable ag-
gregation on multicore processors. InDaMoN, pages
1–9.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

138


