Visual Syntax of UML Class and Package Diagram Constructs asra
Ontology

Anitta Thomas, Aurona J. Gerbér and Alta van der Merwe
1school of Computing, University of South Africa, The Science Campus, Florida Park, South Africa
2Department of Informatics, University of Pretoria, Pretoria, South Africa
3Center for Atrtificial Intelligence Research (CAIR), CSIR Meraka, Pretoria, South Africa

Keywords: Visual Syntax Specification, UML Class Diagrams, UML Package Diagrams, OWL, Ontology, Ontology
Reasoner, Protégeé.

Abstract: Diagrams are often studied as visual languages with an abstract and a concrete syntax (concrete syntax is
often referred to as visual syntax), where the latter contains the visual representations of the concepts in the
former. A formal specification of the concrete syntax is useful in diagram processing applications as well as
in achieving unambiguous understanding of diagrams. Unified Modeling Language (UML) is a commonly
used modeling language to represent software models using its diagrams. Class and package diagrams are two
diagrams of UML. The motivation for this work is twofold; UML lacks a formal visual syntax specification
and ontologies are under-explored for visual syntax specifications. The work in this paper, therefore, explores
using ontologies for visual syntax specifications by specifying the visual syntax of a set of UML class and
package diagram constructs as an ontology in the Web ontology language, OWL. The reasoning features of
the ontology reasoners are then used to verify the visual syntax specification. Besides formally encoding the
visual syntax of numerous UML constructs, the work also demonstrates the general value of using OWL for
visual syntax specifications.

1 INTRODUCTION (Minas, 2006) and it can be useful for applications
that support the automated generation and interpre-

The prevalence of diagrams in our day-to-day lives tation of diagrams in such visual languages (Marriott
has led to much research interest in studying diagramset al., 1998) (Minas, 2006). Such applications are par-
(Peter Cheng and Haarslev, 2000). Formal specifica-ticularly useful for visually impaired users who rely
tions of the syntax and semantics of diagrams are con-On textinstead of graphics for understanding and gen-
sidered valuable in promoting unambiguous under- €rating diagrams.
standing of diagrams between humans and computers, Unified Modeling Language (UML) is a visual
and computers and computers (Marriott et al., 1998). language that uses both text and graphical elements
As a knowledge representation tool, ontologies have (uml, 2012a). Class and package diagrams are two
been successfully used to model domain knowledgetypes of UML diagrams (Moody and van Hillegers-
(Wyner and Hoekstra, 2012). However an investiga- berg, 2009) used to represent a static structure of an
tion of the current literature indicates a gap in the use object oriented model (uml, 2012b). The constructs
of ontologies for the concrete syntax specification of of UML are standardized with a specification, the
diagrams. This work tries to address this gap by ex- current version being UML 2.4.1 (uml, 2012a) (uml,
ploring the use of ontologies for the concrete syntax 2012b). Although UML 2.4.1 specification includes
specification of diagrams. the syntax and semantics of its constructs, it lacks a
The concrete syntax of a visual language describesformal representation of the visual syntax of its dia-
the visual layout of the diagrams that are part of grams. Evidence of this lack is that the concrete syn-
the language (Drewes and Klempien-Hinrichs, 2000), tax (hereafter referred to as visual syntax) of UML
where diagrams may have both graphical and textual constructs is specified as textual descriptions of ac-
elements (Marriott et al., 1998) (Minas, 2006). This cepted notations along with sample figures only (uml,
syntax is essential for describing the visual language 2012a) (uml, 2012b). The lack of a formal visual syn-

17

Thomas, A., Gerber, A. and Merwe, A..

Visual Syntax of UML Class and Package Diagram Constructs as an Ontology.

In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 2: KEOD, pages 17-28
ISBN: 978-989-758-158-8

Copyright (© 2015 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

tax representation is another motivation for consider- which is the visual syntax specification of the selected

ing UML class and package diagrams for visual syn- UML class and package diagram constructs. Section

tax specification in this work. 5 explores the reasoning features of the ontology rea-
A drawback with a lack of formal visual syntax Soners that can be used to verify the visual syntax

specification is that even UML compliant tools could specification given in section 4. A possible enhance-

generate UML diagrams differently, which can cause ment for the developed visual syntax specification is

confusion when users interpret them (Elaasar anddiscussed in section 6. Section 7 concludes with a

Labiche, 2011). As a visual representation tool, the summary, a reflection and the value of this work, and

visual syntactical structure of UML diagrams should future research.

be consistent irrespective of the tools that generated

it. The use of a formal visual syntax specification in

UML tools is one way to ensure consistent rendering 2 BACKGROUND

of its diagrams. Moreover, given that non-compliant

UML tools can also generate visually valid UML di- ~Thjs section includes brief background information
agrams, such tools can also make use of a formal vi- o, yarious topics covered in this paper and places this
sual syntax specification to promote consistent view \york within the existing work on visual languages.
of these diagrams.

Numerous techniques in different formalisms 2.1 Visual Languages
such as grammatical, logical and algebraic have been

_used for visual syntax_specificati_ons. Within the log- |y Computer Science (CS), diagrams are studied as vi-
ical formalism, Description Logics (DL) have also g3 languages, where diagrams in a given visual lan-
been explored for visual syntax specifications (Mar- gyage follow a common syntactical structure (Drewes
riott et al., 1998). Although DL have influenced gpq Klempien-Hinrichs, 2000). When studying a vi-
the Web ontology language, OWL, (Horrocks et al., gyal language in CS, researchers are faced with two
2003), the use of OWL ontologies itself for visual lan- - main tasks; symbolic specification of its visual syntax
guage specifications is under-explored. and semantics in a suitable formalism, and the study
Given the fact that ontologies are under-explored of the use of such specifications in technical applica-
for visual syntax specifications and UML lacks a for- tions (Marriott et al., 1998). The work in this paper
mal visual syntax representation, the work in this pa- only focuses on the specification of the visual syntax
per addresses these gaps by specifying the visual synof a selected set of UML class and package diagram
tax of selected constructs of UML class and package constructs.
diagrams as an OWL ontology. In particular, it spec- Although the visual syntax specification pre-
ifies the visual syntax of a selected number of UML scribes the visual structure of valid diagrams, more
constructs that are typically used in class and packagethan one correct specification is possible for a given
diagrams (uml, 2012b). The reasoning features of the visual language. These variations occur because a
ontology reasoners are then examined to see how theyspatial structure can be modeled in different ways
can be utilized to verify such a visual syntax specifi- (G Costagliola and Tortora, 1997) based on the cho-
cation. sen spatial relationships and the granularity of primi-
The contribution of this research is threefold; it tive elements. Thus in view of these variations there
provides a formal encoding of the visual syntax of se- can be numerous visual syntax specifications for a vi-
lected UML class and package diagram constructs, it sual language like UML.
explores OWL for visual syntax specifications and it Numerous techniques in grammatical, logical, al-
explores the value of OWL reasoners to verify visual gebraic formalisms have been explored for visual lan-
syntax specifications. The latter two aspects entail guage specifications. Such specifications have also
a generic contribution to the field of visual language been used in numerous diagram processing applica-
specification. tions as well. The paper by (Marriott et al., 1998) in-
This paper is structured as following: section 2 cludes an overview of the various visual syntax spec-
provides background information to the work pre- ification techniques and applications. The specifica-
sented in the paper. This includes a brief introduction tion formalism used in this work is logic with ontol-
to the research on visual languages, UML class and 09y as the specification technique.
package diagram constructs used in this paper, OWL
and qualitative spatial relationships used in this paper.
Section 3 briefly presents related work to this research
study. Section 4 describes the visual syntax ontology,

18

Visual Syntax of UML Class and Package Diagram Constructs as an Ontology

2.2 UML Class and Package Diagram — .
g g Class Ilm'l':':u-::.\':mn'
Constructs

InterfaceName 1Merface

. »ackase
PackageName Package

UML is a widely used modeling language for repre- ~ ————— | o D Generalization
senting software models (Moody and van Hillegers-

berg, 2009), overseen by the standards consortium O Aggregation roeroeceee D ntertacereatization
Object Management Group (OMG) (uml, 2012a). ~— & ‘omitor D Realization
UML provides thirteen diagrams (Moody and van > Dependency LSS Ugge
Hillegersberg, 2009) for representing structural and <™ 5 pekageMerge - GMPOrD

dynamic aspects of software systems (Javed et al., ey Puckasempor

2005) and it can be used in the design, analysis, im-gigre 1: A subset of UML class and package diagram

plementation and documentation of Software'applica- constructs and their respective notations consideredisn th
tions (uml, 2012b) (uml, 2012a). UML has aninterna- work.

tionally accepted standard (uml, 2012b) (uml, 2012a)
that specifies its syntax and semantics. 2.3 OWL
UML class and package diagram constructs are

specified in the Classes package of the UML 2.4.1 owL is a prominent ontology language (Motik et al.,
specification. Classes package includes fifty six con- 2008) for the Semantic Web (Parreiras and Staab,
structs that can be used to represent an object ori-p010). OWL makes use of DL for its logical founda-
ented (OO) model using class, package and objectijons, which allow reasoners to infer aspects based on
diagrams. These UML constructs include both OO \yhat is specified in an ontology (Motik et al., 2008).
constructs (exampleClasg as well as non-OO con- ontologies are used for knowledge representation in
cepts (exampleCommenjt Some of these UML con- yymerous disciplines such as biology, medicine, ge-
structs are represented exclusively using text (exam'ography, astronomy and agriculture (Motik et al.,
ple: MultiplicityElemen]}, some using only graphi- 2008).

cal elements (exampl&eneralizatiof and majority An OWL ontology models a domain using classes,
uses both graphical and text elements (examisle: properties, instances and data values (Horrocks et al.,
terfacd. Some UML constructs do not have their own 2012). A class represents a set of objects, a prop-
distinct notations (exampl@irectedRelationshipas grty describes a possible relationship between objects,
the notations are meant to be defined using specializa-jnstances describe the objects themselves and a data
tions of these constructs (examplBlementimpot yajye links an instance to a specific data type (Hor-

(uml, 2012b). _ ridge et al., 2009). OWL provides a rich set of con-
The set of UML class and package diagram con- strycts such as union, intersection and negation to de-
structs that are considered in this work &fess In- scribe classes and characteristics such as transitivity,
terface Package Association Aggregation Compo- symmetry and reflexivity to describe properties. Due
sition, DependencyGeneralization Usage Realiza- g the compositional nature of OWL, complex classes
tion, InterfaceRealizationPackageMergeand Pack- can be described using other classes in the ontology

agelmport These thirteen constructs were chosen be- Horridge et al., 2009) (Parreiras and Staab, 2010).
cause they are the typical constructs used in class and An ontology reasoner can be used to check the
package diagrams and similarly the notations consid- correctness as well as to infer new knowledge based
ered are the notations used for these constructs as ingp what is described in the ontology. In other words,
dicated on pages 147 to 150 in the UML 2.4.1 spec- it helps in detecting inconsistencies in the ontology
ification (uml, 2012b). Based on these selected nota- 55 well as maintaining the class hierarchies by infer-
tions, AssociationInterfaceandPackagelmporhave ence based on the explicitly stated information in the
two notations each while the other ten constructs have gntology. The automated reasoning capabilities of an

one notation each. Figure 1 lists the UML constructs gntology reasoner are vital in maintaining correct on-
and their notations (uml, 2012b) used in this paper. g|ogies (Horridge et al., 2009).

The chosen notations are not the only notations There are numerous OWL ontology development
for the selected UML constructs. For example a editors (examples include Protegé and SWOOP) and
Classcan be represented using a rectangle with threeeasoners (examples include HermiT, RacerPro and
compartments and additional strings to represent datapget) available (Bock et al., 2008). This work uses

members and methods in addition to the class name.protgge as the ontology development editor and Her-
However, such variations are intentionally excluded m;T as the ontology reasoner.

from this paper to limit the scope of the notations.

19

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

2.4 Spatial Relationships Since DL provide the logical foundations for
OWL (Motik et al., 2008), a brief summary of DL for
A spatial layout can be described using spatial rela- visual languages is included in this section. A general
tionships between objects in a given space. Spatial DL formalism has been successfully used for the for-
relationships can be classified into categories of direc- mal specification of entity-relationship diagrams and
tion, distance, topology, alignment and size (Zhang, a visual programming language, Pictorial Janus (Mar-
2007). A spatial relationship in general can be de- riott et al., 1998). The visual syntax specification of
scribed qualitatively without any reference to the entity-relationship diagrams was then used in DL sys-
guantitative (example: geometric) information that is tems CLASSIC and LOOM to automate diagram rea-
required to establish these relationships (Renz, 2002).soning to realize a syntax-directed diagram editor that
In this study spatial relationships are expressed quali- can validate diagrams (Haarslev, 1996). The visual
tatively with the assumption that the mapping of these syntax of Pictorial Janus was used to formalize its se-
relationships to the quantitative information or vice mantics, which was also used to realize a diagram ed-
verse is dealt separately, which is beyond the scope ofitor that verifies the semantics of diagrams of Pictorial
this paper. Janus (Haarslev, 1995).

In this work four topological relationships, dis- An investigation of the current literature indicates
connected, contains, overlapping and touching, area lack with regards to publications on the use of OWL
used to describe the spatial relationship between two ontologies for visual syntax specifications. A visual
visual objects (Zhang, 2007). A visual objeatan be syntax specification in this context refers to a sym-
described using three sets of points: a set of interior bolic encoding of the visual syntax of diagrams that
points|(x), a set of boundary point8(x) and a set are part of a visual language. On the other hand

of all its pointsD(x) = I (x) UB(x). Then for two vi- there exists ontologies that model shapes and graph-
sual objects andb the four topological relationships ical concepts in general; the ontology presented in
mean the following: (Niknam and Kemke, 2011) is one such ontology.
e disconnecteth,b) iff D(a) N D(b) = 0 (Zhang, Note that such generic ontologies do not capture vi-
2007) sual syntax of diagrams in specific visual languages.
o containga,b) iff D(b) C D(a) (Zhang, 2007) _ The lack of studies_ gxpl_oring OWL ontologies for
i i visual language specification and the lack of formal
» overlappinga,b) iff B(a)NB(b) # 0 andl(a)N visual syntax specification for UML class and pack-
1(b) # 0 age diagram constructs, provide sufficient motivation
e touchinga,b) iff B(a) N B(b) # 0 and I(a) N for this study.
I(b)=0

The visual representations of these four spatial re-
lationships are given in figure 2 (Zhang, 2007). 4 VISUAL SYNTAX

) \ SPECIFICATION OF UML
OO © Y CONSTRUCTS

Figure 2: Visual representations of four topological smati

relationships (Zhang, 2007). The visual syntax of the selected UML constructs is

modeled using primitive elements and spatial rela-

tions as in (Haarslev, 1996) and (Haarslev, 1995). A

discussion on the primitive elements and the spatial
3 RELATED WORK relationships and how they are modeled in the OWL
ontology is included in the next two subsections, fol-
lowed by the visual syntax definitions of the thirteen
UML constructs in section 4.3.

Numerous techniques for and applications of visual
syntax specification are reported in the literature. Ex-
amples of visual syntax specification techniques in-
clude graph grammars and DL. Visual syntax spec- L
ifications have been used in technical applications 4.1 Primitive Elements

that interpret images of diagrams and drawing tools

that support users in creating syntactically correct di- The primitive elements for the thirteen UML con-
agrams (Marriott et al., 1998). The work in (Mar- structs are arrow, circle, filled diamond, unfilled di-
riott et al., 1998) includes a survey of different spec- amond, double rectangle, line, dotted line, rectan-
ification techniques and applications of visual syntax gle, triangle and string. The visual representations of
specifications. these ten primitive elements are illustrated in figure 3.

20

Visual Syntax of UML Class and Package Diagram Constructs as an Ontology

> [e) S Test] using two different notations. The first notation uses
a circle, a line and a string to represent the interface

arrow circle line string pectangle Ny o Tep
° & name. The second notation is similar to that @flass

A - ® O construct except that it contains two strings. Thus the
triangle double dotted linefilled ynfilled OWL classlInterfaceis specified as:
rectansle diamond. gjamond Cass: Interface
s

Equi val ent To:
Line and (disconnected some String)
and (touches some Gircle),

The ten primitive elements are modeled as ten Rectangl e and (contains mn 2 String)
OWL classes namelgrrow, Circle, DiamondFilled
DiamondUnfilled DoubleRectangleLine, Dotted- 4.3.3 Package
Line, RectangleTriangleandString, as subclasses of
an OWL classrimitives

Figure 3: Primitive elements of the selected UML class and
package diagram constructs.

A Packages represented using a double rectangle and
a string to represent the package name. The visual
syntax ofPackages specified in the OWL cladack-
ageas given below:

4 ass: Package
Equi val ent To:
Doubl eRect angl e and (contains some String)

4.2 Spatial Relationships

The four spatial relationships discussed in section 2.
are included as object properties in the OWL ontol-
ogy. The OWL object propertiedisconnectedcon-
tains overlappingandtouchingrepresent these four

) : A 4.3.4 Association
spatial relationships in the ontology.

. Similar to the UML constructnterface Association

4.3 UML Class and Package Diagram also has two notations; one using a line and the other

Constructs one using a line and an open arrow. The presence

of an arrow in an association indicates navigability

In this section, the visual syntax of the selected UML while the absence of an arrow indicates undetermined
class and package diagram constructs is specified ushavigability between twdlasses (uml, 2012b). An
ing the primitive elements and spatial relationships OWL class hamed\ssociationto specify the visual
given in sections 4.1 and 4.2. The thirteen UML con- syntax ofAssociatioris given as:
structs are defined as thirteen OWL classes namelyq ass: Associ ati on
UMLClass Interface Package Association Aggre- Equi val ent To:
gation, Composition Dependency Generalization Li ne
RealizationInterfaceRealizatioflUsage Packagelm- anq (touches min 2 UM.O ass),
port and PackageMerge These thirteen classes are |jne and (touches some UML ass)
defined as subclasses of an OWL clagdJLCon- and (touches some (Arrow and
structs a sibling class oPrimitives(see section 4.1). ({ guches some UMLD ass)))
The visual syntax of the UML constructs is specified

as class definitions as given below. Note that the definition of the clagsssociation

makes use of the clagfMLClass

4.3.1 Class 4.3.5 Aggregation

The UML construcClassis represented using a rect- : . .
angle and a string to represent the class name. AnAn Aggregationrelationship between twiClases,

OWL class namedMLClassto represent thi€lass E?hLesp;enS?\}\?f 52'259 naanml“ggglerg ‘22&?:? aenc?fiidlme
construct is specified as: greg p

as:
O ass: UMLJ ass) ;
Equi val ent To: (O ass: Aggregation

Rect anal e Equi val ent To:
gre . Line and (touches some UM.O ass)
and (contains sonme String)

and (touches some (DiamondUnfill ed
4.3.2 Interface and (touches some UMLC ass)))

Similar to the OWL clas®#ssociation Aggrega-
As shown in Figure 1, amterfacecan be represented tion also makes use of the clag$/LClass

21

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

4.3.6 Composition

The UML construciComposition a type of relation-

ship between tw&€las®s, is represented using a filled

diamond and a line. Thus an OWL class naru&ain-
positionis specified as:

O ass: Conposition

Equi val ent To:

Line and (touches some UM.C ass)
and (touches sonme (DianmondFilled
and (touches some UMLO ass)))

Similar to the OWL clas#\ggregation Composi-
tionis also defined in terms of the clagslLClass

4.3.7 Dependency

Dependencys represented using a dotted line and

an arrow either between twGlas®s or two Pack-

4.3.9 Realization

Realizationis represented using a triangle and a dot-
ted line between twdClas®s. The visual syntax of
Realizationis specified in the OWL class namé&-
alizationas follows:

C ass: Realization

Equi val ent To:

LineDotted and (touches sone UM.C ass)
and (touches some (Triangle

and (touches some UMLO ass)))

Again the definition oRealizatioris composed of
the OWL classJMLClass

4.3.10 InterfaceRealization

The UML construct|nterfaceRealizatioyis specified
between arinterfaceand aClassusing a triangle and

ages. In order to distinguish between package level @ dotted line. Thus an OWL class nanaterfaceRe-
and class level dependency, two subclasses of andlizationis defined as:

OWL class Dependencynamely ClassDependency
andPackageDependeneye defined as follows:

O ass: O assDependency

Equi val ent To:

LineDotted and (touches sonme UMLO ass)
and (touches sonme (Arrow

and (touches some UMLO ass)))

SubC assO ;. Dependency

O ass: PackageDependency

Equi val ent To:

LineDotted and (touches sone Package)
and (touches sonme (Arrow

and (touches sone Package)))

SubC assO ;. Dependency

ClassDependencynd PackageDependencgre
composed of the OWL classéBVLClassand Pack-
agerespectively.

4.3.8 Generalization

Generalization a type of relationship between two

Clasgs, is represented using a triangle and a line.

The visual syntax oGeneralizations specified in the
OWL class name@eneralizatioras follows:

O ass: Ceneralization

Equi val ent To:

Line and (touches some UMLO ass)
and (touches sone (Triangle

and (touches sone UMLO ass)))

Again the definition ofGeneralizationis com-
posed of the OWL clasgdMLClass

22

Cass: InterfaceRealization

Equi val ent To:

LineDotted and (touches sone UM.C ass)
and (touches some (Triangle

and (touches some Interface)))

The class definition dhterfaceRealizatiors also
defined in terms of the OWL classesdviLClassand
Interface

4.3.11 Usage

Usageis a type ofDependencyepresented using the

keyword use placed next to the visual representation

of Dependency Similar to DependencyUsageex-
ists either between twGlas®s or between twnter-
faces. Thus using the selected four spatial relation-
ships, two subclasses of an OWL classagenamely
ClassUsageand PackageUsagare specified as fol-
lows:

C ass: PackageUsage

Equi val ent To:

PackageDependency and (di sconnect ed
sonme String)

Subd assOF: Usage

O ass: CassUsage

Equi val ent To:

Cl assDependency and (di sconnected
sone String)

Subd assO: Usage

The definitions oPackageUsagandClassUsage
are defined in terms ofackageDependencgnd
ClassDependenagspectively.

Visual Syntax of UML Class and Package Diagram Constructs as an Ontology

4.3.12 Packagelmport

Similar to UsagePackagelmporis also a type oDe-
pendencyhat can exist between tweackags. Pack-
agelmports represented using the keyword import or
access near to theependencyepresentation. Thus
using the four spatial relationships, an OWL class
namedPackagelmporis defined as:

C ass: Packagel nport

Equi val ent To:

PackageDependency and (di sconnected
sone String)

The definition ofPackagelmporis also defined in
terms ofPackageDependency

4.3.13 PackageMerge

Similar to Packagelmport PackageMergds also a
kind of Dependencybetween twoPackags repre-
sented using the keyword merge. The OWL class for
the visual syntax oPackageMergeas defined as the
following:

Qd ass: PackageMer ge

Equi val ent To:

PackageDependency and (di sconnected
sone String)

The definition ofPackageMergés also defined in
terms ofPackageDependency

Although these thirteen UML constructs were in-
dividually defined in terms of the selected primitives
and spatial relationships, no verification is performed
on the ontology. The verification of the visual syntax
of the UML constructs is discussed in the next sec-
tion.

5 REASONER FEATURES FOR
VISUAL SYNTAX
VERIFICATION

All notations illustrated in figure 1 are distinct, mean-
ing that all the selected UML constructs have dis-
tinct notations. It should be noted that even though
the notations fointerfaceRealizatioandRealization
are the same in figure 1, the former UML construct
connects arnterfaceto a Classbut the latter con-
struct connects twe&las®s resulting in two distinct
visual representations. This distinction in notations
means that the visual syntax definitions of these con-
structs must be also distinct. In this section, various
OWL reasoner features are applied to verify the dis-
tinctness of the visual syntax definitions. This section

also highlights how various features in Protégé can be
used for visual syntax verification.

5.1 Class Equivalence

When two OWL classes are equivalent the sets of ob-
jects represented by these classes are the same (Hor-
rocks et al., 2012). Class equivalence between two
OWL classes can be explicitly stated or inferred by
the reasoner based on the class descriptions. In the
context of a visual syntax ontology, identification of
equivalent classes based on its class descriptions is
significant.

When the visual syntax is specified as an OWL
ontology, class equivalence can be used to check
whether the syntax definitions of any two visual con-
structs are the same. If two OWL classes are inferred
to be equivalent based on its definitions, it means that
the syntax definitions are not distinct. When a dis-
tinct mapping is required between a visual language
concept and its visual syntax, then class equivalency
is not desirable. Detecting class equivalency between
two OWL classes representing two concepts that do
not have the same visual structure prompts a redefini-
tion of their visual syntax definitions.

Detecting equivalent classes, in other words, de-
tecting visual concepts with the same syntax defini-
tions can be achieved by invoking the reasoner in
Protégé, which highlights equivalent classes in the
Class hierarchy (inferredab as well as in individual
class definitions specified ikquivalentTodescrip-
tion.

For the ontology given in section 4, three classes,
Packagelmport PackageMergeand PackageUsage
were reported to be equivalent, meaning that the syn-
tax definitions of these UML constructs are not dis-
tinct. Although this inferred equivalency is valid
based on their class definitions, it is not desired based
on the notations in figure 1. These incorrect visual
syntax definitions indicate that the selected spatial re-
lationships are not sufficient to describe the syntax
of these constructs. As the differences in these con-
structs are in the content of the strings placed next to
the graphical objects, we redefine these three OWL
classes to make use of three different data properties
of typestring as given below:

(O ass: PackageUsage

Equi val ent To:

PackageDependency

and (disconnected some StringUse)
Subd assOf :

Usage

where the OWL clasStringUses defined as:

23

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

O ass: StringUse

Equi val ent To:

hasStringVal ue sonme

xsd: string[pattern "use"]
Subd assO:

String

O ass: Packagel nport

Equi val ent To:

PackageDependency

and (disconnected sonme
(StringAccess or Stringlnport))

where the OWL classeStringAccessnd Stringlm-
port are defined as:

O ass: Stringlnport

Equi val ent To:

hasStringVal ue some

xsd: string[pattern "inport"]
Subd assOf:

String

O ass: StringAccess

Equi val ent To:

hasStringVal ue some

xsd: string[pattern "access"]
Subd assOf:

String

O ass: PackageMer ge

Equi val ent To:

PackageDependency

and (disconnected sonme StringMerge)

where the OWL clasStringMerges defined as:

Cass: StringMerge

Equi val ent To:

hasStringVal ue some

xsd: string[pattern "merge"]
Subd assOF:

String

After the redefinitions of the OWL classeack-
agelmport PackageMergend PackageUsagas de-

scribed above, no more equivalent classes are reported

in the class hierarchy inferred by the reasoner.
5.2 Class Subsumption

If an OWL classA is subsumed b, it means an in-
stance ofA is also an instance d@ (Horrocks et al.,

definitions in an ontology do indeed model the rela-
tionships between the modeled visual constructs cor-
rectly. For example, although bothMLClassandIn-
terfaceuseRectanglendString semantically £lass

is not aninterfaceor vice verse.

In Protégé, after invoking the reasoner on an on-
tology, the class subsumptions can be read in the
Class hierarchy (inferredpb as well as in th&ub-
Class Ofsection of individual class definitions.

Invoking the reasoner on the ontology in section 4,
which has been updated in section 5.1, highlights two
undesired subsumption relationships. One is where
Interfaceis subsumed byMLClassand the second
one is InterfaceRealizationwhich is subsumed by
Realization These two inferred subsumptions are se-
mantically incorrect for UML class diagrams since an
object cannot be amterfaceRealizatiomnd aReal-
ization Similarly an object, if relevant, has to be ei-
ther aninterfaceor aClass

The OWL clasdnterfaceis inferred to be a sub-
class ofUMLClassbecause the cladaterfacecon-
tains at least 2 strings where Bi8LClasscontains
at least 1 string, which means the former class is
a specialization of the latter class. This subsump-
tion relationship betweetMLClass and Interface
also leads to the undesired subsumption relationship
betweeninterfaceRealizatiorand Realization The
OWL classinterfaceRealizatiofis specified in terms
of UMLClassand Interface SinceUMLClasssub-
sumednterface the OWL clasdnterfaceRealization
is inferred to be a subclass Bkalization

A possible solution to eliminate these undesired
subsumption relationships is discussed in section 5.4.

5.3 Class Disjointness

When two OWL classes are disjoint no object is com-
mon between the sets of objects represented by these
classes. Class disjointness is not a reasoner service
but an OWL class descriptor that needs to be explic-
itly stated for the classes in an ontology (Horrocks
etal., 2012).

In a visual syntax ontology, disjointness between
OWL classes is another check that can be used to en-
sure that the visual syntax definitions are distinct. It
also ensures that two disjoint visual constructs cannot
have an instance in common. If disjointness between
OWL classes results in inconsistency in OWL classes,
it will be highlighted in both the tab€lass hierarchy

2012). Class subsumption is a reasoner service (Hor-and Class hierarchy (inferredp Protégé.

rocks et al., 2012), which is key in inferring the class

relationships in an OWL ontology.

For the ontology given in section 4, which has
been updated in section 5.1, no two classes can have a

Class subsumption can be used to verify the in- common object except betweBependencpndUs-
ferred class hierarchy to ensure that the visual syntaxage Packagelmportand PackageMergéecause the

24

Visual Syntax of UML Class and Package Diagram Constructs as an Ontology

latter three concepts are defined in terms of the first 2012). Instance checking is an automated reasoner

concept. So, for example, an instancePatkagelm-
port can be an instance @fependencyas well. How-

service (Horrocks et al., 2012), which makes use of
the explicitly stated and inferred information about

ever, enforcing disjointness among the set of thirteen the classes and instances to determine whether an in-

OWL classes as described above highlights unsatisfi-

able definitions of the classésterfaceandInterface-
Realization which is incorrect because these are two

stance belongs to a class.
Instance checking can be used to check whether
the syntax definitions indeed capture the visual struc-

distinct concepts. The problem arises because of theture of concepts by comparing the instances inferred

contradictions introduced by disjointness betwhen
terfaceandUMLClass andInterfaceRealizatiomnd
Realization when subsumption relationships are in-
ferred betweernterfaceand UMLClass and Inter-
faceRealizatiomndRealization

A possible solution to eliminate these unsatisfiable
class definitions is discussed in section 5.4.

5.4 Class Satisfiability

If an OWL class is unsatisfiable then an object of the

class cannot exist (Horrocks et al., 2012). Checking
for class satisfiability is an automated reasoner ser-

vice (Horrocks et al., 2012), which can be used for

by the reasoner to the concepts identified by a human
expert for a given diagram. For example, the simple
class diagram given in figure 4 depicts the UML con-
ceptClasstwice (Account and SavingsAccount) and
the UML conceptGeneralizationonce (relationship
between Account and SavingsAccount).

Account

SavingsAccount

Figure 4: A sample class diagram with two UMLlasss

checking the correctness of the class descriptions in namely Account and SavingsAccount where Account inher-

an ontology.
As discussed in section 5.3, the clasb#srface
and the clasinterfaceRealizatiomre not satisfiable.

Unsatisfiable classes are highlighted in red in both the

tabsClass hierarchyandClass hierarchy (inferred
Protégeé.

One solution to resolve these two unsatisfiable
classes is to redefine the OWL cldgklLClassas:

Rectangle and (contains min 1 (String
and not Stringlnterface))

where the OWL clasStringInterfacds defined as:

O ass: Stringlnterface
Equi val ent To:
hasStringVal ue sone
xsd: string[pattern "interface"]
Subd assOF:
String
This redefinition is based on the fact thatlater-
facecontains the keyword interface butMLClass

does not use the keyword interface (refer to figure 1).

This redefinition ofUMLClassmakes all classes de-
fined undetUMLConstructs(see section 4.3) satisfi-

its from SavingsAccount&eneralizatio.

In order to check whether the reasoner infers the
UML concepts in figure 4 correctly, the UML class
diagram has to be described using the primitive ele-
ments and spatial relationships given in sections 4.1
and 4.2. Ideally one topological spatial relationship
should be specified between each pair of primitive el-
ements. However, the given list of spatial relation-
ships is not an exhaustive list of spatial relationships
for a given space. For example, the spatial relation-
ship of a visual object to itself and the spatial relation-
ship between a contained object to the container ob-
ject cannot be described using the selected four spatial
relationships. Nevertheless, the UML class diagram
in figure 4 is added to the visual syntax ontology as
follows:

I ndi vi dual : account

Types: String, not (Stringlnterface)
Facts: disconnected savingsaccount,

di sconnected rectanglesa, disconnected
triangle, disconnected Iine

able and removes the undesired subsumption relationd ndi vi dual : savi ngsaccount

ships (described in section 5.2) betwdghlLClass
and Interface andInterfaceRealizatiomnd Realiza-
tion.
5.5 Instance Checking

a is inferred to be an instance of classif a sat-
isfies the class description &% (Horrocks et al.,

Types: String, not (Stringlnterface)
Facts: disconnected account,

di sconnected rectangl ea,

di sconnected triangle, disconnected
l'ine

I ndividual: rectangl ea
Types: Rectangle

25

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

Facts: disconnected savingsaccount, 6 POSSIBLE ENHANCEMENT OF
di sconnected |ine, disconnected THE UML VISUAL SYNTAX
rectangl esa, contains account, SPECIFICATION

touching triangle

UML constructs generally follow accepted guide-
lines for its notations, which are not explicitly stated
in the UML specification. For example, figure 6
demonstrates an uncommon notationG¥neraliza-
tion, which can be compared to the generally followed
notation in figure 4.

I ndividual : rectangl esa

Types: Rectangle

Facts: disconnected account,

di sconnected triangle, disconnected
rectangl ea, contains savingsaccount,
touching Iline

[ndividual: line T
. /N SavingsAccount

Types: Line

Facts: disconnected account, disconnected Figure 6: An uncommon representation@éneralization

savi ngsaccount, disconnected rectanglea,

touching triangle, touching rectanglesa The visual syntax ontology in sections 4 and 5
does not take into account such general presentation

Individual: triangle guidelines. Thus using the developed visual syntax

Types: Triangle ontology, theGeneralizatiomotation in figure 6 will

Facts: disconnected account, disconnected indeed be classified by the reasoner as an instance

savi ngsaccount, disconnected rectangl esa of the OWL classGeneralizationbecause the trian-

touching rectanglea, touching line gle and line are touching although it does not follow

the general presentation guideline ®éneralization

where the line should touch a triangle opposite to the
point where the triangle touches the super class (here
Account). The correctness of such an instance clas-

For ease of reference, the UML class diagram in
figure 5 is annotated with the relevant instance names
used in the ontology.

rectanglea ["Account—— account sification ofGeneralizatioris debatable among UML
triangle :r' users.
—— line A possible enhancement for the given visual syn-

tax specification is to capture such general presenta-
tion guidelines to align it closely to the real-world rep-
Figure 5: UML class diagram in figure 4 annotated with resentations of UML constructs without contradicting
instance names used in the ontology. the UML specification.

rectanglesa SavingsAccount savingsaccount

After invoking the reasoner on an ontology in
Protégé, the instances can be read in@ass hier-
archy in the Memberssection of individual class de- 7 CONCLUSION, REFLECTION
scriptions. TheDL Queryfacility in Protégé can also AND FUTURE WORK
be used for querying instances.

For the visual syntax ontology with the instances, In this work visual syntax of a subset of notations
the reasoner infers two instancesUi¥lLClass(rect- of thirteen UML class and package constructs were
angleAandrectangleSAand one instance of Gener- modeled using primitive graphical elements and spa-
alization (ine), which is the correct interpretation of tial relationships. As a novel approach, an OWL on-
UML concepts for the class diagram in figure 4. tology was successfully used to specify the visual syn-

Note that the translation of figure 4 to OWL el- tax of the selected UML constructs. Furthermore it is
ements is done manually here. This is not ideal as it demonstrated that numerous automated reasoning ser-
becomes cumbersome and error-prone when the numvices of the ontology reasoners can be used to verify
ber of constructs in the diagram increases. ldeally a visual syntax specification.
there should be a tool that the modeler can use todraw Based on the work presented in this paper, it can
or import the diagram, which automatically generates be concluded that an OWL ontology can indeed be
the OWL entries. An investigation of such tools is not used for visual syntax specification provided that the
done for this work. visual constructs can be modeled using classes, prop-

erties, objects and data types as required by OWL.
The main advantage of using an OWL ontology is the

26

Visual Syntax of UML Class and Package Diagram Constructs as an Ontology

use of ontology reasoners to verify the syntax spec- Drewes, F. and Klempien-Hinrichs, R. (2000). Picking

ification. Using OWL is of value because it allows Knots from Trees: The Syntatic Structure of Celtic

the reuse of mature software artifacts including OWL Knotwork. 'L‘ Michael A“dle_rso_”: P-fC-_ and Haarslev,

ontology editors and reasoners for visual syntax spec- Y-» éditors,Theory and Application of Diagrams, First

ification International Conferen_ce, I_Dl_agrams _ZQOOOIume

! :) . 1889 ofLecture Notes in Atrtifical Intelligencgages
Although t_h|s work focuses on UML as the _/lsual 89-104. Springer.

language, it is also of value to the broader field of gjaasar, M. and Labiche, Y. (2011). Diagram Definition: a

visual syntax specification. The process of modeling Case Study with the UML Class Diagram. MoD-

visual constructs, specifying the visual syntax in an ELS 2011 Lecture Notes in Computer Science, pages

OWL ontology and utilizing the ontology reasoners 364-378. Springer.

as demonstrated in this work can be equally applied G Costagliola, A De Lucia, S. O. and Tortora, G. (1997).

to another visual |anguage as well. A Framework of Syntactic Models for the Implemen-

tation of Visual Languages. IRroceedings of IEEE

It should be noted that this work focused on a lim- Symposium on Visual Languagesges 58-65. IEEE.

ited number of UML constructs and notations, and Haarslev, V. (1995). Formal Semantics of Visual Lan-
hence no claim on the completeness of the visual syn- gua;;es using Spatial ReasoningVisual Languages,
tax can be made. Needless to say that how well the Proceedings., 11th IEEE International Symposium on
automated reasoning features can be utilized, depends pages 156-163.

on the number of constructs encoded in the ontol- Haarslev, V. (1996). Using Description Logic for Reason-

ogy and how the constructs are modeled. As stated ing about Diagrammatical Notations. In Padgham

in section 2.1, the same set of UML notations can (Ed.) Proceedings of the International Workshop on
be modeled differently, which may result in a differ- Description Logicspages 124-128.

ent visual syntax ontology. Similarly, the applications Horridge, M., Drummond, N., Jupp, S., Moulton, G., and
of the given visual syntax are also not considered in Stevens, R. (2009). A Practical Guide To Build-

ing OWL Ontologies Using Protégé 4 and CO-ODE
Tools University of Manchester.

Horrocks, 1., Parsia, B., and Sattler, U. (2012). OWL 2
Web Ontology Language: Direct Semantics (Second

this paper. It is envisaged that a technical application
that processes the visual layout of diagrams can make
use of such a visual syntax ontology. Such applica-

tions generally perform an interpretation to produce a Edition). Worid Wide Web Consortium.
literal translapon ora _seman_uc |nterp.retat|on of dlaf Horrocks, |., Patel-Schneider, P. F.. and van Harmelen, F.
grams. As discussed in the introduction, such appli- (2003). From SHIQ and RDF to OWL: the making of
cations can be valuable for visually impaired users to a Web Ontology LanguagaVeb Semantics: Science,
improve the accessibility of diagrams. Services and Agents on the World Wide Weh):7 —
Future research would include expanding the de- 26. _
veloped ontology to incorporate all the UML con- Javed, F., Mernik, M., Bryant, B. R., and Gray, J. (2005). A
cepts in the Classes package of UML specification Qramlm?:gBaﬁeld Appr‘?aChl i/(\)/cliais D'agrsam Valida-
and general presentation guidelines (as discussed in 0. InFourth International Workshop on Scenarios
. . . and State Machines: Models, Algorithms and Tools
section 6), conducting an in-depth study of the auto- (SCESM), St. Louis, MO
mated reasoner Services for the. verification of V'.Sual Marriott, K., Meyer, B., and Wittenburg, K. B. (1998). Vi-
syntax specifications and analyzing the computational sual Language Theory. chapter A Survey of Visual
efficiency of reasoning services based on the number Language Specification and Recognition, pages 5-85.
of classes and instances in a visual syntax ontology. Springer-Verlag New York, Inc., New York, NY, USA.

Minas, M. (2006). Syntax Definition with GrapHhslectron.
Notes Theor. Comput. Sci48(1):19-40.

Moody, D. and van Hillegersberg, J. (2009). Evaluating
REFERENCES the Visual Syntax of UML: An Analysis of the Cog-

nitive Effectiveness of the UML Family of Diagrams.

(2012a). Information technology - Object Management In GaSevi¢, D., Lammel, R., and Van Wyk, E., ed-
Group Unified Modeling Language (OMG UML), In- itors, Software Language Engineeringolume 5452
frastructure Object Management Group. of Lecture Notes in Computer Sciengages 16-34.

(2012b). Information technology - Object Management Springer Berlin Heidelberg.

Group Unified Modeling Language (OMG UML), Su- Motik, B., Cuenca Grau, B., and Sattler, U. (2008). Struc-
perstructure Object Management Group. tured Objects in OWL: Representation and Reasoning.

Bock, J., Haase, P., Ji, Q., and Volz, R. (2008). Benchmark- In Proceedings of the 17th International Conference
ing OWL Reasoners. In van Harmelen, F., Herzig, on World Wide WeBVWW '08, pages 555-564, New
A., Hitzler, P., Lin, Z., Piskac, R., and Qi, G., edi- York, NY, USA. ACM.
tors, Proceedings of the ARea2008 WorkshGEUR Niknam, M. and Kemke, C. (2011). Modeling Shapes and
Workshop Proceedings. Graphics Concepts in an Ontology. In Janna Hastings,

27

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

Oliver Kutz, M. B. and Borgo, S., editorBroceedings
of the First Interdisciplinary Workshop on SHAPES

Parreiras, F. S. and Staab, S. (2010). Using Ontologies with
UML Class-based Modeling: The TwoUse Approach.
Data & Knowledge Engineering9(11):1194 — 1207.
Special issue on contribution of ontologies in design-
ing advanced information systems.

Peter Cheng, M. A. and Haarslev, V. (2000). Preface. The-
ory and Application of Diagrams, First International
Conference, Diagrams 2000.

Renz, J. (2002) Qualitative Spatial Reasoning with Topo-
logical Information Springer-Verlag, Berlin, Heidel-
berg.

Wyner, A. and Hoekstra, R. (2012). A Legal Case OWL
Ontology with an Instantiation of Popov V. Hayashi.
Artif. Intell. Law, 20(1):83-107.

Zhang, K. (2007). Spatial Specification. isual Lan-
guages and Applicationpages 37-57. Springer US.

28

