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Abstract: Today technological progress makes scientific community to challenge more and more complex issues 
related to computational organization in distributed heterogeneous environments, which usually include 
cloud computing systems, grids, clusters, PCs and even mobile phones. In such environments, traditionally, 
one of the most frequently used mechanisms of computational organization is the Workflow approach. 
Taking into account new technological advantages, such as resources virtualization, we propose new 
coevolution approaches for workflow scheduling problem. The approach is based on metaheuristic 
coevolution that evolves several diverse populations that influence each other with final positive effect. 
Besides traditional population, that optimizes tasks execution order and task's map to the computational 
resources, additional populations are used to change computational environment to gain more efficient 
optimization. As a result, proposed scheduling algorithm optimizes both computation tasks to computation 
environment and computation environment to computation tasks, making final execution process more 
efficient than traditional approaches can provide. 

1 INTRODUCTION 

Today technological progress makes scientific 
community to challenge more and more complex 
issues related to computational organization in 
distributed heterogeneous environments, which 
usually include cloud computing systems, grids, 
clusters, PCs and even mobile devices (Boutaba and 
Cheng, 2012). Day-by-day computational tasks also 
increase their structure complicacy and 
computational difficulty combining new multiscale 
and multidiscipline approaches for resolving 
complicated issues that are imposed by advanced 
scientific researches. In such heterogeneous 
environments, traditionally, one of the most 
frequently used mechanisms of computational 
organization is a Workflow approach (Yu and 
Buyya, 2008). It allows to bring complex 
computational logic in sequential order of executed 
steps (tasks) linked by input\output data. Due to 
resources and workflows heterogeneity, one of the 
most important issues nowadays is the task 
scheduling as an optimization problem.  

Workflow scheduling optimization is NP-
complete problem and there are a lot of research 
dedicated to this area. Most of them are based on 

investigations of invented heuristic and 
metaheuristic algorithms (Yu and Buyya, 2008), as 
well as on hybrid schemas that take the best parts 
from both types of algorithms in cooperation 
(Nasonov and Butakov, 2014). Metaheuristic 
algorithms include evolutionary methods that 
contain coevolutionary approach (Back, 1996). In 
spite of the fact that coevolutionary ideas were 
proposed a half century ago (Ehrlich and Raven, 
1964) a quite new ideas can be applied towards 
workflow scheduling optimization problem.  

One of the main parameters for the optimization 
in workflow scheduling is makespan that shows the 
amount of time from the start of workflow's 
execution to its finish point. Traditionally scheduling 
algorithms decrease makespan by proposing more 
efficient task allocation on the available 
computational resources. Moreover, in cloud 
computing, cost of execution is also the significant 
criteria for the scheduling. However, taking into 
consideration advanced technologies like 
virtualization, new opportunities can be found in the 
field of workflow scheduling. 

Combining distributed environments features 
with workflow steps arrangement and resource 
allocation within coevolutionary principles, we 
propose the new approaches for workflow 
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scheduling, which comply more to present-day 
technologies (in the time of cloud computing) rather 
than traditional schemas. We propose new 
coevolution genetic algorithm (CGA), coevolution 
particle swan optimization algorithm (CPSO) with 
its ranked and weight ranked extensions’ (CRPSO 
and CWRPSO), as well as coevolution gravity 
search algorithm (CGSA) for workflow scheduling 
problem in flexible cloud environment, where 
computing resources can be modified according to 
virtualization principles.    

2 RELATED WORKS 

Palacios et al. (Palacios, 2014) proposed hybrid 
coevolutionary genetic algorithm (GA) called CELS 
for fuzzy flexible job shop scheduling problem with 
heuristic initialization step and additional local 
species improvement during fitness evaluation. 
Definition of the problem and developed methods 
are similar to workflow scheduling problem in the 
use of mapping and ordering species. 
Coevolutionary implementation includes mapping 
and ordering species, which form cooperative 
populations. However, in our approach the first 
population optimizes both mapping and ordering, 
while the second population selects an optimal 
resources configuration. Also Palacios et al. 
proposed a different approach for coevolution fitness 
evaluation with other selection strategy - species 
coupling is organized according to the best, random, 
and individual rank. 

Huang et al. (Huang and Chen, 2014) offered 
two coevolutionary algorithms based on GA for job 
shop scheduling problem with different methods of 
subpopulation merging. Coevolutionary scheme is 
based on full task dimension splitting to three 
subpopulations, thus decreasing the dimensionality 
of each new population. Whereas our populations 
develop according to the task characteristic 
diversity. Huang’s work is focused on the selection 
methods of subpopulations. The first proposed 
CCGA scheme is based on greedy (by fitness) 
individual selection from other population while the 
second DBCCGA computes the distance between 
individuals and chooses the one from another 
population according to the obtained distances. 

Multi-population PSO (Particle Swarm 
Optimization) for flow shop scheduling problem was 
suggested by Liu et al (Liu, 2013). The main idea of 
this paper is to divide full population into three 
populations at each iteration and apply different 
optimization strategies for each population. At the 

merging stage the best particles from each 
subpopulation are used to build a probabilistic model 
by EDA (Exploratory Data Analysis) and after that 
to improve the particles, SA (Simulated Annealing) 
is applied locally to these particles.  

In the next work, Jiao et al. (Jiao and Chen, 
2011) proposed Cooperative Coevolution PSO based 
on the catastrophe for fuzzy flow shop scheduling 
problem. Extended catastrophe operation helps to 
avoid local optima. Their coevolution interpretation 
as in the previous works contrasts with our approach 
in the division of a population into subpopulations.  

Verma et al. (Verma and Kaushal, 2014) 
proposed Bi-criteria priority algorithm based on 
PSO for workflow scheduling. Their algorithm is 
hybrid of HEFT (Heterogeneous Earliest Finish 
Time) heuristic and PSO meta-heuristics. HEFT is 
used to obtain an order of tasks while PSO is applied 
for tasks’ assignment optimization. The makespan 
and total cost of result schedule are the main 
optimization criteria in the paper whereas we 
consider only the makespan. However, their particle 
is represented only by task assignment, and ordering 
of a schedule is performed by Budget HEFT. 

The Revised Discrete PSO for cloud workflow 
scheduling is proposed by Wu et al (Wu, 2010). In 
this paper authors proposed the bi-criteria 
optimization of makespan and total cost with 
initialization by greedy heuristic GRASP algorithm. 
In comparison to our work, their particle 
representation contains an ordered vector of pairs 
(task, node) and particle update is performed only by 
mapping. During PSO mapping update, the tasks are 
taken sequentially, in respect to their inner 
dependencies. Whereas in our work, mapping and 
ordering are evaluated and updated separately. 

Lei (Lei, 2012) offered coevolution GA for 
fuzzy flexible job shop scheduling. Although 
merging scheme is different to our scheme, this 
work is similar in used concepts of coevolution and 
partially has similar representations of the different 
species. The algorithm performs selection based on 
the artificial population of a scheduled solution 
while we perform a selection only on population of 
the same species and the selection of different 
species can be independent. 

Gu et al. (Gu, 2010) proposed algorithm to 
resolve scheduling problem in the field of stochastic 
job shop scheduling based on GA. According to 
experiments, their method outperforms standard 
widely applied GA and some of its modifications. In 
contrast to our cooperative scheme, besides the field 
of application, authors use a competitive coevolution 
scheme. 
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Flexible Job shop scheduling problem is solved 
by using Gravitational Search Algorithm and 
Colored Petri Net by Barzegar et al. (Barzegar and 
Motameni, 2012). In comparison to several other 
algorithms, proposed method exceeds these 
algorithms in a work speed and efficiency of 
solutions. However, authors considered job shop 
scheduling problem, while our work is concerned 
with workflow scheduling using coevolution 
principles for the population. 

3 COEVOLUTION PRINCIPLES 

Applicability of coevolution methods can be found 
in different areas of optimization problem. 
Workflow scheduling is one of them. The main idea 
we propose in this paper is hidden in dynamical 
changes which can be done in the cloud 
computational environment during execution 
process. On the one hand, traditional algorithms try 
to optimize workflow tasks execution order and 
resource mapping, while the computation environ-
ment is specified by initial conditions. On the other 
hand, almost all present public clouds are based on 
advanced technologies like virtualization and 
efficiently use it for energy and budget saving.  

 

Figure 1: Common schema of coevolution approach for 
workflow scheduling. 

Taking together workflow resource allocation 
from traditional scheduling optimization and 
resource configuration optimization from advanced 
technologies used in cloud computing, new level of 
efficiency can be achieved. Coevolution idea allows 
to execute several evolutionary process in parallel 

binding them in cooperative manner. On figure 1 the 
main coevolutionary schema is shown. On the left 
part, traditional evolutionary process for resource 
allocation is executed, and at the same time on the 
right part evolutionary process of resource and data 
reconfiguration is running. Composite solution 
payoff quality is estimated on each iteration taking 
into account both parts of evolutions. Parts are taken 
according to the used selection strategy and gain 
payoff quality from the best combination. The best 
solution is chosen from the current iteration and 
adapted to the system if it has more efficient 
execution plan than currently used one. 

3.1 Coevolution Genetic Algorithm 
(CGA) 

Scheduling coevolution genetic algorithm (CGA) is 
built on the cooperation of several populations that 
search optimized parts of the joint solution. 
Resources allocation, tasks ordering, data placement 
and resource configuration optimization can be 
chosen in the role of those parts. Even traditional 
GA implementation for workflow scheduling can be 
divided in two evolutions: task mapping on 
resources and task execution ordering. Each 
evolution applies basic schema of crossover, 
mutation, selection methods with one difference in 
the fitness function that can estimate new scheduling 
plans only using part’s combination (mapping and 
ordering together). In (Butakov and Nasonov, 2014) 
benefits of this approach were shown. 

Another idea that can be used in GA is basic 
scheduling evolution with computation environment 
evolution together to get even more efficient 
optimization.   

 

Figure 2: Particles schema in CGA algorithm. 

Thus, CGA scheme has two independent 
populations. The first one optimize scheduling (tasks 
assignment and their ordering), whereas the second 
population optimize computing environment for 
tasks. Since a full solution represents by pair of 
particles from each population, CGA has additional 
Merge step, on which populations interact between 
each other to produce full solution pairs. The 
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number of produced pairs is an algorithm’s 
parameter called interactions number, which should 
be greater than populations’ size. After the Merge 
stage, we can evaluate fitness function for produced 
pairs. Each particle receive average fitness of all 
pairs, where this particle had been. The next steps 
are mutation and crossover for each population 
separately. 

 

Figure 3: Proposed CGA algorithm main schema. 

Particles representation is shown on the figure 2. 
Mutation for schedule particle is performed by two 
options: swap two tasks in queue; or randomly 
change computing resource for a task. We use 2-
points crossover to divide the first parent into 
beginning, middle, and end. Child will contain 
beginning and end from the first parent, and all other 
not included tasks from the second parent. 

Mutation for a configuration particle has three 
options: delete resource; add resource; or change a 
capacity of resource. Crossover is performed by 
alternately selection of resources from two parents. 
Tournament selection is used for both populations. 
Fitness function for all our algorithms is makespan.  

3.2 Coevolution Particle Swarm 
Optimization (CPSO) 

PSO is the metaheuristic algorithm proposed by 
Kennedy and Eberhart (Eberhart and Kennedy, 
1995), idea of which was taken from birds flocking 

or fish schooling. To find an optimal solution, each 
particle in the swarm flies according to the personal 
experience and information about the global best 
position for whole population. The movement of a 
particle is defined by its position and velocity, which 
are updated in each generation. The equations for 
velocity and position update of the i-th particle are: ݒ௜(ݐ + 1) = (ݐ)௜ݒݓ + ܿଵݎଵ൫݌௜ − ൯(ݐ)௜ݔ + ܿଶݎଶ(݃ −  (1) ((ݐ)௜ݔ

ݐ)௜ݔ + 1) = (ݐ)௜ݔ + ݐ)௜ݒ + 1) (2) 

where t is current generation, w is the inertia 
coefficient for previous velocity, c1 and c2 are 
behaviour coefficients, which define the influence of 
global best and personal best positions accordingly, 
r1 and r2 are random variables in the range [0, 1]. pi 
is the best position for the current particle and g is 
the global best position for the whole population. 

PSO was created for a continuous optimization. 
To implement PSO for combinatorial space, it is 
required to define set-based operators between 
particles and their velocities for computation (1) and 
(2). 

In contrast to other works (Wu, 2010) or (Verma 
and Kaushal, 2014), our schedule particle 
representation (figure 2) contains mapping and 
ordering parts, which allow to generate a more 
qualitative schedule. In addition, we considered 
several modifications of basic coevolution PSO 
scheme to get a broader view of this problem. 

Scheme of developed CPSO is shown in figure 
4. On the first step, populations are initialized. The 
first population (Scheduling population) includes 
particles with mapping and ordering abilities, which 
are responsible for final tasks scheduling 
optimization while the second population (VM 
configuration population) is made of particles that 
optimize nodes' configuration. On the next step, the 
populations are merged to obtain individuals for 
fitness evaluation. To complete the Merge step, n 
particles from one population form pairs with n 
particles from the other population. For each pair the 
fitness is calculated and then two of the log ݊ best 
pairs are selected randomly. The first pair is chosen 
as a scheduling particle for the configuration 
population and the second one is chosen for 
schedule population. In addition, the best pair is 
checked for the new global best. 

After the Merge stage, each population is ready 
to calculate the fitness for each particle. At the next 
step, the particles update their velocity and position, 
according to equations (1) and (2). The last stage is 
checking all particles for the new best solution. If 
the Stop condition is not satisfied, the populations 
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are moved to the next generation. Operators for 
particles update will be discussed below. These 
operators are needed to compute (1) and (2).  

Let ܶ = ௞ୀଵெ{௞ݐ}  – set of tasks, and ܴ = {݊௟}௟ୀଵே - 
set of computing nodes. 

 

Figure 4: Proposed CPSO algorithm main schema. 

3.2.1 Mapping Particle 

Mapping particle is represented as a set of pairs of 
tasks and assignment nodes, that determines which 
task will run on which node. Position ݔ௜ of particle ݌௜ is ݔ௜ = ,௞ݐ} ݊௟}௞ୀଵெ , and velocity ݒ௜ = ,௞ݐ} ݊௟,  ,{௞ݍ
where ݍ௞ is value in range [0, 1]. It should be noted, 
that position ݔ௜ contains elements with all tasks from ܶ, while velocity ݒ௜ may contains not all tasks or 
elements with the same task, but with different 
nodes. 

The first operation is (-) between two particles ݌௜ 
and ݌௝ returns a velocity of  ݌௜ toward to ݌௝ 
performs via difference of sets: ݒ௜→௝	 = ௝ݔ − ௜ݔ = ,௞ݐ}  ௜, that is set ofݔ\௝ݔ ݊௟, 1}, 
where pairs {ݐ௞, ݊௟} ∈ 	݀݊ܽ	௝݌ ∉  = ௜ with the value݌
1 for each pair. 

The next operation (·) for velocity ݒ௜ and 
constant ܿ: ݒ௜ ⋅ ܿ = ,௞ݐ} ݊௟, ௞ݍ ⋅ ܿ} 

The sum (+) of two velocities ݒ௜ and ݒ௝ can be 
estimated as follows: ݒ௜ + ௝ݒ =∪ ,௞ݐ} ݊௟,݉ܽݍ)ݔ௜௞,  ௝௞)}, i.e. the unionݍ
of velocities with the max value, if velocities contain 
the same pair (ݐ௞, ݊௟). 

 The last operation is position update (2), which 
presented by sum (+) of position ݔ௧ and velocity ݒ௧ାଵ, where ݐ is current iteration. Firstly we generate 

random value ߙ in range [0, 1]. After that, we 
compute trimmed velocity ݒݐ௧ାଵ by cut all elements 
from ݒ௜ with values ݍ௞ < ߙ, i.e. ݒݐ௧ାଵ ,௞ݐ}= ݊௟, ௞ݍ > ,௞ݐ) where pairs ,{ߙ ݊௟) ∈  ௧ାଵ. A newݒ
position ݔ௧ାଵ performs by random node selection 
from ݎݐ௧ for each task ݐ௞. ݔ௧ାଵ = ௧ݔ + ௧ାଵݒ ,௞ݐ}=  .	{((௧ାଵݒݐ)	݁݀݋݊	݉݋݀݊ܽݎ
3.2.2 Ordering Particle 

Ordering particle determines the order of task 
execution. Position of particle ݌௜ is represented as a ݔ௜ = ,௞ݐ} ௞}௞ୀଵெݍ , where ݍ௞ is values in range [-1, 1]. 
Tasks queue is determined by sorting these values in 
the ascending order. On initialization phase we sort 
tasks by their start time of the current solution, and ݍ௞ are assigned for each task depending on the index 
in the sorted tasks list: ݍ௞ = −1 + ݇ ∙ 2/݊, ݇ =1.  As in the mapping particle, we shall define .ܯ.
operations for (1) computing: 

	௜→௝ݒ :(-) = ௝ݔ − ௜ݔ = ,௞ݐ} ௞௝ݍ − ௞௜}௞ୀଵெݍ  
௜ݒ :(·) ∙ c = {t୩, q୩ ∙ c} 
௜ݒ :(+) + ௝ݒ = ,௞ݐ} ௞௜ݍ +  {௞௝ݍ
and (2): 
௧ାଵݔ :(+) = ௧ݔ + ௧ାଵݒ = ,௞ݐ} ௞௫ݍ +  {௞௩ݍ
After evaluation of new particle position by use 

PSO equations (1) and (2) and operations, which 
mentioned above, we can construct new tasks queue 
by sort the tasks by their values in the ascending 
order. 

3.2.3 Configuration Particle 

Above we had defined operations for both parts of 
schedule particle (mapping and ordering parts). Now 
we will describe operations to compute (1) and (2) 
for particles from configuration population. All 
computing nodes have maximum capacity ݉ݎ. 

Position ݔ௜ and velocity ݒ௜ of particle ݌௜ are list 
of nodes’ capacities: ݔ௜ = ௟ୀଵே[௟݌ܽܿ] ௜ݒ ;  ௟ୀଵே[௟݌ܽܿ]= . This representation define number of 
resources ܰ and their capacities. 

Operations for (1): 
௝ݔ :(-) − ௜ݔ = ௟௝݌ܽܿൣ − | ௟௜൧, if݌ܽܿ ௝ܰ| ≠ | ௜ܰ|, 

than smaller vector is complemented by zeros. 
௜ݒ :(·) ∙ c = [cap௟ ∙ c]௟ୀଵே  
௜ݒ :(+) + ௝ݒ = ௟௜݌ܽܿ] + ௟௝]௟ୀଵெ݌ܽܿ  
And for (2): 
௧ାଵݔ :(+) = ௧ݔ + ௧ାଵݒ = ௟௫݌ܽܿ] +  ௧ାଵ computing we shall remove elements with notݔ ௟௩]. After݌ܽܿ

positive ܿܽ݌௟ =< 0, and divided elements with ܿܽ݌௟ > ௟݌ܽܿ)	݀݊ܽ	(ݎ݉) into several elements ݎ݉  Thus, our configuration particle, beside the .(ݎ݉−
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possibility of change nodes capacity, also has 
possibility to reduce or increase number of nodes. 

3.2.4 Coevolution Ranked PSO Modification 

The coevolution ranked PSO (CRPSO) modification 
of ordering particle is based on the predefined 
ranked list. This rank list with the ranks for each task 
can be constructed by HEFT or another list based 
algorithm. Rank list is represented as a set of tasks 
and their ranks: 

ݏ݇݊ܽݎ  = ,௞ݐ} ௞ݎ = ௞ୀଵெ{(௞ݐ)ܶܨܧܪ . These ranks 
are required to define task by values at particle build 
step. 

Particle’s position ݔ௜ and velocity ݒ௜ are 
represented as an ordered list of values: ݔ௜ ௞ୀଵெ[௞ݍ]= ௜ݒ ; = ௞ୀଵெ[௞ݍ] . At the initialization step, 
these values in ݔ௜ are determines as ranks of tasks 
from rank list.  

Operations to evaluate (1): 
௝ݔ :(-) − ௜ݔ = ௞௝ݍ] −  [௞௜ݍ
௜ݒ :(·) ∙ c = [q୩ ∙ c] 
௜ݒ :(+) + ௝ݒ = ௞௜ݍ] +  [௞௝ݍ
And (2): 
௧ାଵݔ :(+) = ௧ݔ + ௧ାଵݒ = ௞௫ݍ] +  [௞௩ݍ
On the build step, we should encode this list of 

values into the tasks queue. To do that, for each ݍ௞ 
in this list we find a value in the rank list with min	(|ݍ௞ −  .݇ and choose task	(|[௞ݐ]ݏ݇݊ܽݎ

3.2.5 Coevolution Weight Ranked PSO 
Modification 

Coevolution weight ranked PSO (CWRPSO) is 
modification of the node selection operation in the 
mapping part. In the general scheme a new 
assignment node for each task is chosen randomly 
from all nodes in the velocity, without relations 
between tasks. In this case, for each task a new 
assignment node is chosen from the velocity’s pairs (ݐ௞, ݊௟) with the same task, depending on the 
velocity's values of these pairs. This method allows 
particles to move more directly to the other particles. 
However, particles have more chances to trap into a 
local optimum. 

3.3 Coevolution Gravitation Search 
Algorithm (CGSA) 

The gravitation search algorithm is proposed by 
Rashedi (Rashedi E., Nezamabadi-Pour, 2009). Idea 
of method is based on the law of gravity. The 
algorithm is similar to PSO in particles motion. The 
main equation for the force computation:  

௜௝ܨ = ௝௜ܨ = ௝ܴ௜௝ܯ௜݉(ݐ)ܩ (ݐ)௜݌) −  (3) ((ݐ)௝݌

, where (ݐ)ܩ is the gravitational constant, ݉௜  and ௝݉ 
are the masses of particles, and R is the distance 
between the particles.  
Equations for position and velocity update of 
particle ݅: ݒ௜(ݐ + 1) = (ݐ)௜ݒ +෍ ௜௝݉௜௞௕௘௦௧(௧)௝ୀଵܨ  (4) 

, where ܾ݇݁(ݐ)ݐݏ	is number of best particles, which 
are used to update other particles. (ݐ)ܩ	݀݊ܽ	(ݐ)ݐݏܾ݁݇ are decreasing through the time. ݔ௜(ݐ + 1) = ݓ ∙ (ݐ)௜ݔ + ܿ ∙ ݐ)௜ݒ + 1) (5) 

GSA is differ to PSO in additional step of computing 
masses. Masses can be evaluated by: ݉௜(ݐ) = (ݐ)௜ݐ݂݅ − (ݐ)ܾ(ݐ)ݓ − (ݐ)ݓ  (6) 

, where ݂݅ݐ௜(ݐ) – fitness of particle ݌௜ at iteration ݐ 
, and ܾ(ݐ)	ܽ݊݀	(ݐ)ݓ are the best and the worst 
finesses of population at iteration ݐ. The same 
scheme (figure 4) and operators are used as in CPSO 
with all corresponding modifications. In compare to 
PSO, GSA has more possibility to avoid local 
optimums, since particles’ velocities depend on 
kbest particles, while in PSO velocities depend only 
on two: ݐݏܾ݁݌ and ܾ݃݁ݐݏ particles. 

4 EXPERIMENTAL STUDY 

In order to verify the efficiency of the proposed 
algorithms, we conducted experiments with CGA, 
CPSO, CRPSO, CWRPSO and CGSA. According to 
internal experiments with CGSA modifications, we 
have left only CWGSA as the best one. 

As the experimental environment own 
implemented simulator was used. In each 
experiment, a final makespan was calculated as a 
result of average value that is obtained from series of 
1000 runs for each workflow. In addition, the 
execution cost, which is also informative criteria in 
the cloud environment, was considered as a 
restriction for the set of resources.  Algorithms were 
executed on xml representation of workflows: 
Montage, CyberShake, Inspiral, Sipht, Epigenomics 
that were taken from (Pegasus, 2014) database with 
different tasks count as traditional benchmark 
workflows (Yu and Buyya, 2008). The Montage 
with 25, 50, 75, 100 tasks and the CyberShake with 
30, 50, 75, 100 tasks were left as the most 
representative. Computational cost of each task is 
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determined by its runtime, which is an attribute that 
is contained in the workflow’s xml file. 
Computational resource is represented by a value of 
its capacity in arbitrary units. For experimental study 
to keep balance in a set of resources we assume two 
following rules: maximum resource’s capacity is 30 
and the total capacity sum of all resources must be 
80. The transfer cost for any two different resources 
is set to constant value 100. Each task is computed 
only on one resource at one single moment of a time. 

For a fair play, all experiments were conducted 
in same conditions of population size and 
generations’ count. To improve efficiency of the 
algorithms, in all cases initial populations have one 
particle, generated by heuristic HEFT algorithm.  

Experiments were performed with the following 
parameters: population size is 100, generations count 
is 300 and interactions count is 200. For CGA 
crossover probability 0.3, mutation probability 0.5, 
and selection method is tournament. In all CPSO 
cases the inertia coefficient w is 0.5 and behaviour 
coefficients c1 and c2 are 1.6 and 1.2 respectively. 
For the last CGSA type of algorithms inertia w = 
0.2, acceleration coefficient c = 0.5, initial kbest and 
G are 10. The results are presented in the tables 1 
and 2. 

Table 1: Makespan for each Montage workflow and each 
introduced algorithm. 

Algorithm  
Montage makespan in sec 

M_25 M_50 M_75 M_100 
HEFT 280 345 559 578 
CGA 152 264 371 467 
CPSO 152 296 450 566 
CRPSO 152 297 414 563 
CWRPSO 152 340 456 452 
CWGSA 152 295 411 544 

Table 2: Makespan for each Cybershake workflow and 
each introduced algorithm. 

Algorithm 
Cybershake  makespan in sec 

CS_30 CS_50 CS_75 CS_100
HEFT 353 485 652 909 
CGA 298 452 620 893 
CPSO 311 481 651 909 
CRPSO 309 479 649 908 
CWRPSO 321 460 638 896 
CWGSA 311 467 650 904 

It can be clearly seen that HEFT produces worse 
results than results obtained by proposed schemas. It 
confirms suitable performance capabilities of 

developed algorithms. It is evident, that CGA 
produced better results in almost all workflows 
scheduling. It overcomes with up to 82% HEFT 
algorithms and with up to 11% all other 
metaheuristics (for M_50 experiment). What is more 
curious, CPSO beats CGA in the M_100 case (467 
against 452, figure 5(c)), that confirms absence of an 
absolute leader. 

We can found that CRPSO modification was 
better than basic CPSO algorithm, and better than 
CWRPSO in most cases. Moreover, we can see on 
figure 5 (b, c), that CWRPSO has high convergence 
speed, however, has not possibility to avoid local 
optimums. Thus, CWRPSO can be useful, if 
algorithm is limited with execution time and have to 
produce solution on the first iterations. Despite that, 
CWGSA does not win in any cases, we can see from 
figure 5, that CWGSA produces a stable average 
result among all the other algorithms. 

       
(a)    (b) 

      
(c)    (d) 

Figure 5: Fitness function improvement for the workflows. 

4.1 CGA Parameter Analysis 

In order to find the best parameters for CGA 
algorithm experimental studies were performed for 
different workflow scenarios. To explore the 
influence of particle mutation and crossover 
probability, following range of probability values 
were selected: 10, 20, .., 90%. Other parameters 
were set to: 1) count of interaction individuals – 200; 
2) count of generations – 300.  
In the experiment, scheduling algorithm was 
executed for all studied workflows. The final 
summarised results are presented on figure 6 
 

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

258



 

Figure 6: Makespan aggregated rate. (The lowest values 
corresponds to the closest values to the global optimal 
solution). 

(contour plot). We can observe several local 
minimum areas (3 points with around ~7.6%), but 
the global minimum can be found at the point (30%, 
50%). It has the average result 4.5% worse than the 
global optimum for each separated result for each 
workflow and each pair of probability values. 

5 CONCLUSIONS 

In this paper three coevolution metaheuristic 
algorithms were compared. As it can be observed 
from the experimental results of the proposed 
algorithms, the coevolution idea of binding together 
traditional scheduling algorithm with technological 
advantages can be quite productive, especially in the 
terms of resource dynamic virtualization. The results 
can achieve up to 84% of performance increasing in 
comparison to HEFT algorithm as well as for the 
best CGA approach performance increases up to 
11% in comparison to the other metaheuristics. 

Summarizing, we can say that CGA is the most 
effective algorithm in compare to CPSO and CGSA 
schemes, due to its combinatorial nature. CPSO 
algorithms are the most diverse and not stable. 
However, they have greater convergence speed and 
can provide better solution in limited time. CWGSA 
is not the most successful algorithm, but more 
stable, than CPSO schemes. However, there is a 
great field for new investigations related to 
algorithms behaviour analysis in dynamically 
changing environments, data-intensive computation 
cases, hyperheuristic approach as well as schemas 
methods improving. 
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