
Unveiling the Architecture and Design of Android Applications
An Exploratory Study

Edmilson Campos1,2, Uirá Kulesza1, Roberta Coelho1, Rodrigo Bonifácio3 and Lucas Mariano1,2
1Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Natal-RN, Brazil

2Federal Institute of Education, Science and Technology of Rio Grande do Norte, Natal-RN, Brazil
3Computer Science Department, University of Brasilia, Brasilia, Brazil

Keywords: Mobile Applications, Android’s Applications and Design Pattern.

Abstract: This work presents an exploratory study whose goal was to investigate the architectural characteristics of
Android’s applications. We selected twelve popular and open-source applications available on the official
Android’s store for analysing. Then, we applied techniques of the reverse engineering to each target
application in order to investigate three main aspects: (i) architecture of each application; use of the (ii) design
patterns; and (iii) expecting handling policies. Support tools were used in order to identify dependencies
between architectural components implemented in each target application, and to graphically present those
dependencies. Then, based on this analysing, we present a qualitative analysis carried out on the extracted
architectures. One of the outcomes consistently detected during this study was an overview of the main
architectural choices that have been adopted by Android developers, resulting on formulation of a preliminary
conceptual architecture for Android applications.

1 INTRODUCTION

Over the past few years, there was a rapid growth in
the usage and demand of mobile applications
development. According to recent data survey from
the Worldwide Quarterly Mobile Phone Tracker
(IDC, 2014) more than 1 billion smartphones were
sold worldwide in 2013 (Caputo, 2014). The survey
also showed that 78.6% of such devices used the
Android as operating system, which represents 793.6
million units sold in that year, an increase of 58.7%
compared to sales of the same system in 2012.

In a similar rate, there is an increasing demand for
mobile applications (usually called as apps) to
address the needs of such new users. The number of
applications available for download only on Google
Play Store – the Android official store – has grown to
over 1 million applications in the first semester of
2014 (Caputo, 2014). However, despite the growing
number of applications developed daily, there is a
lack of studies about the architecture and design
strategies adopted on such mobile applications.
Recent research works (Ruiz et al., 2012; Mojica et
al., 2013; Linares-Vásquez et al., 2014; Linares-
Vásquez et al., 2013; Bavota et al., 2014) focused on
implementation characteristics of such applications.

For instance, Ruiz et al., (2012) and Mojica et al.,
(2013) analysed the degree of code reuse in such
applications; Linares-Vásquez et al., (2014) studied
the source code idioms associated with the energy
consumption of such applications; and other research
works (Linares-Vásquez et al., 2013; Bavota et al.,
2014) reported studies analysing the fault and change-
proneness of APIs used by Android applications.
However, the existing research works do not explored
how Android mobile applications have been designed
and whether it is possible to derive architecture styles
or guidelines that can be reused for other applications
form the same domain.

In this context, this paper presents an exploratory
study that investigates how Android applications
have been designed and implemented, and in
particular, we investigate the decisions related to the
implementation of the exception handling concern.
Our study analyses twelve open-source applications
(each of which contains on average 1/2 million
downloads in the Play Store) from different
categories. To identify which architectural and design
patterns have been adopted in the target applications
and how the exception handling concern have been
implemented, we carried out a static analysis of the
applications’ source code using both JDepend (Clark,

201Campos E., Kulesza U., Coelho R., Bonifácio R. and Mariano L..
Unveiling the Architecture and Design of Android Applications - An Exploratory Study.
DOI: 10.5220/0005398902010211
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 201-211
ISBN: 978-989-758-097-0
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

2012) and Graphviz (Ellson et al., 2002) tools.
The remainder of this paper is organized as

follows. Section 2 explains the study settings. Section
3 presents the results of the exploratory study
realized, and Section 4 summarizes them. Section 5
discuss existing related research work. Finally,
Section 6 presents the conclusions and possible future
works.

2 STUDY DESIGN

This section details the methodology used in the
exploratory study. Our study involved the analysis of
open-source applications developed for the Android
platform, for analysing architectural and design
patterns that have been adopted by their developers.

2.1 Study Aim and Research Questions

This exploratory study aims at analysing open-source
Android applications (hereafter target systems) to
identify the architectural patterns and solutions,
which have been adopted by developers. In particular,
the exploratory study was developed in order to
answer the following research questions (RQs):

RQ1. Which architectural patterns have been
adopted in the Android applications, and how
they have implemented the components of
their architecture?

RQ2. Which design patterns have been adopted and
implemented in the Android applications?

RQ3. How is the exception handling concern
implemented in the Android applications?

2.2 Selection of the Applications

One of the requirements for the selection of the target
systems for our study is that they must be available
on an open source repository. The selection of such
applications has been performed manually by random
sampling of the major applications available at the
official Android store which were also: (i) available
as an open source project, (ii) a popular application,
with a minimum of 1/2 million of downloads at the
official store application; and/or (iii) had professional
character, or as official applications developed
enterprise solutions.

Table 1 presents the selected applications for this
study, showing their names, corresponding
categories, and the number of installations of each
one. All data were extracted directly from the official
store of the Android platform.

Table 1: Analysed applications.

Category App N. Downloads
01

Books and
references

Wikipedia 10 ~ 50 MM
02 iFixit 0,5 ~ 1 MM
03 FBReader 10 ~ 50 MM
04

Communicati
on

Firefox 50 ~ 100 MM
05 ZapZap 1 ~5 MM
06 ConnectBot 1 ~ 5 MM
07

Game
Frozen Bubble 1 ~ 5 MM

08 OpenSudoku 1 ~ 5 MM
09 Freeciv 0,1 ~ 0,5 MM
10

General
Wordpress 1 ~ 5 MM

11 c:geo 1 ~ 5 MM
12 My Tracks 10 ~ 50 MM

2.3 Analysis Procedures

In order to answer our research questions, we have
conducted an architecture reconstruction of the
selected applications using the JDepend (Clark, 2012)
and Graphviz (Ellson et al., 2002) tools. JDepend was
used to identify dependencies between architectural
components implemented in each selected
application, while Graphviz was used to show
graphically those dependencies. After that, we have
read and investigated the source code of the
applications to study how specific components,
design patterns, and the exception handling policies
have been implemented.

The analysis of architecture, design and code of
the Android applications were guided by the
systematic identification of specific issues, which are
listed below:

(i) Architecture of Applications (RQ1):
 Identification and analysis of the architecture

style (MVC, Layers, etc.) adopted by
application;

 Identification and analysis of how the main
architecture components interact and are
implemented.

(ii) Design Patterns (RQ2):
 Identify and analysis of the official solution or

specific to Android platform;
 Identify and analysis of which (and with what

purpose) design patterns are implemented.

(iii) Exception Handling (RQ3):
 Identify which one policy exception handling

has been adopted by such applications.

3 MAIN STUDY RESULTS

This section presents and discusses the main results
of the study. They are presented according to the

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

202

criteria of analysis adopted in our study.

3.1 Architecture of the Android
Applications (RQ1)

This section details the obtained results during the
analysis of the architecture of Android mobile
applications.

3.1.1 Adoption of the MVC in Android

The Model-View-Controller (MVC) (Gamma et al.,
1994) pattern organises a given software application
into three interconnected parts that separate internal
representations of information (model) from the ways
that information is presented to (view) or accepted
(controller) from the user. MVC is one of most
popular software architectural pattern. Nevertheless,
although Android applications do not need
necessarily be based on the MVC, in our study we
observed that most of the selected applications adopt
the MVC pattern by structuring their architecture
using the pattern components. We also analysed
existing dependencies between the MVC components
from the reverse engineering accomplished using the
JDepend (Clark, 2012) and Graphviz (Ellson et al.,
2002) tools. During this analysis, we identified that
most of existing applications follow the MVC pattern,
but we also found some architectural violations to the
pattern. Next we present and discuss such results.

a) Adoption of the MVC Pattern

Table 2: Implementation of the MVC Components.

App
MVC Components

Model View Controller
Entity Service Data XML Java Activity Fragment

#01 -- -- -- -- -- -- --

#02 X X -- X X X X

#03 X X X X X X X

#04 X X X X X X X

#05 X X X X X X X

#06 -- X -- X X X --

#07 X X -- X -- X --

#08 -- -- X X -- X --

#09 -- -- -- X -- X --

#10 X -- X X X X X

#11 X -- X X -- X X

#12 X X X X -- X X

Table 2 shows that the MVC pattern was adopted
by most of the investigated applications, although we
found some variations in the way that the pattern
components were implemented. Since XML files are
used to implement the graphical user interface in

Android applications, most of the applications tend to
have at least the view component clearly defined and
separated from the controller classes. In our study, we
only found some Android applications, where the
model and controller components were not clearly
modularized.

Figure 1 presents an overview of the WordPress
(#10) architecture, which illustrates a full adoption of
the MVC pattern. It shows an XML file responsible
for creating a link in a post that implements the view
component. The visual elements (i.e. listings and
buttons) of this XML file are captured by a controller
class (EditLinkActivity). This class calls another
controller class (EditPostContentFragment),
which interacts with the model (Post class). Finally,
this model class notifies changes for the view,
communicating with the Java view class that
customizes the XML file. Next we discuss how each
MVC component has been implemented for the
investigated applications.

Figure 1: MVC structure of the WordPress app.

Model Implementation. In our study, we found that
the Model component was implemented using one or
more of the following modules - Entity, Service and
Data. The Entity module is responsible to implement
the domain classes. The Service contributes to expose
the services provided by the model component.
Finally, the Data classes provides implementation for
data storage of the domain classes. As we can see in
Table 2, most of applications have implemented the
Entity or the Service modules. The only exception is
the OpenSudoku (#08), which implemented only the
data classes in the model component.

View Implementation. In the Android applications,
the view component is usually implemented by XML
files. These view components contain Android API
default visual elements (e.g. button, listview, etc.) that
are accessed by Java controller classes, which are
responsible for manipulating model classes and
updating the XML views. This XML implementation
was adopted by almost all application (see Table 2),

Unveiling�the�Architecture�and�Design�of�Android�Applications�-�An�Exploratory�Study

203

except the Wikipedia (#01), that not adopted MVC
pattern (see topic about non-adoption). Developers
can also customize their own visual elements creating
custom views (Java classes that extend the View
class), which can be more robust and reusable. Tabl
shows, for example, that the Firefox (#04), ZapZap
(#05), and other four applications customized Java
classes that inherits from the View class, in order to
support the creation of their own view components.
On the other hand, WordPress (#10) mainly used this
alternative of customized view implementation view,
with almost no XML based codification.

Controller Implementation. Finally, the Controller
component presents the more uniform
implementation among others. It is developed using
activities and/or fragments classes from the Android
platform. All investigated applications (see Table 2)
implemented activities classes, while fragments
classes were only implemented by application that
adopted the Multi-Panel Layout pattern (see section
about Android specific pattern). Both activities and
fragment classes access elements of the XML files to
provide data to the graphical user interface with
which users can interact when running the
application. Because XML element (View) cannot
directly access classes of the model component, it is
need to find a new way to recover/transfer data
between the view and the model components. Thus,
the controller classes are as bridge between these
components. Figure 2 shows a code fragment of iFixit
(#02) architecture that exemplifies how this
communication occurs. It shows the structure of file
“guide_create.xml” with its visual elements. In the
example, the GuideCreateActivity controller class
accesses a listview element of the interface passing its
id, by class R, for method findViewById(). In Android,
the data provided in the visual elements (buttons,

textfields, etc.) specified in the XML files of the view
component can be recovered through the activity and
fragment classes of the controller component using
the class R (resource). For example, Figure 2 shows
also the GuideCreateActivity controller class
accessing the Guide model class to recover/transfer
data for the view component.

b) Non-adoption of the MVC Pattern

Despite most applications have adopted the MVC
pattern, not all architectures of the applications
adhere to the MVC pattern, like Wikipedia (#01) and
Freeciv (#09).

Wikipedia (#01) was the only target applications
that did not implement any of these types of classes
or any model component. It has adopted a specific
framework – PhoneGab (PhoneGab, 2014) – for
building its graphical user interface (GUI) and enable
the code generation of the view component. It was
also the only selected application that used web
artefacts (HTML and CSS) to implement its GUI,
instead of using XML files.

Freeciv (#09) is an untypical case where the
application structure consists of a set of monolithic
classes. These classes group almost all project code in
a few classes, thus this application does not present a
well-modularized architecture.

c) Violations of the MVC Pattern

During our analysis of the dependency graphs of the
MVC components generated by JDepend and
Graphviz tools, we also found some violations to the
MVC pattern. Although most of these violations do
not represent a clear threat to the evolution of the
architecture of the existing applications, they need to
be monitored in order to avoid future maintenance
difficulties. Next we present and discuss some of
them.

Figure 2: Fragment of the iFixit architecture.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

204

Model-to-View Violation. The first found scenario
was a violation of the independence of the model
component, where model classes have direct calls to
classes of the View component. Figure 3 illustrates an
example of this violation in the context of the c:geo
(#11) application. It shows a code fragment that
implements an example of a model class (CGeoMap) in
application. The sample illustrates a typical violation
between model and view components. The CGeoMap
class (model) imports the R class in order to recover a
visual element (view) aiming to update directly an
information on the view.

package cgeo.geocaching.maps;
//..
import cgeo.geocaching.R;
public class CGeoMap extends AbstractMap{
 private String mapTitle;
 private void setTitle (String title) {
 final TextView titleview =
 ButterKnife.findById(activity,
 R.id.actionbar_title);
 if (titleview != null) {
 titleview.setText(title);
 }
 //...
 }
 //...
}

Figure 3: Model-to-View violation example.

Model-to-Controller Violation. Similar to the
previous kind of violation, this second case implies
the rupture of independence of the model component,
since this component is dependent of the controller
component. We have identified this kind of violation
is some existing service classes of the model
components from the WordPress (#10) and ZapZap
(#05) applications. Figure 4 shows an example of this
Model-to-Controller violation of the ZapZap (#05)
application. Code fragment presents a Model class
(ScreenReceiver) that implements a service
referencing a Controller class (ApplicationLoader) in
order to set the application screen. It is a violation due
to Model class is referencing Controller class.

3.1.2 Data Access in Android

Most applications need to have some kind of data
persistence. Android provides the data storage
options following (Android, s.d.): (i) Shared
Preferences — commonly used to save private value
pairs of primitive data types; (ii) Internal Storage —
when data are saved directly on the device’s internal
storage, using cache files; (iii) External Storage —
store public data on the shared external storage; (iv)
SQLite Databases — a self-contained database,

compact, with native support in Android, which does
not require special configuration or installation; and
(v) Network Connection — data are stored on the web
and the communication with the remote database
often occurs through web services or remote address
for the server.

package org.telegram.messenger;
//...
import org.telegram.ui.ApplicationLoader;

public class ScreenReceiver

extends BroadcastReceiver {
 @Override
 public void onReceive(

Context context, Intent intent) {
 if (intent.getAction()

 .equals(Intent.ACTION_SCREEN_OFF)){
 //...
 ApplicationLoader

 .isScreenOn = false;
 } else if (intent.getAction()
 .equals(Intent.ACTION_SCREEN_ON)){
 //...
 ApplicationLoader

 .isScreenOn = true;
 }
 }

}
//...

Figure 4: Model-to-Controller violation example.

The choice for a these solution depends of the
specific needs of each application/device, such as
performance, memory availability and practicality of
the implementation. In our study, we analysed the
storage options adopted in each application selected
in order to identify common purpose between
application that have adopted the same type of
strategy. Table 3 shows a summary of the adoption
these persistence alternatives analysed.

SharedPreferences was a strategy more adopted
between the investigated applications. This was
already somewhat expected because it is mainly used
to save some app configuration. Moreover, this data
storage strategy is very simple and allows saving only
primitive data that are persistent across user sessions.
Cache and FileBackupHelper are type of internal
storage which is saved in files with access (by default)
only to own application and that are removed when
the user uninstalls the application. Cache file was
specially, for example Firefox (#04), ZapZap (#05)
and c:geo (#11) applications used to store other types
of data that could not be saved with primitive
variables, such as historic data. On the other hand,
instances of FileBackupHelper class were used to
realize backup of databases on own device internal
storage.

Unveiling�the�Architecture�and�Design�of�Android�Applications�-�An�Exploratory�Study

205

Table 3: Implementation of the persistence type.

App
SQLite database

Shared
preferences

Cache
Files

FileBack-
upHelper

Other
strategy helper

class
create

method

#01 - - X X -
Javascript
persistence

#02 X - X - - -

#03 - X - X - -

#04 X - X X - -

#05 - - X X - -

#06 X - X - X -

#07 - - X - - -

#08 X - X - - -

#09 - - - - - Dropbox

#10 X - X X - -

#11 - X X X X -

#12 X - X X X
Google
Drive

Moreover, we identified several applications
using the SQLite, but varied the way to implement it.
Some applications implemented using a helper class,
such as WordPress (#10) ConnectBoot (#06) and
OpenSudoku (#08), which is responsible mainly the
version database control. Other applications, such as
FBReader (#03) also used the SQLite library to store
data in its projects, however without use the
SQLiteOpenHelper class to create its SQLite database.
Instead of this, they used the method
openOrCreateDatabase. This method allows developer
to create a database passing a name or path and
application context as parameter directly in code.
This non-official implementation is simpler that using
the class SQLiteOpenHelper, however less
recommended when the app realizes changes
constantly in its databases.

Other solutions different from the previous
presented were found on Wikipedia (#01), Freeciv
(#09) and My Tracks (#12). In the first, Wikipedia,
the persistence is realized in the web layer, directly in
the Javascript files, since that this app was
implemented using the framework PhoneGab
(PhoneGab, 2014). The last applications (#09, #12)
developers used the DropBox and Google Drive API,
respectively, to synchronize data in files stored in
cloud servers.

3.1.3 Package Structure

We also analysed the package organization of each
selected application in order to identify whether the
separation into architectural components as reflected
in the package structure. This also brings positive
influence to the maintenance and evolution of the
applications. In addition, we were also interested in
identifying packages/layers common to all
applications investigated, aiming to extract and

idealize a default structure for Android applications.
After this analysis, we observed that many

applications grouped their classes based on the MVC
components, creating a separated package for each
architectural component (model, view or controller).
On the other hand, some applications have grouped
their classes according to the business concern. In this
case, different classes of the same architectural
component (e.g. model classes) are spread over
multiple and different packages, according to any
particular business criteria of the application.

Table 4: Package Structure of Android applications.

App
MVC components Specific package

for DAO layer
Main packs.

single packg. separated

#01 -- -- No
org.wikepedia

(single pack.)
#02 X -- No ui, util, model

#03 -- X No
core.view, view,

model, util, network
#04 -- X Yes firefox

#05 X -- Yes
objects, ui, SQLite,

messenger, and
PhoneFormat

#06 X -- No
bean, util, service,

and transport

#07 N/a N/a No
frozenbubble (single

pack.)

#08 N/a N/a Yes
game, command, utils,

gui, and db
#09 N/a N/a No main

#10 X -- Yes
models, dataset, ui, util,

xmlrpc

#11 -- X Yes
activity, maps, ui,

conector, utils

#12 X -- Yes
Content, util, fragments,

io, maps

A common characteristic of the package structure
of most applications was the usage of a package
“util” for utilities classes and methods. This kind of
package was found in all the selected applications and
has been used for different purposes. For example,
app OpenSudoku (#06) has used the util package to
organize the version code, on the other hand the app
ZapZap (#05) defines the phone formatters in this
package. Overall, the util package contains the
helpers, parsers, formatters, classes with specific
applications rules, among other auxiliary and utility
class in general considering the analysed applications.
Table 4 presents a summary of the analysis of the
package structure realized, focusing on analysis of
packages that implement the MVC components and
the DAO layer.

3.2 Design Patterns (RQ2)

Our study also examined the use of specific design
patterns for the Android platform (Android, s.d.), and
traditional design patterns (Gamma et al., 1994). Next
subsections detail the results for this pattern analysis.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

206

3.2.1 Specific for the Android Platform

The Android Developer’s Official Guide (Android,
s.d.) provides some patterns to manage variabilities in
the platform, such as different languages, screens
(resolution and size), and platform’s versions
(Android, s.d.). These deployment patterns handle
common problems in Android development and
propose solutions whose implementation allows
adaptations. Our study found that most of these
solutions are actually implemented, albeit partially,
by the developers of the analysed applications. Next
we present some of the patterns identified in the
study.

a) Multiple-View Layout

The Android’s Guide proposes a design pattern
known as Multiple-View Layout (Android, s.d.) to
deal with different screen on devices. The pattern
provides the implementation of XML files
fragmented that are programmatically composed (at
run time) to form the layout of the application. Each
fragment can be reused and combined to assemble a
composed adjusted view, confirming orientation
(horizontal or vertical) and size of device screen.
Figure 5 illustrates an example with different
composite views from the implementation of this
pattern in the WordPress (#10) application.

	

Figure 5: Example of the orientation type: (a) vertical and
(b) horizontal.

The main roles in this pattern are:

 Fragment (ArticleFragment): Fragment represents
a part of the screen that to be composed to create
different views for the user. It defines its own
lifecycle, receives its own input events, and
allows add or remove it while the activity is
running. It must extend the class of Android’s API
or similar class (when using external or
compatibility API);

 Manager (FragmentManager): Responsible for
performing an operation such as adding or
removing a fragment. You must instantiate a
FragmentTransaction, which provides APIs to
add, remove, replace and perform other opera-

tions.

The iFixit application (#02) used an external library,
known as Sherlock API, in order to implement
fragments. This API enables, among other things, the
execution of fragments on devices with pre-3.0
versions of Android, since Android API provides
native support only for appliances from this version.
However, there is also an official Android’s
Compatibility API, known as Support Library, which
launched later. This API was used in 33,4% of the
studded applications (see Table 5). In terms of
implementation, the main change in each one of these
classes occurs only in inherited classes for creating
fragments.

Table 5: Implementation of fragments in apps.

 Apps N. apps (%)

Android Native API #10 1 app (8,3%)

Android Support Library #04, #05, #11, #12 4 apps (33,4%)

Sherklock API #02 1 app (8,3%)

Do not use fragments all others 6 apps (50%)

Figure 6 presents a code fragment which
implemented the Multi-Panel Layout pattern in the
ZapZap (#05). In this example, if instead of using the
native Android API to implement the pattern it had
been used the Sherlock API, the class BaseFragment
would be changed by the SherLockFragment class.
presents the amount of applications that implemented
fragments with information about the adopted API.
Only half of the applications adopted this pattern. The
other apps do not use any alternative implementation.
We also found that the gain with the adoption of this
pattern is directly related to the treatment of the
variability of multiple screens and indirectly to reuse
screens, which are composed to form different views.
b) Content Provider

Content providers (Android, s.d.) are roles of another
official Android pattern, responsible for managing
access to a structured set of data. They encapsulate
the data, and provide mechanisms for defining data
security. Content provider is the design pattern that
connects data in one process with code running in
another process. In our study, this pattern was iden-
tified in the following applications: Firefox (#04),
WordPress (#10) and My Tracks (#12).

WordPress (#10) uses a content provider for
managing access to its data repository. This is an
Android recommendation (Android, s.d.). A content
provider might be implemented as one or more
classes in an Android application, along with
elements in the manifest file. In the example, the
StatsContentProvider class extends a
ContentProvider class, which connect your provider

Unveiling�the�Architecture�and�Design�of�Android�Applications�-�An�Exploratory�Study

207

Figure 6: Multi-Panel Layouts on the ZapZap.

and other applications. Although this content provider
is used to make data available to other applications,
you may of course have activities in your app that
allow the user to query and modify the data managed
by a content provider.

Other official solutions have been adopted, such
as the use of strings and resources to manage different
languages and platform versions. These solutions was
adopted by all target applications that need to deal
with such kind of variabilities, behaving more like a
common way to implement this type of problem than
a design pattern.

3.2.2 Traditional Design Patterns

Our study also aims to identify the implementation of
other patterns of traditional designs that have been
adopted in the development of Android applications.
In this context, we identified the use of some platform
independent patterns, such as Provider Model
(Howard, 2004), Factory Method (Gamma et al.,
1994), and Adapter (Gamma et al., 1994).

Table 6: Traditional Design Patterns.

Patterns Apps Purpose

Provider
Model

#02
Provide a common interface for setting of search

autosuggestion feature

#10
Provide a common interface for records in the

application of statistical table

#11
Provide common interfaces for setting plug-ins used

to capture maps

#12
Provide common interfaces for configuration of the

search engine

Factory

#02
Implement a factory of connection

(data and network)
#03
#05
#06 Factory of transport protocol
#08 Factory for importing using XML Parser
#11 Factory of interfaces of maps
#12 Factory to manage sensors

Adapter

#02 Extend the package “android.widget” through of
the interfaces BaseAdapter and ArrayAdapter to
customize the visual components of the app, such as

its widget and ListView

#04
#05
#11

#12 Deal with different APIs

Table 6 presents an overview of these patterns
with the respective applications that have adopted
them and purpose.

Other patterns identified: Singleton (#02, #07),
Facade (#07), Strategy (#07, #12), Command (#02,
#08), Publish-Subscribe (#02), and Observer (#08,
#12).

3.3 Exception Handling (RQ3)

Another aspect investigated in our study was how the
exception handling concern was implemented for
such existing applications. We have identified and
investigated manually: (i) the amount of handlers
(try/catch) and signallers (throws) present in the code
of each application; (ii) which components more
commonly thrown and handle exceptions; and (iii)
what is the main type of exception handling
performed inside the exceptions catches.

Table 7: Among of handlers and signallers.

 handlers (try/catch) signallers (throws)
 % by component ∑ % by component ∑
 M V C try catch M V C throws
#07 57% 0% 43% 7 6 0% 0% 0% 0
#09 50% 0% 50% 12 17 100% 0% 0% 1
#01 0% 0% 100% 8 9 10% 0% 90% 1
#08 27% 0% 73% 22 21 10% 0% 90% 10
#02 83% 0% 17% 63 64 99% 0% 1% 85
#10 54% 14% 32% 159 182 85% 2% 14% 59
#03 80% 0% 20% 305 286 83% 0% 17% 374
#11 59% 10% 32% 304 284 83% 17% 0% 41
#05 52% 10% 38% 389 390 93% 5% 2% 61
#06 69% 0% 31% 80 81 98% 0% 2% 44

53% 3% 44% 66% 2% 22%

Table 7 presents the amount of handlers and
signallers identified, as well as the percentage of
occurrence by component in each application
analysed. Based on these results, we can see more
predominance of exceptions handlers and signallers
in controller and model components, with the latter
component being mainly used to throw exceptions
(66%) and the controller component for handling

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

208

them (53%). The low number of exception handling
in the view layer is justified by the use of XML files
without access to the Java classes that implement this
component.

Moreover, our study also analysed the specific
strategy used for handling the exceptions of the
applications. The following strategies were found in
our analysis: (i) registration of the exception in log
file; (ii) display of error or warning message to the
user; (iii) printing stack trace; (iv) no action (ignore
the treatment - only capture); (v) returns default value
(blank, null or false); (vi) among others. Graphic 1
bellow presents a summary of this analysis. As we
can see, there is a great number of exceptions that are
only logged (blue color) or are not adequately
manipulated being ignored (green color). Only a few
exceptions of each application are really displayed to
the user (red color), which can mean that most of
mobile application errors are not exposed to them.

4 DISCUSSIONS AND LESSONS
LEARNED

In this section, we present and discuss some
preliminary lessons learned from our exploratory
study.

Architecture of Applications (RQ1). In our study, we
have found that most of the analysed Android
applications are structured by following the MVC
architectural pattern. However, there are many
applications where the relationships between the

MVC components do not follow the traditional ones.
This usually happens due to the implementation
views on Android platform using XML files, which
prevents access to Java classes from the View
component of the MVC, thereby requiring reverse
order communication between the components in
relation to this. There are also cases where we found
architectural violations in the relationships of the
MVC components, which can impair the adequate
evolution and maintenance of such Android
applications. As a result, our study has revealed that
even open-source and popular Android applications
are not adequately using the MVC architectural
pattern when structuring their classes, which requires:
(i) the definition of specific implementation strategies
for the MVC in Android platform; and (ii) the usage
of automated supported tools (e.g., static analysis) to
detect violations of existing applications.

Data Persistence (RQ1). Regarding the data
component, we have observed that most of studied
applications define data access classes, but they adopt
different strategies for the implementation of such
component. Based on our results, we can infer that:
(a) shared preferences was a strategy more adopted to
storage short data, such as configuration information.
(b) internal storage was implemented using cache and
backup files preferably in order to store private values
with larger size, such as navigation historic. (c)
SQLite has been used as main database for several of
investigated applications, but varies its
implementation. The recommend implementation by
Android, which provides the implementation of the

Graphic 1: Exception Handling Strategies.

Unveiling�the�Architecture�and�Design�of�Android�Applications�-�An�Exploratory�Study

209

helper class, was also more adopted by applications
with constantly evolving their databases.

Design Patterns (RQ2). Our study made possible to
identify a significant number of design patterns that
are used in the Android applications. The Adapter
pattern, for example, was commonly used to adapt
existing Android classes to create customized views.
On the other hand, regarding the Android specific
patterns, we have noticed that there are many of them
that are not being used by existing applications,
although they are recommended as best practices by
the Android community. Our results also lead to the
conclusion that many Android patterns were used in
order to implement known variabilities, such as
languages, devices and screen size. Moreover, it also
varies the implementation them, with some of them
using external API.

Exception Handling (RQ3). Our study also identified
that existing exception handling policies of Android
apps are absent or very simple – with only the logging
of the thrown exception. Only a few applications
provide an adequate exception handling by
displaying, for example, explicit messages for the
user. Our findings also show that there is no pattern
on the way the exceptions are thrown and handled by
the MVC components. The study data revealed, for
example, that the model and controller components
are both responsible to throw and handle exceptions
for most of the investigated applications.

Figure 7 presents a diagram with the resulting
conceptual architecture of our study. It illustrates the
common MVC architecture adopted for most
applications by indicating the explicit Android
technologies used in each of the components,
including the data objects. In addition, it gives an
overview of the design patterns used in different
components. Finally, it indicates which specific
components of the architecture are usually
responsible to throw and handle exceptions during the
execution of the Android applications.

Figure 7: Conceptual Android Architectural.

5 RELATED WORK

This section presents some research works related to
ours. Andreou et al., (2005) performed a pioneer
study on design of the mobile applications. This work
studied current design methodologies and proposed
an approach for designing and developing mobile
commerce (m-commerce) services and applications.
The proposed process focuses on user requirements
and needs as well as on constraints associated with
current mobile and wireless technology. While this
work proposed a set of engineering phases to guide
mobile engineers in m-commerce development, our
work explores the state of practice of a set of mobile
applications from different categories available in
Android official store. In another pioneer work about
mobile applications, Nilsson (2009) performed a
study which investigated the usage of design patterns
for mobile applications. However, his work focused
on patterns for user interface (UI), aiming at creating
a design guideline to aid developing more user-
friendly applications on mobile devices in general.
This work did not restrict the analysis to Android
applications. In a more recent work, Neil (2014)
presented a more extensive catalogue of UI patterns
for mobile devices. In our work, we investigated the
adoption of design patterns in mobile applications,
and not UI patterns as the works described before.

Other research works (Ruiz et al., 2012; Mojica et
al., 2013; Linares-Vásquez et al., 2014; Linares-
Vásquez et al., 2013; Bavota et al., 2014) also focused
on the analysis of characteristics of Android
applications. Linares-Vásquez et al., (2014)
investigate the usage of patterns in Android
applications focusing on API for energy-greedy, with
the purpose of understanding particular instances of
API calls and API usage patterns that cause
(unusually) high energy consumption. Ruiz et al.,
(2012) and Mojica et al., (2013) mined application
downloaded directly Play Store in order to analyse
software reuse in the Android mobile application
market along two dimensions: (a) reuse by
inheritance, and (b) class reuse. On other hand,
Bavota et al., (2014) and Linares-Vásquez et al.,
(2014) also analysed Android applications, but in
order to study how the fault and change-proneness of
APIs used by free Android applications relates to
applications’ lack of success, estimated from user
ratings. As in our work, those works investigated a
limited set of applications, although the studies
cannot be generalized they provide interesting
insights about the state of practice on mobile
development. The purpose of our study differs from
the previously mentioned studies, since it focused on

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

210

identification of architectural characteristics, such as
design pattern adoption and exception handling
structuring.

6 CONCLUSIONS

This paper presented the results of an exploratory
study which aimed at identifying common
architectural characteristics of a set of twelve real
Android applications. During this study, we could
observe that Android development does not need
necessarily be based on the MVC or any other model.
The choice of architecture model in Android
development should be a consequence of the
developer experience. One of the main contributions
of this study was to perform a qualitative analysis on
the extracted architectures. The results of the analysis
were divided into three main groups discussions: (i)
architectural analysis; (ii) use of platform
independent design patterns or design patterns
specific for the Android platform; and (iii) exception
handling policy adopted. The architectural analysis
shown that MVC pattern was adopted by most
applications, even partially. Furthermore, we
observed the adoption of known design patterns and
we identified that more components handlers and
thrown exceptions. Finally, based on analyses of
these results, we created a conceptual architectural
diagram that synthesizes the main findings of our
study. The diagram is based on the MVC architecture
indicating the main classes’ relationship, patterns and
exception handling strategies adopted by each
component.

As possible future work, we intend to extend the
studies on Android applications, refining the search
engines and selection of applications and automating
the analysis. Furthermore, we intend to deepen our
study about solutions adopted by Android platform
developers in order to investigate also types of
variability in this application scenario.

REFERENCES

Andreou, A. S. et al., 2005. Key issues for the design and
development of mobile commerce services and
applications. Journal International Journal of Mobile
Communications, December, 3(3), pp. 303-323.

Android, s.d. Design Patterns. [Online] Available at:
https://developer.android.com/design/patterns/

Android, s.d. The Developer's Guide. [Online] Available at:
https://developer.android.com/guide/

Bavota, G. et al., 2014. The Impact of API Change- and
Fault-Proneness on the User Ratings of Android Apps.
IEEE Transactions on Software Engineering (TSE).

Caputo, V., 2014. Android e iPhone foram 93,8% dos
aparelhos vendidos em 2013. [Online] Available at:
http://exame.abril.com.br/tecnologia/noticias/android-
e-iphone-foram-93-8-dos-aparelhos-vendidos-em-
2013 [Acesso em 29 Julho 2014].

Clark, M., 2012. JDepedn homepage, s.l.: s.n.
Ellson, J. et al., 2002. Graphviz— Open Source Graph

Drawing Tools. Vienna, Springer Berlin Heidelberg,
pp. 483-484.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1994.
Design Patterns: Elements of Reusable Object-
Oriented Software. New York: Addison-Wesley
Professional.

Howard, R., 2004. Provider Model Design Pattern and
Specification, Part 1. [Online] Available at:
http://msdn.microsoft.com/en-
us/library/ms972319.aspx [Acesso em 29 Julho 2014].

IDC Worldwide Mobile Phone Tracker, 2014. Worldwide
Smartphone Market Grows 28.6% Year Over Year in
the First Quarter of 2014, Framingham: s.n.

Linares-Vásquez, M. et al., 2014. Mining Energy-Greedy
API Usage Patterns in Android Apps: An Empirical
Study. Hyderabad, s.n., pp. 2-11.

Linares-Vásquez, M. et al., 2013. API Change and Fault
Proneness: A Threat to the Success of Android Apps.
Saint Petersburg, s.n., pp. 477-487.

Mojica, I. J. et al., 2013. A Large-Scale Empirical Study on
Software Reuse in Mobile Apps. IEE Software, 31(2),
pp. 78-86.

Neil, T., 2014. Mobile Design Pattern Gallery: UI Patterns
for Smartphone Apps. 2ª ed. Sebastopol: O'Reilly
Media.

Nilsson, E. G., 2009. Design patterns for user interface for
mobile applications. Designing, modelling and
implementing interactive systems, December, Volume
40, pp. 1318-1328.

PhoneGab, 2014. [Online] Available at: http://
phonegap.com/

Ruiz, I. J. M., Nagappan, M., Adams, B. & Hassan, A. E.,
2012. Understanding reuse in the Android Market.
Passau, IEEE, pp. 113-122.

Unveiling�the�Architecture�and�Design�of�Android�Applications�-�An�Exploratory�Study

211

