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Abstract: This work uses supervised machine learning methods over fMRI brain scans to establish the existence of 
two different encoding procedures for human declarative memory. Declarative knowledge refers to the 
memory for facts and events and initially depends on the hippocampus. Recent studies which used patients 
with hippocampal lesions and neuroimaging data, suggested the existence of an alternative process to form 
declarative memories. This process is triggered by learning mechanism called "Fast Mapping (FM)", as 
opposed to the 'standard' "Explicit Encoding (EE)" learning procedure. The present work gives a clear 
biomarker on the existence of two distinct encoding procedures as we can accurately predict which of the 
processes is being used directly from voxel activity in fMRI scans. The scans are taken during retrieval of 
information wherein the tasks are identical regardless of which procedure was used for acquisition and by 
that reflect conclusive prediction. This is an identification of a more subtle cognitive task than direct 
perceptual cognitive tasks as it requires some encoding and processing in the brain. 

1 INTRODUCTION 

Human declarative memory is defined as the 
conscious information recollection of facts and 
events (Squire, 1992). Under the "standard model" 
theory for adult declarative memory systems, novel 
information is encoded explicitly into the memory 
using, amongst other brain parts, the hippocampus 
(McClelland et al., 1995). This standard, 
hippocampal dependant memory is acquired through 
intentional "Explicit Encoding (EE)" procedure. The 
encoded information is then slowly transferred from 
the hippocampus to the neo-cortex where it becomes 
permanently stored (Squire and Alvarez, 1995; 
Frankland and Bontempi, 2005). Overtime, the 
initially hippocampal dependant memories become 
independent of the hippocampus. It has been 
suggested that this re-organization process is done 
during sleep (Gais et al., 2007). 

Amongst toddlers, the process of rapid language 
acquisition occurs prior to the full development of 
the hippocampus (Bauer, 2008; Uematsu et al., 

2012). Moreover, some evidence from hippocampal 
injured subjects demonstrated an ability to acquire 
information which seems to have declarative-like 
characteristics despite severe damages in the 
hippocampus (Sharon et al., 2011; Merhav et al., 
2014) and so must involve a different brain network 
than the one engaged by "EE". This alternative 
learning mechanism is called "Fast Mapping (FM)". 
It is unknown if the memory representations 
following FM undergo consolidation processes, 
similar to memories gained through EE. However, 
since it was shown that patients with hippocampal 
damages as well as healthy controls could learn and 
store information acquired via FM for a week 
(Sharon et al., 2011; Merhav et al., 2014), the 
scheme used to explain memory consolidation of 
other declarative memories cannot be applied for 
FM in a straightforward manner. 

It remains somewhat controversial as to whether 
the FM is available for acquisition of words among 
amnesic patients (Warren and Duff, 2014). Proving 
that FM methods are mostly based on brain 
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structures outside of the hippocampus area opens 
possibility for therapeutic approach for people with 
damages in these areas. 

In this work we aim to demonstrate the 
distinctiveness of brain systems, which support EE 
and FM memory process, by extracting activity 
patterns directly from brain data. Functional 
magnetic resonance imaging (fMRI) captures 
information from thousands of different localities 
(voxels) of the brain simultaneously. Multivariate 
pattern analysis approach (MVPA) (Norman et al., 
2006) utilizes these activities by looking for changes 
in BOLD signal across different voxels. Different 
methods can be used for analysis on such complex 
data depending on the question of study (retrieval or 
decoding stimuli, mental states, behaviours and 
other variables of interest). A growing number of 
studies (Mitchell et al. 2008; Kriegeskorte et al., 
2006; Nawa and Ando, 2014; Atir-Sharon et al., 
2015) shows ability in using machine learning 
methods for analysis of neuroimaging data. 
Nevertheless, the feasibility to achieve successful 
results using machine learning on fMRI multivariate 
data is not trivial and relies on the sensitive choice 
of features to be considered in the analysis. 

2 RELATED WORK 

The mechanism of FM was examined among healthy 
individuals (Gilboa et al., 2011; Atir-Sharon et al., 
2015). It was shown that two learning mechanisms, 
EE and FM, can be discriminated from fMRI data 
during memory acquisition using machine learning 
based classifier. In addition, memories acquired 
during scanning were tested for recollection success 
later, outside the fMRI machine. Successful 
accuracy results were achieved when identifying 
scans corresponding to successful and unsuccessful 
recollection within EE group and within FM group, 
for each participant separately and cross-participant.  

However, the different nature of the procedures 
used for acquisition of information (EE and FM), 
does not allow for complete control over the task 
with regard to the behavioural experience. 
Therefore, the possibility remained that the 
successful classification obtained in the experiment 
is a result of differences in the acquisition 
procedures and not in the learning mechanisms.  

To overcome this limitation, in another study 
(Merhav et al., 2015), the neural correlates of FM 
and EE were explored during a retrieval procedure, 
designed to be identical for both mechanisms. In 
addition, the study was focused on overnight re-

organization of memory representations, following 
both EE and FM. Findings suggested that, despite 
the identical retrieval tasks, memories that were 
gained through FM induced distinct neural 
substrates from those involved EE (Merhav et al., 
2015). While retrieval of data learned through EE 
engaged the expected hippocampal and vmPFC 
related network, retrieval of information acquired 
through FM immediately engaged an ATL related 
network, typically supporting well-established 
semantic knowledge. In addition, analysis of 
neuroimaging data associated with EE showed the 
expected overnight changes in network connectivity 
where for FM minimal overnight changes were 
presented. The analysis was performed by a 
multivariate technique of Spatiotemporal Partial 
Least Squares (PLS), helping to identify assemblies 
of brain regions that co-vary together. 

3 CURRENT STUDY 

In this study, fMRI brain data was captured during 
retrieval of memories, acquired through either EE or 
FM. The goal is to provide a biomarker directly 
from these fMRI scans using machine learning 
methods. Such classification ability based on the 
neural activity data gives strong evidence for the 
existence of distinct neural processes associated with 
EE and FM. 

Multivariate classification is performed on fMRI 
features obtained during memory recollection, where 
tasks performed by the participants are identical for 
EE and FM. We also perform classification to 
explore re-organization processes following both 
learning mechanisms. Classification was performed 
over brain scans which were acquired either 30 
minutes before scanning (recent memory) or a day 
before scanning (remote memory). 

Regarding the distinction between the two 
memory processes during recollection, we address 
two questions: 

1. Is it possible to distinguish between the two 
learning modes (i.e. EE and FM) based on 
neural activity information collected during 
the recollection of memories? 

2. Is it possible to distinguish between items 
learned recently and remotely? 
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4 EXPERIMENT PROCEDURE 

4.1 Participants 

The experiment, full details of which can be seen in 
Merhav et al. (Merhav et al., 2015), was conducted 
in Rotman Research Institute at Baycrest, Canada.  
Here we mention the salient points.  

32 participants (20 females) were recruited and 
randomly assigned to one of the two groups (EE or 
FM). All participants were English native speakers, 
right-handed and had no history of neurological or 
psychiatric disorders and no learning disabilities. A 
written informed consent was obtained according to 
Baycrest’s Research Ethics Board’s guidelines.  
Gender and age distributions (10 females in each 
group) were similar in the FM and in the EE groups, 
respectively. The two groups also did not differ on 
the number of years of education, I.Q. estimates and 
WMS-III Verbal Paired Associates retention. 

4.2 Experiment Paradigm & Procedure 

32 healthy adult participants (20 females) were 
randomly assigned of one to two groups (EE or FM). 
On day 1 the participants learned 50 new unfamiliar 
picture-word associations. On day 2 (24 hours later) 
they learned another set of 50 new picture-word 
associations. A retrieval memory test for all the 100 
new picture-word associations took place 30 minutes 
after the acquisition of a second set of associations. 
During the retrieval, brain activity was scanned 
(Figure 1A). Therefore, the participants were tested 
on both recently and remotely encoded information. 
The two learning tasks (EE / FM) were designed 
differently due to different nature of both learning 
procedures (Figure 1B). 

The retrieval task was designed as an event 
related fMRI experiment in which memory for all 
100 items was assessed via an associative four-
alternative forced choice recognition task. The 
retrieval procedure was identical for EE and FM as it 
was performed inside the scanner (Figure 1C). Each 
retrieval trial of an item was 12.5 seconds long and 
contained the following intervals: blank screen (1 
sec), target label as text and auditory input (1.5 sec), 
4 choice pictures appeared on screen, below the 
target label (2.5 sec), the word "choose" appeared 
onscreen and participants had to respond by 
selecting the appropriate key (5 sec), confidence 
rating (2.5 sec).  

The experiment was designed intentionally to 
have participants perform either EE or FM, rather 
than perform both EE and FM tasks. It was 

important that learning through FM will be implicit 
and unintentional, so participants should not know 
that the task is a mnemonic task (i.e., requires 
memory). However, in EE, participants are explicitly 
asked to remember the name of the item. 

4.3 Data Acquisition & Pre-processing 

The participants were scanned using the Siemens 
Trio 3 T scanner, at Baycrest Institute. They 
acquired T2*-weighted images, covering the whole 
brain using an echo-planar imaging (EPI) sequence 
of 50 slices, with repetition time (TR) of 2500 ms, 
echo time (TE) of 27 ms, 64 × 64 matrix, slice 
thickness of 3.5 mm and a field of view (FOV) of 
200 mm. The procedure was designed as an event 
related fMRI study. 

 

 

 

Figure 1: (A) The experiment structure. (B) Examples of 
acquisition through FM (left) and through EE (right). (C) 
Retrieval test design which took place inside the fMRI 
scanner. 

The pre-processing steps included conversion to 
4-dimensional AFNI format (Cox, 1996), slice 
timing correction using the first slice as a reference 
(Figure 2A), movement correction for unintended 
head motions and spatial smoothing with 6mm 
FWHM Gaussian kernel to increase signal-to-noise 
ratio (Figure 2B). Finally, individual participant's 
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data was converted to a standard coordinate system 
(Talairach) to allow data analysis across individuals. 

The scanning of each participant was done 
during four consequent runs creating a joint dataset 
out of four time-series datasets with approximately 
150 data volumes each of size 109x91x91, resulted 
as a dataset with approximately 600 data volumes. 
Therefore, each data volume (data point) contained 
1490580 different voxels. We demonstrate the 
structure of the collected data in Figure 3. 

 
Figure 2: Examples for pre-processing steps on fMRI data. 
(A) Correction of individual's hemodynamic responses 
slices acquired aligned to the exact same time (Sladky et 
al., 2011). (B) Performance of spatial smoothing on fMRI 
volume taken from single participant.  

 
Figure 3: 4-Dimensional structure of AFNI format BRIK 
(Cox, 1996) file including 3-dimensional dataset over time 
sequence. 

5 METHODS 

The data points used for analysis were constructed 
using scan data obtained for TR=2. This temporal 
cut was selected after performing pre-test 
classification as suggested in Atir-Sharon et al. work 
(Atir-Sharon et al., 2015), taking into consideration 

the accordance to the expected HRF response. 
We performed further pre-processing over the 

time-series data. At first, all non-brain voxels were 
removed using a mask. This was done by selecting 
voxels from the fMRI dataset that correspond to 
non-zero elements in the mask (creating data points 
of approximately 200,000 voxels). Afterwards, 
linear detrending was performed on each 
participant's data set and for each run separately. 

Then, normalization over all scans was 
conducted. The normalization was done voxel-wise 
using z-score for each participant separately. In our 
case, the combined dataset involved scans from 
different groups and participants taken from 
different distributions. Therefore, transformation of 
features from different scales to a single scale, with 
consideration to the original distributions, was 
needed. The z-score method considers the different 
distribution characteristics of every group (Wiesen, 
2006), hence, it was chosen as the normalization 
procedure. The z-score formula is presented in (1), 
where z-val is the new z-scored value, f-val is the 
original feature value and (μ, σ) are the mean and 
standard deviation values: 

z-val = (f-val –  μ) / σ (1)

For the mean and standard deviation computation in 
the z-score equation, several assignments were 
tested: (i) from all scans in the dataset; (ii) from 
individual participants' scans and (iii) from the 
distribution of scans marked as control (baseline) in 
the training set. Best classification results were 
achieved by using the mean and standard deviation 
computed from the distribution of baseline scans 
(option (iii)). 

Each volume was represented as an individual 
data point in the dataset (i.e. each voxel was 
considered as a feature). Since the amount of scans 
from EE and FM groups was not equal, counter-
balancing of the dataset was performed. This was 
done by randomly sampling data points from the 
smaller group. This method was applied only on the 
training set. Otherwise, more weight would have 
been given to prediction accuracies of duplicated 
data points against weight of accuracies for data 
points that were not duplicated. Therefore, testing 
set was left untouched.    

Machine learning classification techniques were 
used for data analysis. Considering the high 
dimensionality of data used in the current study, 
feature selection procedure was performed in order 
to reduce the number of features used for 
multivariate classification analysis. There are several 
generic methods for selecting informative features. 
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We aimed to select the features that best 
discriminate between conditions based on their 
activation values. It was achieved by ranking the 
importance of each feature according to the ANOVA 
F-score value obtained for between-group (EE vs. 
FM) comparisons.  

To find the optimal subset of features for 
analysis, we performed exhaustive search for 
different sizes of features sets starting from 10 
features to full brain features in exponential manner. 
Finally, the top 1000 features with highest F-scores 
were selected. This relatively large number of 
features was chosen to take advantage of inclusion 
of weakly informative voxels which can contribute 
to an increase in classification rates (Gonzalez-
Castillo et al., 2012). In Figure 4, we illustrate the 
extracted features in the form of a brain map. In this 
example, we display in red selected subset of 
features for recollection (correct vs. Incorrect) 
classification. This was performed on individual's 
fMRI data that belongs to the FM group. Note, that 
not all the selected features can be depicted in a 
single brain map, but it can be seen that they 
concentrated in a specific areas. 

A cross-validation classification scheme using 
Support Vector Machine classifier (Vapnik, 1998) 
with RBF (Radial Basis Function) kernel (Vert, 
Tsuda and Schölkopf, 2004) was applied to the 
selected features. 

Parameters that are not learnt directly within 
estimators can be set by searching a parameter space 
for the best cross-validation score. Grid search for C 
and gamma parameters was performed in the ranges 
of 2-5 to 215 and 2-15 to 23 respectively. Grid search 
was executed before training on a training portion of 
the dataset to achieve increase in accuracy rates. A 
pseudo-code for the performed grid search is 
presented in Figure 5. In all runs parameters C and 
gamma were set to 1 and 2-3 respectively. 

 

Figure 4: Brain map displaying features selected for 
classification analysis of FM recollection (correct vs. 
Incorrect).  

In cases where the testing set consisted of  scans that 

for c in [2-5, 2-3,...,215]: 
 for g in [2-15, 2-13, ..., 25]: 
  for train, test in partition: 
    model = svm_train(train, c, g) 
    score = svm_predict(test, model) 
    cv_list.insert (score) 
  scores_list.insert(mean(cv_list),c,g) 
print max(scores_list) 

Figure 5: Pseudo-code for grid search procedure. 

were taken from one group only (i.e. all scans were 
EE or all scans were FM), a decision making 
function was applied. We used majority voting 
method as a decision making function, defined as 
follows: if the majority of the scans were rated 
correctly per participant, the accuracy was set to 1, 
otherwise, the accuracy was set to 0.  

The software used for the classification was 
developed using Python programming language and 
based on LibSVM (Chang and Lin, 2011) and 
PyMVPA software packages (Hanke et al., 2009). In 
Figure 6 we present a complete analysis flow 
diagram including all the relevant pre-processing 
and processing stages. 

6 RESULTS 

6.1 Memory Performance 

In the information retrieval test, correct response 
rates for the recent and for the remote associations 
were significantly above chance (binomial tests, p < 
0.0001, for both times-of-acquisition, in both 
learning groups). Overall, participants from the FM 
group were less successful in retrieval, compared to 
those from the EE group, in both the recent and the 
remote conditions (F(1,30) = 12.2, p < 0.005). 

In both groups, recent items were better 
recognized than remotely presented items (F(1) = 
9.12, p = 0.005) with no significant interaction 
between the time of acquisition and the learning 
mode (F(1,15) = 0.334, p = 0.565). 

6.2 Classification 

First, we addressed the question of classifying scans 
obtained during correct and incorrect recollection. 
Using the proposed classification scheme, we 
performed 4-fold (leave one run out) cross-
validation within participants. The mean values of 
classification accuracy were close to the chance 
level for both groups (EE and FM). We theorized the 
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Figure 6: Schematic diagram of the steps performed for whole brain analysis procedure. It consist the following stages: (A) 
The initial stage representing the neuroimaging data delivery. (B) The pre-processing stage. (C) Data reduction stage: 
reducing data variability efficiently by feature selection. (D) Learning stage: performing multiple times by cross validation 
procedure. 

reason for that is the existence of two additional 
different sub-groups, recent and remote word 
acquisition, within each of the initial groups. 
Therefore, we classified correct and incorrect scans 
within each possibility: EE recent, EE remote, FM 
recent, FM remote. For each possibility we chose 
10% of all data points randomly as a testing set. The 
rest of the data points were used for training. Then, 
10-fold cross validation was performed. We report 
the values for mean and standard deviation of 
classification accuracy over 10 cross-validation folds 
for EE in Table 1 and for FM in Table 2. 

These results show that a trained classifier was 
able to distinguish scans obtained during correct and 
incorrect word recollection within each group. The 
accuracy is higher for classification of scans for 
words learned recently, rather than for words learned 
remotely. Furthermore, the discriminating ability is 
better within EE group rather than within FM group. 

Next, we classified whether the process used for 
information acquisition was EE or FM using only 
scans from the successful recollection attempts in 
the behavioural experiment. We chose randomly 
10% from all the scans of all participants as a testing 
set. The rest of the scans were used as a training set. 
The values and standard deviations for classification 
accuracy are presented in Table 3. The results show 
that using the neuroimaging data from each one of 
the participants for training, we could distinguish 
between EE and FM scans very well. 

 

Table 1: Correct vs. Incorrect classification within Explicit 
Encoding (EE) using 10-fold cross validation. 

 Mean Accuracy Standard 
Deviation 

Recent 0.708 0.09 
Remote 0.584 0.067 

Table 2: Correct vs. Incorrect classification within Fast 
Mapping (FM) using 10-fold cross validation. 

 Mean Accuracy Standard 
Deviation 

Recent 0.599 0.063 
Remote 0.55 0.068 

Table 3: EE vs. FM (using only correct recollection scans) 
across participants using 16-fold cross-validation. 

Testing set 
selection method 

Mean 
Accuracy 

Standard 
deviation 

Random selection 0.937 0.069 
Leave one 
participant out 

0.638 0.07 

These results raise the question of whether the 
representation of all the participants in the training 
set is crucial to the classification success. That is, 
can a machine learning classifier, trained over the 
collected data, can successfully distinguish which 
label to assign to a new person scan, despite the fact 
that the classifier has never seen data from this 
participant. To answer this question, we performed a 
leave-one-participant-out classification. This was 
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done across all 16 participants in a cross-validation 
manner (leave one participant out). Note that per 
iteration, the scans in the testing set are all EE or all 
FM. Therefore, we were able to use the majority 
voting method for this analysis. The results averaged 
across all participants presented in Table 3. 

7 DISCUSSION & CONCLUSIONS 

In this work, we showed that it is possible to identify 
correct and incorrect recollection of memories 
acquired through two learning mechanisms: either 
Explicit Encoding (EE) or Fast Mapping (FM) 
directly from neuroimaging data using machine 
learning techniques. The findings suggest that it is 
easier to identify recollection success and failure for 
information acquired recently rather than for 
information after a period of time through EE 
mechanism. It may indicate that the newly gained 
information, acquired through EE, has started to take 
part in consolidation process. At the same time, no 
significant change between recollection results of 
recent and remote acquisition was seen within the 
FM mechanism. This may indicate that FM does not 
engage consolidation processes. Further 
classification experiments are required to reach a 
more general conclusion. 

The current results provide additional evidence 
for the existence of two memory formation 
processes by successfully classifying scans of 
correct retrievals following EE and FM. Note that 
the classification results for scans taken from an 
individual’s data, which were not used previously 
for training, were still significant (although less 
accurate when training data from a subject were 
included). These findings suggest that associative 
learning through FM employs alternative neural 
pathways to acquire declarative knowledge, which 
bypasses the dominant hippocampal-vmPFC axis. 
This also indicates that the FM process is eligible for 
therapeutic approach for people with hippocampal 
brain injuries.  

8 FUTURE WORK 

Future work should include mapping of the brain 
regions and extraction of functional networks 
associated with all four group combinations, EE 
recent, EE remote, FM recent and FM remote. A list 
of possible implementation approaches includes 
constructing brain maps using "searchlight" 
techniques (Kriegeskorte et al., 2006). 

In addition, future work should include brain 
regions correlations tests during the retrieval of 
memory through EE and through FM in recent and 
in remote modes. Those correlations would provide 
information regarding the involvement of the 
hippocampus and vmPFC regions in the 
consolidation processes. To achieve that, one may 
use causality analysis techniques (Hu & Liang, 
2012) to reveal the causality influences the brain 
regions, which are involved with each learning 
procedure, have on each other. This could help 
reveal new information regarding the mechanism 
involved in memory consolidation processes of FM.   
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