
MoCrySIL – Carry Your Cryptographic Keys in Your Pocket

Florian Reimair, Peter Teufl, Christian Kollmann and Christoph Thaller
Graz University of Technology, Graz, Austria

Keywords: Cloud Security, Central Cryptographic Solutions, Advanced Cryptographic Protocols, Heterogeneous Appli-
cations, Mobile Devices.

Abstract: Today’s applications need to share data and workload in heterogeneous device environments. Many of these
handle sensitive data and need to make use of cryptography, which induces keys that have to be provisioned,
stored and shared securely. Our Cryptographic Service Interoperability Layer (CrySIL) architecture addressed
these challenges by storing the key material off-device in a central hardened service that provides crypto-
graphic functions to arbitrary devices via standardised APIs. While CrySIL is typically deployed by a trusted
entity utilising hardware-security-modules (HSMs), the setup of this central trusted instance might be too
complex or not desired in SME/personal deployment scenarios. Therefore, we present MoCrySIL, an exten-
sion to CrySIL that omits the need for a thrusted third party by making use of hardware-backed key-storage
facilities available in today’s smart phones. We describe the MoCrySIL architectures and present a prototype
that performs S/MIME based email encryption/signatures via a PKCS#11 library. We conduct a thorough
security/risk analysis, and reflect on functional achievements and shortcomings.

1 INTRODUCTION

In recent years, a highly heterogeneous platform land-
scape has become the standard scenario for the devel-
opment and deployment of applications. Especially,
mobile device platforms introduced an unprecedented
level of architectural heterogeneity that needs to be
considered for all aspects of the application develop-
ment process. In addition to the relatively new mo-
bile operating systems and platforms, rich HTML5-
based cross-platform and browser applications gain
importance while classic desktop operating systems
still stand their ground. Developing applications for
these diverse environments boosts complexity of the
processes significantly. Especially, security-related
aspects – the deployment of cryptographic algorithms
and protocols to offer confidentiality, integrity and au-
thenticity for the processed data – suffer in several
ways: First, managing cryptographic keys on multi-
ple platforms is a significant challenge either due to
the lack of required key storage facilities, or due to
their strongly deviating levels of security. Second,
low- and high-level cryptographic algorithm and pro-
tocol implementations are not available on every plat-
form. Third, the high level of complexity is the likely
cause for severe implementation mistakes that lead to
significant security issues (e.g., (Egele et al., 2013;

Fahl et al., 2012)). With this work, we follow the call
for action issued by (Rocha and Correia, 2011) and
the need for addressing important personal crypto use
cases such as health data protection (Benaloh et al.,
2009) and/or secure cloud storage for the industry as
proposed in (Kamara and Lauter, 2010), among oth-
ers.

Scientific research and the industry reacted to the
situation and created a plethora of crypto platforms,
communication protocols, and key management so-
lutions. Most of these solutions, however, offer a
very limited set of cryptographic functions, deploy
(implicit) authentication mechanisms tailored to spe-
cific requirements, or are not flexible enough to be
deployed in constantly changing environments.

We recently presented the Cryptographic Service
Interoperability Layer (CrySIL) (Reimair et al., 2015)
concept as our approach to complement existing ap-
proaches and stand the challenges of key management
and utilising cryptographic functions within hetero-
geneous application deployment scenarios. CrySIL is
all about getting access to the keys, everywhere and
at any time. And it does so by offering a centralized
key storage and crypto engine. In a typical scenario
CrySIL is deployed in private cloud environments and
utilises HSMs for protecting key material. While this
setup is highly relevant for enterprise-based applica-

285Reimair F., Teufl P., Kollmann C. and Thaller C..
MoCrySIL – Carry Your Cryptographic Keys in Your Pocket.
DOI: 10.5220/0005547902850292
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 285-292
ISBN: 978-989-758-117-5
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



tions, it might not be suitable for personal use cases
or SMEs due to setup complexity and hardware costs
(HSMs).

Thus, we extend the flexible CrySIL architec-
ture to gain a mobile version (MoCrySIL) based on
today’s mobile hardware-backed key storage facil-
ities. While foreclosing the need for yet another
third party, it provides a personal crypto platform for
one’s pocket. The platform features direct key man-
agement and a crypto engine that can be used for
VPN, email signature/encryption, and data encryp-
tion, among others. Finally, transferring the CrySIL
architecture from the typical server/HSM based envi-
ronment to the mobile scenario allowed us to evaluate
and improve the flexibility and security of the original
CrySIL architecture.

To evaluate the security of the MoCrySIL system,
we present a prototypical Android-based MoCrySIL
system that is used for S/MIME-based email sig-
natures/encryption (via a CrySIL-enabled PKCS#11
API). The cryptographic keys are stored in the
hardware-backed Android KeyStore. The communi-
cation between the PKCS#11 API on the client and
the MoCrySIL app on the Android device is estab-
lished via an external WebVPN component, which
utilises push notification facilities and long lived
WebSocket connections. The communication path is
protected by an end-2-end TLS tunnel. We present
a functional analysis as well as performance state-
ments. Although standard protocols and components
form the basis of the MoCrySIL architecture, their
new combination, the mobile nature of the system and
the requirements for protecting key material and cryp-
tographic functions mandate a thorough security/risk
analysis.

The results of our evaluation indicate a success in
providing low-footprint access to cryptographic prim-
itives from different devices, and, given internet ac-
cess, anywhere and at any time. With MoCrySIL, we
created a central key storage solution with most ad-
vantages of centralised key storage services while not
introducing yet another trusted third party. The key
material never leaves the central crypto engine and
therefore does not have to be guarded at every client
device. Access to the primitives is guarded by build-in
strong authentication procedures. While MoCrySIL
introduces latencies that renders it not suitable for
bulk encryption, it succeeds in getting cryptography
to places where crypto could not securely be used be-
fore (e. g. in browsers).

The subsequent work is structured as follows.
Section 2 presents solutions which already try to stand
the challenges but fall short in multiple aspects. The
general CrySIL architecture is described in Section 3.

The requirements, adaptations and the detailed work-
flow for MoCrySIL are introduced in Section 4. The
system is then subject to a detailed risk/security anal-
ysis in Section 5. We conclude the work with a
glimpse to the future.

2 RELATED WORK

A number of server-based cryptographic services
have been implemented by the industry. This sec-
tion gives an overview and functional evaluation of
selected cryptographic services that can be integrated
into cloud-based environments.

Dictao1 and Cryptomathic2 support digital sig-
natures for transaction security and user authentica-
tion. Both services facilitate key access by authenti-
cating clients using simple credentials, such as user-
name/password schemes, or credentials that feature
higher strength (eID cards, OTPs, mobile devices etc).
While SigningHub and Cryptomathic are deployed
as cloud services, Dictao requires integration into an
enterprise IT infrastructure. Basically, the provided
functionality is limited to user authentication and sig-
nature creation.

The so-called Austrian Mobile Phone Signature3,
one implementation of the Austrian citizen card con-
cept (Leitold et al., 2002), is a cloud-based service
and uses a hardware security module (HSM) to store
the private signature keys of all Austrian citizens. Ac-
cess to these keys is protected by a strong two-factor
authentication mechanism, involving a password as
well as an OTP being sent to the citizen’s mobile
phone. Applications can access the Austrian Mobile
Phone Signature and its signature creation functional-
ity through a well-defined XML interface. Although
the Austrian Mobile Phone Signature meets the de-
mands of the law, the currently deployed implemen-
tation fails to support use cases other than signature
creation and user identification.

Scientists adopted the new environment and re-
quirements as well. A very intuitive approach is to
host the cryptographic keys centrally and hand copies
to clients on request. The OASIS Key Management
Interoperability Protocol (KMIP) (KMIP-v1.1, 2013)
and the Cloud KMIP (CKMIP) (Lei et al., 2010) en-
able this kind of key distribution. While this kind of
key distribution may be effective and spot-on for pri-
vate cloud environments, the approach does not suf-
fice for personal use cases and public cloud appli-
ances.

1https://www.dictao.com
2http://www.cryptomathic.com
3https://www.handy-signatur.at

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

286



Trusted Computing, as proposed by the Trusted
Computing Group (TCG), introduces a hardware se-
curity module (HSM), the trusted platform module
(TPM) (Trusted Computing Group, 2011), into com-
modity off-the-shelf hardware for personal comput-
ers. This HSM allows for rather secure personal
key storage. Together with virtualisation solutions,
scientific research was successful in securely storing
and using keys without distributing them to the client
(Bleikertz et al., 2013; Butt et al., 2012; Toegl et al.,
2013). However, these approaches introduce a trusted
third party for key management which is not ideal for
public cloud environments.

All in all, there are plenty of attempts to stand the
challenges. Most of them fall short for the use case of
easy-to-use, flexible, and portable personal key man-
agement for a multi-device user.

3 CrySIL ARCHITECTURE

The Crypto Service Interoperability Layer (CrySIL)
concept (Reimair et al., 2015) has been created to
meet today’s heterogeneous device landscape and al-
lows the user to use her keys within cryptographic op-
erations regardless where the key resides and where
it is needed. In a nutshell, the user takes one of her
devices and launches an application to perform some
cryptographic task. The application interfaces with
the interoperability layer, CrySIL, which connects to
another device. This other device has access to the
actual cryptographic primitive, creates and validates
authentication challenges if required and performs the

Figure 1: CrySIL’s basic architecture.

requested operation. The result is returned to the in-
teroperability layer and back to the application run-
ning on the device of the user. A graphical illustration
of the workflow is given in Figure 1.

CrySIL introduces great flexbility by breaking
the classic cryptographic provider apart. The re-
sulting parts – modules – have different jobs and
work together to form the actual cryptographic ser-
vice provider. Receivers, actors, a router, and other
modules handle inter-node communication, protocol
mappings, crypto, advanced crypto and authentica-
tion. A receiver for example acts as a protocol bridge
to the interoperability layer with pre-build implemen-

tations for the Windows CNG, the W3C Web Cryp-
tography API as well as a SOAP-based web interface.
An actor makes the services of a crypto provider, e.g.
a smart card or an HSM, available to the layer and col-
lects authentication information as they are required.
Authentication modules do handle the authentication
challenges issued by actors. The router connects the
modules together. Anyhow, all modules are consid-
ered as building blocks and are not restricted to any
technology, platform, or programming language. Ev-
ery configuration of a router and other modules is re-
ferred to as a CrySIL node and forms the heart of the
concept. An illustration of modules and their inter-
connections is given in Figure 2.

Figure 2: CrySIL node architecture overview.

Communication modules forward requests to
other nodes and therefore renders off-device crypto
completely transparent to the user, the developer, and
to the application while maintaining a simple archi-
tecture. A user benefits from her ability to use a vari-
ety of keys within different cryptographic operations
provided by different crypto providers from a variety
of applications on different devices.

4 MoCrySIL – A CrySIL
EXTENSION

Although today’s mobile devices may not compete
with the security levels of dedicated cryptographic
smart cards or similar hardware, they do offer hard-
ened operating systems and hardware-backed key
storage solutions. Furthermore, since the mobile de-
vice is at the owner’s fingertip, direct user interaction
is available. For example, when the mobile device
receives some request to perform a cryptographic op-
eration with sensitive key data, the mobile device can
ask the user (the key owner) for allowance.

Together with the rather novel deployment options
provided by CrySIL, this allows for moving the cen-
tral cloud-based key service to a user’s mobile de-
vice. MoCrySIL extends the standard CrySIL archi-
tecture by nodes that can be deployed on mobile de-

MoCrySIL�-�Carry�Your�Cryptographic�Keys�in�Your�Pocket

287



vices and an external WebVPN component that en-
sures that these nodes are reachable from the internet.

The WebVPN approach solves the reachability
challenge for mobile devices (NAT, changing IP ad-
dresses etc.) by acting as relay service that uses stan-
dard push notification systems and long lived Web-
Socket connections. The communication paths via
WebVPN are protected with end-2-end TLS tunnels,
which eliminates the possibility for a possibly mali-
cious WebVPN node to read or manipulate CrySIL
messages. An additional communications module
communicates with the WebVPN component, a ca-
pable actor connects the mobile phone key store to
CrySIL.

For explaining the detailed application workflow,
the following assumptions were taken: An Android
device is used for the MoCrySIL application. The
WebVPN component is hosted by a public cloud
provider. The complete workflow can be categorised
in two main steps – (A) the WebVPN enrolment pro-
cess and (B) using the system. In this case “using the
system” refers to handle signed and encrypted emails
via a client that is S/MIME enabled and capable of
using the CrySIL infrastructure via standardised APIs
(e.g., PCKS#11). An illustration of the overall work-
flow is given in Figure 3.

Figure 3: MoCrySIL architecture overview.

(A1) WebVPN Setup. The user starts the
MoCrySIL app for the first time and initiates the en-
rolment process over a TLS tunnel. For setting up
the WebVPN account the user needs to authenticate
herself via a pre-defined method (depending on se-
curity requirements). The application then requests a

unique Comm ID4 used to setup the URL which acts
as CrySIL interface for the clients. The MoCrySIL
app then generates a TLS certificate that stores the
Comm ID within the common name (CN). The cor-
responding cryptographic key is directly generated
within the Android KeyChain and thus will never be
stored/used in insecure environments. The generated
certificate is sent to WebVPN, which verifies the cor-
rectness of the Comm ID (via the CN) and signs the
certificate with its own private key. The signed certifi-
cate is then returned to the MoCrySIL app and stored
in the WebVPN database. MoCrySIL now drops the
initial TLS-based communication channel and estab-
lishes a client-TLS WebSocket based communication
channel by using the just generated certificate. The
MoCrySIL app initialises the push notification sys-
tem (in this case Google Cloud Messaging). The re-
quired tokens are associated with the Comm ID and
are stored in the WebVPN database.

(A2) Storing/Generating S/MIME Key Mate-
rial. In this step certificates for processing S/MIME
signed/encrypted emails are setup in the Android
KeyChain of the MoCrySIL device. Certificates can
be self signed or issued by a certification authoriy
(CA). However, as there are no special requirements
to the certificate issuing process it is considered out
of scope for this work.

(A3) Setting up Client Communication. To al-
low for secure communication between the client and
the MoCrySIL app the required trust for the TLS cer-
tificate needs to be established on the client. The
MoCrySIL app displays the WebVPN endpoint URL
(including the Comm ID) – further denoted as Comm
URL, which is then configured on the client. Then the
first connection is established between the client and
the MoCrySIL app (more details in B1). To establish a
trust relationship, the fingerprint of the TLS certificate
is displayed on the client device5 and the MoCrySIL
app. When both fingerprints match, a possible MITM
attack can be ruled out. The TLS certificate is stored
on the client and used for protecting CrySIL protocol
data.

(B1) Signing an Email. The plain email is handed
over to the S/MIME signature component of the email
client, which calculates the hash value and hands it
over to the (examplary) PKCS#11 CrySIL API. The
API then prepares a CrySIL signing request.

Before issuing the request to the MoCrySIL app, a
secure TLS end-2-end channel (denoted as E2E TLS
in Figure 3) is to be established. The TLS handshake

4Requirements for the communication ID in terms of
length and randomness are similar to those of session iden-
tifiers.

5(e.g., by the CrySIL enabled PKCS#11 API)

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

288



data is encoded in CrySIL protocol packets and sent
to the Comm URL. WebVPN uses the Comm ID to
retrieve information about the respective MoCrySIL
app and push-notification tokens from the database.
In case no long lived WebSocket connection exists al-
ready, a “wake-up-call” is sent to the MoCrySIL app
via the push notification system. The MoCrySIL app
establishes a long lived TLS protected WebSocket
connection to WebVPN by authenticating via the TLS
certificate. The TLS handshake between the client
and the MoCrySIL app can now be completed. The
client verifies the validity of the TLS certificate by us-
ing the hash values that were accepted by the user dur-
ing the registration process.

Now, the actual CrySIL request is sent to the
MoCrySIL app. The MoCrySIL actor receives the
incoming signing request and initiates the (current6)
authentication process: (a) The MoCrySIL app gen-
erates a PIN code that is sent via the CrySIL authen-
tication challenge to the client. (b) The client dis-
plays the PIN code to the user, who then (c) needs
to provide the code to the MoCrySIL app. After a
successful authentication process, the hash is signed
and returned to the client. The client extracts the
signature response and hands it over to the email
client, which then finalises the S/MIME email and
hands it over to the respective mail transfer agent.
The communication channels between the different
entities remain open for a pre-defined session time,
which allows the efficient transmission of further re-
quests/responses without the need to build up the TLS
channel and send the required push notifications.

5 EVALUATION

With the MoCrySIL approach, we successfully trans-
formed a mobile device into a portable cryptographic
platform with a direct key management system. There
is no need for a trusted third party, yet MoCrySIL
implements a centralised solution. On top of that,
the third parties that are required for waking the
MoCrySIL application cannot read/manipulate data
due to the end-to-end encryption done by CrySIL. Es-
tablishing trust relationships between consuming and
serving CrySIL nodes does not require trusted third
parties either. The underlying CrySIL technology de-
pends on state-of-the-art technology and is designed
to meet upcoming requirements. For evaluating the
MoCrySIL approach we did a prototypical implemen-

6The current authentication method just represents a
simple example and could be replaced by a wide variety
of authentication methods tailored to the specific environ-
ments.

tation. To understand consequences in relation to
security in these system we present a detailed secu-
rity/risk analysis of the system.

5.1 Security/Risk Analysis

For the conducted risk analysis we assume an ap-
plication scenario that deploys the S/MIME stan-
dard for signing and encrypting emails. Thereby the
MoCrySIL application is installed on a current An-
droid 5.0 devicethat offers a hardware-based Key-
Chain for storing the asymmetric key data. As client
a desktop based mail client is used that supports
S/MIME and is capable of using cryptographic func-
tions via the standardised PKCS#11 API.

5.1.1 Entities and Assumptions

The client7 is the device running the application,
which utilises the cryptographic functions offered by
the CrySIL infrastructure. For the most part it is
considered to be out of scope for the conducted se-
curity/risk analysis. The mobile device hosts the
CrySIL instance and stores and handles the asymmet-
ric cryptographic key data used for S/MIME based
encryption/signature processes. The user operates the
mail application on the respective client, handles the
MoCrySIL app on the Android device, registers the
MoCrySIL app with WebVPN and the client, and uses
the MoCrySIL infrastructure by signing/decrypting
mails on the client. WebVPN is hosted on a pub-
lic cloud provider8 that is assumed (1) to be honest-
but-curious. (2) The possibility of a successful attack
by a third party needs to be considered. This party
has the interest to manipulate WebVPN or listens to
communication. The CrySIL provider develops and
maintains the CrySIL components. These include the
MoCrySIL app, the client PKCS#11 CrySIL library
and WebVPN. The CrySIL provider is considered as
trustworthy. However, similar to the cloud provider
the components might be successfully attacked by a
third party. Finally, the push notification provider is
hosted by the respective mobile platform – in this case
Google. Here, the same assumptions as for the cloud
provider are taken.

5.1.2 Assets

The plain email data handled on the client is consid-
ered as the primary asset. The client’s crypto APIs
are capable of handling bulk cryptographic operations
(e.g. hashing and symmetric algorithms) as well as

7Entities and assets are formatted in italic/bold.
8such as Amazon EC2, or Jelastic

MoCrySIL�-�Carry�Your�Cryptographic�Keys�in�Your�Pocket

289



key wrapping and signature verification. Thus, the
MoCrySIL app and the key material is only used for
(1) signing the hash values and (2) for decrypting
the symmetric content encryption keys. The crypto-
graphic material (symmetric keys and hash values)
needs to be transferred to the MoCrySIL app. Know-
ing the symmetric keys would allow an attacker to de-
crypt an encrypted email, whereas being able to ma-
nipulate the transferred hash values would allow an
attacker to sign arbitrary documents in the name of the
legitimate user. Another core security asset is repre-
sented by the asymmetric cryptographic keys stored
in the Android KeyChain. An attacker who can ex-
tract or use these keys is capable of signing arbitrary
content in the name of the legitimate user or decrypt-
ing her emails.

5.1.3 Threats, Countermeasures and Risks

By considering the assumptions, the assets, and the
different players the proposed system can be analysed
in respect to attacks (A), threats (T), countermeasures
(C) and residual risks (R).

Cloud Provider. (A1) The honest-but-curios cloud
provider might listen to the ongoing communication
but does not attack the deployed applications. (A2)
The cloud service provider is successfully attacked
by a third party, who deliberately intends to gain ac-
cess to or manipulate data transferred over WebVPN.
In a similar way, a possibly malicious cloud provider
needs to be considered.

(T1) Denial-Of-Service (relevant for A1, A2).
The communication between the clients and the
MoCrySIL device might be subject to a DOS attack,
which prohibits the utilisation of the provided crypto-
graphic services. The current system is not capable of
addressing this threat due to the reliance on the Web-
VPN component. As a consequence the residual risk
of a DOS-attack remains (R1 – DOS CrySIL com-
munication).

(T2) Sniffing Communication Meta Data (rele-
vant for A1, A2). The attacker is capable of sniffing
communication meta data of the connections between
clients and MoCrySIL devices. This meta-data in-
cludes IP addresses, information that can be extracted
from the TLS handshake (certificates, cipher-suites)
for the end-2-end security tunnel or usage data (time,
amount of traffic). Capturing this data cannot be mit-
igated by the current system (no countermeasures)
and thus needs to be considered as residual risk (R2 –
Gaining communication meta data)9.

9Deploying the WebVPN components within a private
cloud can address this residual risk. However, this scenario

(T3) Sniffing/Manipulating Cryptographic
Material (relevant for A2, partly A1)). A successful
attacker might try to sniff (A1, A2) or manipulate
transferred cryptographic material (cryptographic
hashes or symmetric keys) (A2). Manipulating this
data would allow an attacker to sign arbitrary docu-
ments (by exchanging the transferred hash values) or
decrypt arbitrary symmetric keys (see T5 for details).

(T4): Re-routing Packets (relevant for A2). The
attacker re-routes (1) CrySIL protocol packets from
a legitimate client to other MoCrySIL devices, or (2)
from a malicious client to a specific MoCrySIL de-
vice: The latter has a high impact on security, be-
cause it could enable an attacker to sign arbitrary doc-
uments in the name of the attacked MoCrySIL user.
Also, documents belonging to that user could be de-
crypted by sending malicious decryption requests to
the CrySIL infrastructure (see T5 for details).

(T5): Man-In-The-Middle Attack. T3 and T4
are mitigated by the end-2-end encryption TLS tunnel
(C1 – TLS tunnel). However, the system is some-
what susceptible to MITM attacks. During the initial
communication handshake the user currently needs
to verify the validity of the certificate by compar-
ing certificate hash values that are displayed on the
MoCrySIL app and the client. Failing to do so would
allow an attacker (A2) to carry out an MITM attack
and read and manipulate the CrySIL protocol packets.
Therefore, the residual risk of a MITM attack – with
the consequences described in T3 and T4 – needs to
be considered (R3 – MITM attack).

Push Notification Provider. Attack vectors on the
push notification provider are highly similar to those
on the cloud service provider: (A3) Honest-but-
curious Push Notification Provider (similar to A1)
and (A4) External attack on Push Notification Ser-
vice (similar to A2). However due to “wake-up” only
nature of the push notifications the consequences dif-
fer from those of A1 and A2.

(T6) Denial of Service (relevant for A4). The
push notification service of WebVPN could be sub-
ject to a DOS attack. In this case, the “wake-up-call”
to initiate the WebSocket channel would be lost. This
can simply be mitigated by allowing the user to man-
ually start the MoCrySIL app (C2 – Manual estab-
lishment of communication channel). Therefore,
the residual risk of this DOS attack has a very low
impact (R4 – DOS Push Notification System).

(T7) Sniffing/Manipulation of the Push Notifi-
cation Messages (relevant for A4, partly A3). In this
case the attacker listens to push notification commu-
nication (A3, A4), or manipulates (A4) push notifi-

is not considered in the assumptions.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

290



cation tokens or sends arbitrary tokens (A4) to the
MoCrySIL app. Due to the “wake-up-call” nature
of the push notifications, there is no residual risk in
learning their content.

Mobile Device and User. The attacks are mainly
related to attacking the mobile device either by gain-
ing physical access or by injecting malicious soft-
ware. (A5) refers to stealing the device with the in-
tention to extract/or use the key material stored on the
mobile device. (A6) refers to an attack carried out by
a malicious application that does not/cannot gain root
access. (A7) refers to malware that is capable of gain-
ing root access. (A8) refers to external attacks orig-
inating from an outside location by exploiting weak-
nesses of the system or the user.

(T8) Extracting Cryptographic Keys (relevant
for A5, A7). By extracting the asymmetric keys, the
attacker can arbitrarily use them to create signatures
or to decrypt symmetric key material. The impact is
different when (1) the user is aware of attack (e.g., due
to stealing the device) and (2) the user is not aware of
the key extraction process (e.g. due to malware). The
latter allows an attacker to use the keys for a long time
before countermeasures are taken. The most effec-
tive countermeasure against the extraction of private
key material is the utilisation of the hardware-backed
key storage (C3 – Hardware-backed key storage).
There remains a very low risk that the key material
could be extracted via a side-channel attack. How-
ever, an application scenario in which an attacker is
willing carry out this complex attack must never be
considered for a mobile use case.

(T9) Using Cryptographic Keys (relevant for
A5, A7). This threat needs to be considered in de-
tail, since it can only be partly mitigated by the em-
ployed hardware element. An attacker who gains ac-
cess to the CrySIL interface offered by the MoCrySIL
app and either knows the authentication credentials or
circumvents the authentication system can arbitrarily
sign and decrypt data. Similar to T8 the impact is
considered to be higher when the user is not aware
of the ongoing misuse. All in all, the residual risk
and countermeasures are strongly tied to mobile de-
vice security (R5/C5 – Security of mobile device).

(T10) Stealing Credentials (relevant for A7 and
especially for A6). Due to the nature of the
MoCrySIL authentication process, this threat does not
apply to this type of credentials. However, creden-
tials, that are used to protect the Android KeyChain
and the mobile device could be subject of an attack.
Such an attack could rely on malware that either di-
rectly captures the entered credentials (A7), lures the
user into entering them (phishing) (A6). Phished cre-

dentials could then be used when the device is stolen
at a later time. Especially, the malware problem
can be mitigated by the same countermeasures as de-
scribed in T9. The risk of gaining access to the cre-
dentials by shoulder surfing needs to be considered as
residual risk (R6 – Stealing credentials).

(T11) Accepting a Malicious Request (relevant
for A8). An attacker who gets to know the Comm
ID could send a CrySIL request to the CrySIL URL.
However, the authentication process requires the user
to enter a PIN code that is only shown by the client’s
CrySIL library. Thus, the user is not able to enter the
correct PIN code, even if she would interpret the ma-
licious request as valid (C6 – CrySIL authentication
system). However, an attacker could easily mount a
denial of service attack by sending arbitrary requests
to the communication end point. This threat cannot be
addressed by the current CrySIL authentication fea-
tures and thus manifests in a residual risk (R7 – DOS
by an external attacker).

(T12) Impersonating Another Device (relevant
for A8). An attacker might try to impersonate a target
device when connecting to the WebVPN communica-
tion end point. Even if the attacker learns the comm
ID, he still has no access to the TLS certificate used
by the device for WebVPN authentication (C7 – We-
bVPN authentication).

5.1.4 Discussion on Risks

The residuals risks are mainly associated with DOS
attacks (R1, R4, R7), gaining meta-information (R2),
deploying malware on the device (R5, R6) and attack-
ing the user (R6, R3). The attacks related to DOS
and extracting meta-information do not have a sig-
nificant security-related impact on the MoCrySIL ar-
chitecture. However, the remaining risks have severe
consequences and need to be mitigated by managing
the device and implementing tight security policies
(device encryption, password locks etc.).

With having these policies in place, MoCrySIL’s
security services offer a solid level of security.

5.2 Performance

As for performance, relying on a third party for com-
munication takes time. Yet, our use of long-lived
Websocket connections reduces the amount of time
lost in creating a connection significantly.

As for the integration efforts, whenever an appli-
cation utilises well-known crypto APIs, CrySIL can
be integrated with a minimal effort. As of today, we
work on receivers for PKCS11, JCE, MS CNG and
W3C Crypto API. One can easily implement such a

MoCrySIL�-�Carry�Your�Cryptographic�Keys�in�Your�Pocket

291



module if needed. For Java, our JCE receiver mod-
ule for example is implemented using only 1000 lines
of prototypical code, router and sending communica-
tions modules do have 80 loc each with a common
protocol definition of 1500 loc. The code of imported
libraries is not included in the numbers given.

6 FUTURE WORK AND
CONCLUSIONS

With MoCrySIL, we present our solution of a secure,
flexible and portable personal key store service one
can carry around in his pocket. MoCrySIL removes
the need for a trusted third party and therefore com-
plements our CrySIL solution well.

Our prototype implementation highlights the flex-
ibility of the CrySIL architecture, shows its potential
and affirms the ease of use for developers and end
users. The security analysis of MoCrySIL indicates
that using hardware-backed key storage facilities on
mobile devices allows to reach a significant level of
security. Due to the uncontrolled environment a mo-
bile device is used in, however, the residual risks for
certain threats is higher than in classic deployment
scenarios. Therefore, MoCrySIL focuses on standard
applications where the hardware-backed key storage
facilities on mobile devices already provide a signif-
icant improvement of the security when compared to
standard software-based key storage solutions.

Future work will extend CrySIL’s feature set and
client APIs and heavily focus on extending the flexi-
bility of the authentication system to allow for an even
wider range of use cases.

REFERENCES

Benaloh, J., Chase, M., Horvitz, E., and Lauter, K. (2009).
Patient controlled encryption: Ensuring privacy of
electronic medical records. In Proceedings of the 2009
ACM Workshop on Cloud Computing Security, CCSW
’09, pages 103–114, New York, NY, USA. ACM.

Bleikertz, S., Bugiel, S., Ideler, H., Nürnberger, S.,
and Sadeghi, A.-R. (2013). Client-controlled
cryptography-as-a-service in the cloud. In Applied
Cryptography and Network Security, volume 7954
of Lecture Notes in Computer Science, pages 19–36.
Springer Berlin Heidelberg.

Butt, S., Lagar-Cavilla, H. A., Srivastava, A., and Gana-
pathy, V. (2012). Self-service cloud computing. In
Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security, CCS ’12, pages
253–264, New York, NY, USA. ACM.

Egele, M., Brumley, D., Fratantonio, Y., and Kruegel, C.
(2013). An empirical study of cryptographic misuse
in android applications. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communi-
cations security - CCS ’13, pages 73–84, New York,
New York, USA. ACM Press.

Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner,
L., and Freisleben, B. (2012). Why eve and mallory
love android. In Proceedings of the 2012 ACM con-
ference on Computer and communications security -
CCS ’12, page 50, New York, New York, USA. ACM
Press.

Kamara, S. and Lauter, K. (2010). Cryptographic cloud
storage. In Lecture Notes in Computer Science, vol-
ume 6054, pages 136–149.

KMIP-v1.1 (2013). Key Management Interoperability Pro-
tocol Specification Version 1.1. OASIS Standard.

Lei, S., Zsihan, D., and Jindi, G. (2010). Research on Key
Management Infrastructure in Cloud Computing En-
vironments. In 9th International Conference on Grid
and Cooperative Computing (GCC), pages 404 – 407,
Nanjing. IEEE.

Leitold, H., Hollosi, A., and Posch, R. (2002). Security
architecture of the Austrian citizen card concept. 18th
Annual Computer Security Applications Conference,
2002. Proceedings.

Reimair, F., Teufl, P., and Zefferer, T. (2015). WebCrySIL -
Web Cryptographic Service Interoperability Layer. In
Web Information Systems and Technologies.

Rocha, F. and Correia, M. P. (2011). Lucy in the sky without
diamonds: Stealing confidential data in the cloud. In
41st International Conference on Dependable Systems
and Networks Workshops (DSN-W), pages 129 – 134,
Hong Kong. IEEE.

Toegl, R., , Reimair, F., and Pirker, M. (2013). Waltzing the
Bear, or: A trusted virtual security module. volume
7868 of Lecture Notes in Computer Science, pages
145–160. Springer Berlin Heidelberg.

Trusted Computing Group (2011). TCG TPM
specification version 1.2 revision 116.
http://www.trustedcomputinggroup.org/resources/
tpm main specification. last visited on January 29,
2013.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

292


