
A Formal Modeling Method to Enrich the Arabic Treebank ATB
with Syntactic Properties

Raja Bensalem Bahloul1, Kais Haddar1 and Philippe Blache2
1Multimedia InfoRmation Systems and Advanced Computing Laboratory,

Higher Institute of Computer Science and Multimedia, Sfax, Tunisia
2Laboratoire Parole et Langage, CNRS, Université de Provence, Aix-en-Provence, France

Keywords: Formal Modelling, Treebank Enrichment, Arabic Language, Property Grammar.

Abstract: The enrichment of an Arabic treebank with syntactic properties can facilitate many types of parsing processes.
This enrichment allows also the increase of its use in different NLP applications, the acquirement of new
linguistic resources and the ease of the probabilistic parsing process by using statistics to limit the properties
to the satisfied ones or to the most frequent ones. In this context, our proposed enrichment method is based
on a formalization phase, a Property Grammar induction phase from a source treebank and a treebank
regeneration phase with a new syntactic property-based representation. Starting with a formalization phase in
our enrichment problem may succeed its resolution procedure. In fact, it limits the specification of the data
sets and the interactions between them to the used ones, which avoids any duplication. The formalization
allows also the anticipation of the constraints to respect in the problem. The implementation of this enrichment
method is experimented essentially on the Arabic treebank ATB. This experiment provides us with good and
encouraging results and various properties of different types.

1 INTRODUCTION

The formalization phase plays an important role to
improve the performance of any problem. Thanks to
this phase, only the data sets needed to use and their
interactions will be specified, which implies the
avoidance of duplication. The constraints to respect
in the problem are also anticipated in this phase. In
the case of a treebank enrichment issue, we may find
many other motivations. Thus, treebanks are useful
not only to gain other linguistic resources (e.g. CFGs,
lexicons), but also to solve some grammatical
ambiguities (Koller and Thater, 2010) and even to
ease the probabilistic parsing process (Cahill, 2008).
However, its large amount of data may make this
process more complicated. In addition, treebanks do
not give any information about syntactic structures
such as form occurrences, essential parts and the
order of constituents. This can reduce the exploitation
of treebanks by many applications (e.g. parsers) or
formalisms (e.g. GP, HPSG). The enrichment of
treebanks with syntactic properties generated from a
Property Grammar (GP) (Blache and Rauzy, 2012)
may be a powerful alternative to remedy such
deficiencies. By contrast, this enrichment is not an

easy and direct task but requires verification modules
of the GP properties in the treebank and matching
functions of treated categories. The formalization
phase is also challenging. It needs to choose an
adequate model and to understand all of the treebank
data to succeed the enrichment issue resolution.

The present paper fits into this context. Our goal
is to propose a formalization phase that facilitates and
clarifies the enrichment method of the Arabic
treebank ATB with syntactic properties acquired
from a given GP. As a result, we obtain the first
Arabic treebank enriched with varied syntactic
properties available in variable granularity level
according to the user needs. We may also specify the
most relevant properties thanks to the frequencies of
the treebank categories and properties. This may ease
the probabilistic parsing process and evaluate the
difficulty of processing cognitive systems. Moreover,
new linguistic resources can be obtained from the
enriched ATB such as syntactic lexicons and
dependency grammars. The proposed enrichment
method is based on three phases: the problem
formalization, the GP induction from a source Arabic
treebank and the new treebank generation based on
syntactic property.

108
Bahloul, R., Haddar, K. and Blache, P..
A Formal Modeling Method to Enrich the Arabic Treebank ATB with Syntactic Properties.
In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 2: KEOD, pages 108-117
ISBN: 978-989-758-158-8
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

This paper is organized as follows: Section 2 is
devoted to present some related works. Section 3
describes the formalization phase. Section 4 explains
our enrichment method. Section 5 presents
experimental results and discussions. Section 6 gives
a conclusion and some perspectives.

2 RELATED WORKS

Before quoting some related works, it is necessary to
present the main key concepts to use in our
contribution: the GP and the ATB. The GP is based
on a formalism (Blache and Rauzy, 2012)
representing linguistic information through properties
(constraints) in a local and decentralized manner.
These properties express the relations that may exist
between the categories composing the described
syntactic structure. Syntactic properties in particular
have six types: linear order (≺), obligation of co-
occurrence (⇒), interdiction of co-occurrence (⊗),
dependency (↝), interdiction of repetition (Unic) and
head (Oblig).

The ATB (Maamouri et al., 2004) is the richest
Arabic treebank in reliable annotations (POS tags,
syntactic and semantic hashtags), which are also
compatible to consensus developed and validated by
linguists. Its source documents are relevant, varied
and large. They are even converted by several other
treebanks into their representations. The ATB
grammar is adapted to the Modern Standard Arabic
and has a phrase-based representation, which is
consistent with the GP hierarchical structure.

Several works are proposed to enrich treebanks in
different languages. The contribution of Müller
(Müller, 2010) is an instance of converted treebanks.
It proposes an annotation of Morphology and NP
Structure in the Copenhagen Dependency Treebanks
(CDT), which represents different parallel treebanks
in many languages such as Danish, English, German,
Italian, and Spanish.

The annotations to add in treebanks can be also
organized according to well-defined linguistic
formalisms. Thus, Oepen et al., (Oepen et al., 2002)
followed this directive by developing the Lingo
Redwoods, which is a dynamic treebank. This new
type of treebank parses analyzed sentences from ERG
(English Resource Grammar) according to a precise
HPSG formalism.

The CCG formalism is another formalism chosen
in the treebank enrichment methods. This is
particularly the case of the contributions of Çakıcı
(Çakıcı, 2005), who created CCGbanks by converting
the syntax graphs in the Turkish treebank into CCG

derivation trees.
For French, Blache and Rauzy (Blache and

Rauzy, 2012) proposed an automatic method, which
hybridizes the constituency treebank FTB with
constraint-based descriptions using the GP
formalism. In addition, this method enriches the FTB
with evaluation parameters of the sentence
grammaticality.

For Arabic, which is the language that interests us
the most, we can find some other works to enrich the
ATB. They focus on improving this treebank with
new richer annotations or on converting it into new
formalisms. The OntoNotes project (Hovy et al.,
2006) and the Proposition Bank project (Propbank)
for Arabic (Palmer at al., 2008) are some instances of
treebank extensions. The latter incorporate semantic
level annotations. The contribution of Alkuhlani and
Habash (Alkuhlani and Habash, 2011) provides an
enrichment, which adds annotations that models
attributes of the functional gender, number and
rationality. The work of Abdul-Mageed and Diab
(Abdul-Mageed and Diab, 2012) has even touched
the sentimental level by associating specific
annotations to the ATB sentences. There is also the
work of Alkuhlani et al., (Alkuhlani et al., 2013), but
it enriches the Columbia Arabic Treebank (CATiB)
with the most complicated POS tags and lemmas
applied in the ATB (Maamouri et al., 2004).

As regards the enrichment by employing new
formalisms in the treebank source, we can refer to
some examples that generates new treebanks: the
Habash and Rambow contribution (Habash and
Rambow, 2005) with a TAG grammar, the Tounsi
and al. contribution (Tounsi et al., 2009) with an LFG
grammar and the El-taher et al., contribution (El-taher
et al., 2014) with a CCG grammar. Regarding the GP
formalism, it was previously hybridized with the
French treebank FTB as we have already mentioned.

By inspecting all the works cited above, we may
figure out that none of them presents an in-depth
formalization phase before proposing the enrichment
approach. The absence of this phase can make the
establishment of their approaches more difficult due
to the lack of pre-specified needed data and the risk
of having redundant treatments.

In addition, the enrichment of treebanks can be
considered as a Constraint Satisfaction Problem
(CSP). In this case, the ATB enrichment processes
with new formalisms (TAG, LFG and CCG), which
are mentioned above, will be tough. In fact, their
representations would require a construction of local
structures before referring to the constraints. The GP
is an approach extremely based on constraint
satisfaction. By applying it to enrich the ATB, we can

A Formal Modeling Method to Enrich the Arabic Treebank ATB with Syntactic Properties

109

solve these limitations by directly accessing to the
variable values of the problem through its categories.
An Arabic GP in variable granularity is already
available (Bensalem et al., 2014). It is not manually
built but automatically generated from an ATB part
(Bensalem and Elkarwi, 2014).

3 FORMALIZATION PHASE

As we have already mentioned, the elaboration of a
solid and detailed enrichment method cannot be
directly made without modeling the tools to use as
input. In our case, this means that we have to generate
specific formalizations to the treebank ATB and the
GP.

First, we present the description of the CFG
(Context-Free Grammar), which is composed of a set
of production rules (constructions). The latter are
used to produce structures of words. Formally, it is
defined by the 4-tuple G= (N, Σ, P, S) where: N is a
finite set of non-terminal symbols, Σ is a finite set of
terminal symbols, P is a finite set of rules formed as
α → β with α ∈ N and β ∈ (N ∪ Σ)* and S ∈ N is the
start symbol. The formal language of G is then
defined as L(G)={w ∈ Σ* | S ⊢* w }. For each
derivation of S, w corresponds to a tree tw. In natural
languages, w corresponds to a sentence Sent, which
is associated to a tree tSent according to the grammar
G.

On the one hand, the ATB, as a corpus of
manually annotated sentences of a natural language
(Arabic) can be seen as a sequence of pairs (Sent,
tSent). So, it is defined by TB={(Sent, tSent) | S ⊢* Sent}
where Sent is a sequence of Arabic words, giving a
complete meaning. So, Sent ∈ M* where M is the set
of the treebank words. However, tSent ∈ where is
the set of trees given by parsing each treebank
sentence Sent according to G. As the annotations
given by the ATB are extended to several analysis
levels (word, phrase and sentence levels), this
improves the definition of the ATB to be a 7-tuple TB
= (M, Ψ, P, , Ω, ,). M is a set of treebank words.
Ψ = ψ1 x ψ2 x...x ψn is an n-tuple of sets ψi of
information types (morphological, syntactic and
semantic). The latter specify the corpus words with
the form (c1, c2,.., cn) ∈ Ψ where ci is an information
of a defined type i of n information types (e.g. lexical
category, transliteration, gloss). P is the treebank
phrase set (a phrase is a sequence of words giving
elementary meaning) as p ∈ M*. is the elementary
tree set tp given from parsing phrases p ∈ P. Ω = ω1 x
ω2 x… ωz is an n-tuple of sets ωj of information types.
The latter specify the corpus phrases with the form

(d1, d2,.., dz) ∈ Ω where dj is an information of a
defined type j of z information types (e.g. syntactical
category, hashtag). is the set of sentences as Sent ∈
M*. is the complete tree set obtained from parsing
sentences Sent ∈ .

On the other hand, the GP is a grammar that
defines a set of relations between grammatical
categories not in terms of production rules (like CFG)
but in terms of local constraints (so-called properties).
As we specified in the previous section, the syntactic
properties describe linguistic phenomena between
constituents such as linear precedence (≺),
mandatory co-occurrence (⇒), restricted co-
occurrence (⊗), obligation (oblig), uniqueness (unic)
and adjacency (±). Formally, this grammar can be
defined by a 3-tuple G’= (N, Σ, R). N is a finite set of
syntactic categories. Σ is a finite set of lexical
categories. R is a finite set of syntactic properties that
links ∀ α ∈ N to ∀ β1 and β2 ∈ (N ∪ Σ) in any of the
following 6 ways: α: β1 ≺ β2, α: β1 ± β2, β1 ∈ unic(α),
β1 ∈ oblig(α), α: β1 ⇒ β2, α: β1 ⊗ β2. We deduce each
of these properties from the set P defined in G.

Now, as the needed tools to use are formally
modeled, it is necessary to know how to integrate
them to succeed the enrichment method. We may
consider this enrichment for the ATB phrases as a
satisfaction verification of properties provided from
the GP. It can be a Constraint Satisfaction Problem
(CSP). Formally, we can model this problem by the
5-uplet TBG = (S(TB), S(G’), Const(TB), Const(G’),
Prop(G’)) where:

 S(TB) = {p1, p2, …pn} = P is a finite set of the
ATB phrases.

 S(G’) = {t1, t2, …tm} = N is a finite set of the GP
syntactic categories.

 Const(TB) = ⋃ where Const(pi) =
{ci1, ci2, …cie}: set of the words of pi, label(cix) is
its grammatical category (label(cix) is equal to
c1(cix) for lexical category or to d1(cix) for
syntactic category).

 Const(G’) = ⋃ where Const(tj) =
{cj1, cj2, …cjf}: set of the constituents
(grammatical categories) of the syntactic category
tj in the GP.

 Prop(G’) =⋃ where Prop(tj)=[
Prop_const(tj),Prop_unic(tj),Prop_oblig(tj),
Prop_lin(tj), Prop_adjc(tj), Prop_exig(tj),
Prop_excl(tj)], for example, Prop_lin(tj) = {pj1, pj2,
…pjg} is the linearity property set describing tj in
the GP. Each pjk (with 1<k<g) is a relation
between two elements cjx and cjy ∈ Const(tj)
(pj1=tj:cjx≺cjy).

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

110

In order to solve this issue, we need, in the first
instance, to look in the GP for the syntactic category
of each ATB phrase. Formally, for each phrase pi ∈ P
in the ATB, we search in the GP for its syntactic
category tj ∈ N where label(pi) = tj. The set of
properties Prop(tj) describing tj will be used to enrich
pi by verifying the satisfaction of these properties. As
a result, this problem would formally be solved.

4 THE ENRICHMENT METHOD
OF THE ATB

Now that the formalization phase is totally
accomplished, it became possible to represent, in
detail, the other phases of the enrichment method,
which would be written in algorithms. Note that these
phases are based on the enrichment idea of the French
treebank FTB, where the properties were proposed by
(Blache and Rauzy, 2012). For clarity, Figure 1 shows
our ATB enrichment method, which consists of three
main phases: formalizing the problem, inducing the
GP from the ATB and regenerating the latter with a
new syntactic property-based representation.

Figure 1: The ATB enrichment method.

We chose to devote an entire section (the previous
one) to explain the first phase, the formalization, as
its important role in our enrichment method and
particularly in this paper.

The second phase, the GP induction, is already
applied by (Bensalem and Elkarwi, 2014), which
produced an Arabic GP. In this phase, the GP is
constructed automatically from the ATB. This
directive is more favorable than building the GP
manually. The latter is more challenging and
expensive. It needs to use a corpus, which contains all

the rules of the Arabic grammar. This increases the
GP development time and requires the collaboration
of several linguists. Therefore, the obtained GP was
automatically induced and independently of the
language and source treebank formalism. That is why
the GP is not directly generated from the ATB, but
rather from a CFG (as shown in Figure 2).

Figure 2: The induction phase of the GP from the ATB.

Figure 3: The ATB regeneration phase with a syntactic
property-based representation.

For more details, the CFG induction step involves
the generation of the set of all the possible
assignments for each syntactic category represented
in the ATB. This set will be used in the GP induction
step to generate the set of properties associated to this

A Formal Modeling Method to Enrich the Arabic Treebank ATB with Syntactic Properties

111

syntactic category. All of the GP properties are
described except the dependency ones. Adjacency
properties are added to this set. They concern the
direct order relation between two constituents of the
syntactic category. The induction mechanism
provides also a control of the granularity level of the
categories in order to compromise between quantity
and quality of these categories. This control
represents each category on feature structures related
to hierarchy types. The obtained GP is robust not only
because of the power of the GP formalism but also
thanks to the qualities inherited from the ATB. For
instance, it has rich annotations and a consistent
representation structure to the GP one (Bensalem et
al., 2014).

The obtained GP is used as an input for the ATB
regeneration phase with syntactic properties. As
mentioned in Figure 3, this phase is based on many
steps: the first is a fitting step of the ATB data
according to the GP one. The three other steps relate
to each phrase in the ATB. Therefore, we need, for all
the ATB phrases, to follow a browsing mechanism
through the ATB sentences. This is to check for each
phrase of each sentence, the satisfaction of the
properties describing its syntactic category in the GP.
To check this satisfaction, it needs to use previously
developed constraint solvers.

In the following sub-sections, we explain in more
detail the different steps of this phase.

4.1 Fitting the ATB Data with the GP
Ones

Since our goal is to enrich the ATB with syntactic
properties, it should have a data structure able to host
this new information. The parenthesis format
"penntree" of the ATB does not provide this structure,
and requires preparing its data in a suitable format.
The format "xml" can form this structure. To achieve
this, we have made a conversion recursive process of
encountered open and close parentheses in the format
“penntree” to xml tags. In addition, if the ATB
category granularity was modified, we would include
a verification model of matches in this step to replace
the ATB raw categories with categories whose
granularity is modified.

The following steps are encapsulated in a
browsing mechanism repeated as many as phrases in
the ATB. As a result, we will have the fitted ATB as
an input, able to host GP syntactic properties. The
output is a new version of the ATB, which is enriched
with these verified properties as satisfied or not.

4.2 Matching an ATB Phrase with a
GP One

The matching between the ATB and the GP consists
of browsing the ATB, phrase by phrase, and for each
one, searching for the correspondent in the GP of its
category. The properties describing the found
correspondent will be verified and will enrich the
current ATB phrase. Formally, in order to match
between an ATB phrase pi ∈ P and the correspondent
of its category in the GP, we need, for each α ∈ N in
the GP, to look for the case where the pi category
label(pi) is equal to α (label(pi) = α).

4.3 Verification of the Satisfaction of
the Properties

This step is the heart of the enrichment method. It
verifies the satisfaction of the properties, which
describes a GP category matched with the ATB
phrase. Formally, we just need to verify, for each
ATB phrase pi (with tj =label(pi)), the satisfaction of
all the properties of Prop(tj) obtained from the GP.
We have used for that a set of methods to check the
satisfaction of the properties. Each method, so-called
“constraint solver”, verifies if a given Arabic phrase
tagged with a specific syntactic category respects a
given property, which describes this syntactic
category in the GP. The solution produced by a solver
is the result of this verification (property satisfied or
violated). Then, we associate this solution to the pi
description. As these constraint solvers play an
importance role in our method, we have chosen to
devote an entire section (the next one) to introduce
their descriptions.

4.4 Insertion of the Verified Properties

This task adds to each ATB phrase the result of the
verification (either satisfied or not) of the properties
that describe its category. The insertion is done by
using a new tag that combines the ATB and the GP.
However, this enrichment makes too large the new
ATB size. It is due to the exponential increase of the
number of the new tags with the number of properties
in each phrase of the GP.

5 DESCRIPTIONS OF THE
CONSTRAINT SOLVERS

Let us assume that the matching has been achieved,
so the current ATB phrase category is equal to the

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

112

found GP one. The descriptions of these solvers,
introduced in the following, are inspired from the
interpretations of (Blache and Rauzy, 2012). Let us
first define some variable definitions to use in these
descriptions.

p: the given Arabic phrase.
Const(p): constituent set of the ATB phrase p.
Const(t): set of the constituents of the GP category t
(where t=label(p)).
fd: boolean, returns true if c is found.
label(c): grammatical category of the word or the phrase c.
nb_intersect: number of constituents in the intersection
between Const(p) and Const(t)
verif: string (“+” or “-”).
nb_occ: number of occurrences of a constituent in
Const(p).
type_p: property by type between two constituents cx and
cy of Const(t), type_p contains only cx for unary property
type (uniqueness, obligation).
v_type_p: verified property by type (constituency (const),
linearity (lin), adjacency (adjc), uniqueness (unic),
obligation (oblig), requirement (exig), exclusion(excl))
(has “+” if satisfied, “-” if not). Firstly, v_type_p is empty
(← NIL) and may remain if the constituents of type_p is
not found in p.
verifProp(): method to create a verified property.

5.1 The Solver of Constituency
Properties

This solver verifies the consistency between the
categories of the constituents of the current ATB
phrase and the constituents of its GP correspondent.
This is to ensure that the intersection of these two sets
really includes all the words of the ATB phrase.

Input: Const(p), Const(t), nb_intersect ← 0, const_p
Output: v_const_p
for each ca in Const(p), do

for each cb in Const(t), do
if label(ca)= cb, then

nb_intersect ← nb_intersect + 1
if nb_intersect = card(Const(p), then

v_const_p ← verifProperty(p, Const(p), “+”)
else

v_const_p ← verifProperty(p, Const(p), “+”)
return v_const_p

This algorithm browses Const(p) and verifies that
the category of each element is included in Const(t).
The value of nb_intersect is then incremented. If it is
equal to the Const(p) cardinal, the property is
considered then as satisfied.

5.2 The Solver of the Linearity
Properties

This solver checks the current linearity property of
the syntactic category in the GP. The satisfaction is
achieved only if the two constituents of this category
in that relation are also found in the given phrase and
that the first constituent precedes the second one.

Input: Const(p), lin_p, v_lin_p ← NIL
Output: v_lin_p
for each ca in Const(p), do

if label(ca)= lin_p.cx, then
for each label(cb) in Const(p), do

if a≠b and label(cb)= lin_p.cy, then
if a>b, then

v_lin_p ← VerifProperty(p, lin_p, “-”)
else

v_lin_p ← VerifProperty(p, lin_p, “+”)
return v_lin_p

This algorithm browses the categories of the
Const(p) set elements to search for the two distinct
linear constituents cx and cy of the GP category t and
verifies that the position of the first is not greater than
the position of the second one.

5.3 The Solver of the Adjacency
Properties

This solver checks the current adjacency property of
the syntactic category in the GP. The satisfaction is
ensured only if the two adjacent constituents of this
category exist in the given phrase and the first is
directly before or after the second one.

Input: Const(p), adjc_p, v_adjc_p ← NIL
Output: v_adjc_p
for each ca in Const(p), do

if label(ca)= adjc_p.cx, then
for each cb in Const(p), do

if a≠b and label(cb)= adjc_p.cy, then
if a≠b-1 and a≠b+1, then

v_adjc_p ← VerifProperty(p, adjc_p, “-”)
else

v_adjc_p ← VerifProperty(p, adjc_p, “+”)
return v_adjc_p

This algorithm browses the set Const(p) to look
for the two adjacent constituents cx and cy of the GP
category t and verifies that the second is neither
indirectly before nor after the first one. We use the
symbol "±" in the adjacency relation.

A Formal Modeling Method to Enrich the Arabic Treebank ATB with Syntactic Properties

113

5.4 The Solver of the Uniqueness
Properties

This solver checks the current uniqueness property of
the current syntactic category in the GP. The
satisfaction is reached if the constituent of this
property (in case it has been found) appears only once
in the given phrase.

Input: Const(p),unic_p,nb_occ←0,v_unic_p ← NIL
Output: v_unic_p
for each ca in Const(p), do

if label(ca)= unic_p.cx, then
nb_occ ← nb_occ +1

if nb_occ ≥1, then
if nb_occ = 1, then

v_unic_p ← verifProperty(p, unic_p, “+”)
else

v_unic_p ← verifProperty(p, unic_p, “-”)
return v_unic_p

This algorithm browses the set Const(p) to search

for the constituent unic_p of t and verifies that its
cardinality nb_occ is not greater than 1.

5.5 The Solver of the Obligation
Properties

This solver checks the current obligation property of
the found GP category. The satisfaction is attained if
the obligatory constituent (head) of this category is
found in the treebank phrase.

Input: Const(p),oblig_p,fd ← false,v_oblig_p ← NIL
Output: v_oblig_p
for each ca in Const(p), do

if label(ca)= oblig_p.cx, then
fd ← true
break

if fd = true, then
v_oblig_p ← verifProperty(p, oblig_p, “+”)

else
v_oblig_p ← verifProperty (p, oblig_p, “-”)

return v_oblig_p

This algorithm browses Const(p) to search for the
obligatory constituent oblig_p of the GP category t. If
the algorithm find it, the variable “found” will return
true (found=true).

5.6 The Solver of the Requirement
Properties

This solver checks the current requirement property
of the current syntactic category in the GP. The
satisfaction is ensured only if, when the constituent
involving another in this property, is found in the gi-

ven phrase, the involved one is also found.

Input: Const(s), fd ← false, exig_p, v_exig_p ← NIL
Output: v_exig_p
for each ca in Const(s), do

if label(ca)= exig_p.cx, then
fd ← false
for each cb in Const(s), do

if a≠b and label(cb)= exig_p.cy, then
v_exig_p ← verifProperty(s, exig_p, “+”)
fd ← true
break

if fd =false then
v_exig_p ← verifProperty(s, exig_p, “-”)
break

return v_exig_p

This algorithm browses the set Const(p) to search

for the two constituents cx and cy of the GP category
t in a requirement relation and verify that, if the first
constituent is found in Const(p), then the second one
should exist in Const(p).

5.7 The Solver of the Exclusion
Properties

This solver checks the current exclusion property of
the syntactic category in the GP. The satisfaction is
achieved only if the constituents of this property do
not appear both in the given phrase.

Input: Const(s),excl_p,verif ← “+” ,v_excl_p ← NIL
Output: v_excl_p
a ← search(excl_p.cx, Const(s))
if a > 0, then

for each cb in Const(s), do
if a≠b and label(cb)= excl_p.cy, then

verif ← “-”
break

v_excl_p ← verifProperty(s, excl_p, verif)
return v_excl_p

This algorithm browses the set Const(p) to look
for the constituents cx and cy of t in an exclusion
relation and mark it as satisfied if they are both not
found or only one of them is found in p. So, in all
cases there would be a verified property in return. We
have used the method search() to search only for the
position of cx in the categories of Const(p).

6 EXPERIMENTATION AND
EVALUATION

We have tested our method on the ATB corpus
(ATB2v1.3 version), which includes 501 stories from
the Ummah Arabic News Text. The latter contains

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

114

144,199 words before the clitic-separation. As we
have already mentioned in the previous section, we
need to have the ATB in a "xml" format, as input of
the property verification task. Having such format, we
had not exempted from preparing a simple version in
the fitting step due to the handling difficulty of the
available version. We have used more specifically the
"penntree" format (the vowelized version) to convert
it into "xml". We have induced the GP from only the
half of the ATB in order to make the study corpus
different to the test one. In what follows, we are going
to present some of the obtained results after citing
above the meanings used in the headers of the tables
due to lack of space:

Table 1: The header meanings.

Frequency #C Number of possible constituents
∑ Total #R Number of production rules
XP Phrase #P Number of properties

First, we have found that the ATB is composed of
841 grammatical categories of which 348 are
syntactic (put in 21 phrase groups). Table 2 shows the
distribution of the ATB phrase by frequency, the
possible constituent number and the production rule
number.

Table 2: The distribution of the phrases in the ATB.

XP # # C # R XP # # C # R

NP 110748 299 4824 WHADVP 136 3 34
PP 22100 22 263 UCP 132 19 88
S 19358 138 1230 SBARQ 68 19 51

VP 15947 342 6675 PRN 65 10 20
SBAR 9524 47 380 LST 56 2 2
WHNP 4574 3 64 SQ 51 12 26
ADJP 3665 88 593 CONJP 37 3 2
PRT 2292 13 14 INTJ 11 1 1

ADVP 539 6 68 X 5 4 5
NAC 221 18 53 WHPP 3 3 3

FRAG 178 22 56 ∑ 841 14452

From Table 2, we may notice that the most fre-

frequent phrase in the ATB is the Nominal Phrase
(NP). It even contains large numbers of possible
constituents and production rules (equals to 1/3 of all
rules). This dominance does not excessively influence
the distribution of the properties. According to Table
3 showing information about the 10 most frequent
phrases (in the lowest granularity level), NP has the
greatest numbers of uniqueness (40%) and exclusion
(83%) properties. However, the leader in this
distribution becomes the VP (Verbal Phrase) for the
linearity properties (62%) and the SBAR (subordinate
clause) for of the requirement ones (53%). We may
also note that dealing with such high frequencies of
uniqueness properties for most phrases implies the
need to have a unique constituent in each Arabic
phrase. The linear order is important to the VPs as to
the SBARs. For the constituency properties, we have
applied them once for each phrase. Their frequency is
then equal to the phrase frequency.

Regardless to the given property distribution, we
have obtained an important and varied implicit
information in such Arabic text. We may give some
examples: In the Arabic VP, we have the linearity
property IV≺PP, which requires that the PP
(Propositional Phrase) must never precede the IV
(Imperfect Verb). Similarly, we have the requirement
property ADJ⇒NP, which needs the presence of an
NP if an ADJ (adjective) exists.

By focusing on the distribution of the property
types, it can be seen that the parts of the obligation
and the adjacency properties are virtually zero. The
obligation ones have only 3 properties (describing the
following 3 phrases: LST, INTJ and WHPP) with 70
occurrences. The adjacency ones do not have any
properties. This shows that we do not need to have
neither mandatory constituent (head) in the most of
the phrases nor any condition about a direct order
between constituents of the same phrase. This proves
the variety of structuration of the phrase rules in
Arabic.

Table 3: The distribution of the ATB properties by phrase.

XP
Uniqueness Linearity Requirement Exclusion ∑

#P # #P # #P # #P # #P #
NP 22 21686 50 1237 6 125 404 44742192 483 44875988
PP 12 1840 17 1795 15 1947 106 2342600 151 2370282
S 11 539 45 3807 12 89 99 1916442 168 1940235
VP 19 16694 104 26536 16 1493 196 3125612 336 3186282
SBAR 13 5238 30 9053 11 4913 129 1228596 184 1257324
WHNP 5 4574 2 4 2 4 8 36592 18 45751
ADJP 10 88 17 68 12 88 87 318855 127 322764
PRT 12 2290 0 0 0 0 66 151272 79 155854
ADVP 6 559 3 21 4 22 12 6468 26 7609
NAC 9 426 9 189 10 204 33 7293 62 8333

∑ 162 54721 346 43096 139 9279 1288 53891401 1958 53998567

A Formal Modeling Method to Enrich the Arabic Treebank ATB with Syntactic Properties

115

For an overview of all the property types, we can
observe their high frequency compared to other
enriched treebanks (e.g. the FTB) (Blache and Rauzy,
2012). Indeed, according to Table 4, only the
obligation properties are negligible in the ATB. The
others vary from tens of thousands to millions. This
large number can go greater if we extend our work to
the highest granularity level of grammatical
categories in ATB. This reflects the richness and
variety of structures in Arabic.

Table 4: The distribution of the properties in treebanks.

Treebanks ATB FTB

Uniqueness 54721 38007

Obligation 70 32602

Linearity 43096 27367

Requirement 9279 11022

Exclusion 53891401 89293

∑ 53998567 198291

In such phrases, it is also possible to know the
most frequent types of properties. The following
Figure 4 represents the distribution of the ATB
properties by type (only those with comparable
values). Thus, it is important to know that many
categories can be absent but not repeated in Arabic
phrases. This finding is based on the big difference
between uniqueness frequencies of properties and
obligation ones. It is also clear that we have a great
abundance of the exclusion properties versus a virtual
absence of the obligation ones. This wide gap needs
to be adjusted by describing new interpretations to
these types. The adjacency properties however cannot
have another conception because it concerns an order
in which information is automatically defined.

Figure 4: The distribution of the ATB properties by type.

As already mentioned in the previous section, the
verification of the property satisfaction distinguishes
those satisfied from those violated. We represent in
the Table 5 the satisfaction rates of the properties by
type of the phrases VP as instance.

Table 5: The satisfaction rates of the VP property types.

Property
state

Uniqueness Linearity Requirement Exclusion
% # % # % # %

Satisfied 15932 99.91 26529 99.99 1491 99.87 3125590 99.99
Violated 15 0.09 7 0.01 2 0.13 22 0.01

According to the obtained results, the number of
violated properties is negligible compared to satisfied
ones. If the ATB is considered as a large coverage
resource, the used GP in the enrichment task inherits
also this richness.

The property distribution can be detailed to finer
levels by describing individually each property of
such phrase and type. This description let us to know
which property is more important. We may not have
a precise information about the importance of the
properties when we are restricted on defining the
property distribution by type. Thus, this distribution
in a same type can be no homogenous. We present in
Figure 5, for example, the distribution of the VP
properties to determine the most frequent ones. The
abscise axes of the shown schemes are the property
indexes and the ordinate ones are their frequencies.
We may consider in that case that the most frequent
properties have the highest weight (occurrence
number). So, it can be admitted as relevant
information. We fix that a strong property have at
least 1500 occurrences for the uniqueness and the
linearity properties and 500 occurrences for the
requirement ones. The Table 6 gives us the strong
properties of the VP.

Uniqueness Requirement

Linearity

Figure 5: The distribution of the VP properties.

Table 6: The strong properties of the VP.

 Uniqueness Linearity Requirement
Index 1, 2 1, 2; 3; 11, 13 1, 2

Property PV, IV
PV ≺{NP, PP}; IV
≺ PP; PRT ≺ {NP,

IV}

NOUN ⇒NP,
ADJ ⇒NP

Using these results, we can automatically measure
the property weights in such construction. This
information can be included in the GP to ease the
parsing process. Indeed, we can check the satisfaction
only of the strong properties. The others can be
relaxed. This information is also useful to evaluate the
difficulty of the processing in cognitive systems since
the violation of a strong property implies the most
important difficulty.

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

116

7 CONCLUSION AND
PERSPECTIVES

We have described in the present paper a
formalization of the enrichment method, which
consists of adding syntactic properties to the existing
annotation. This method is based on three main
phases: the enrichment problem formalization, the GP
induction and the regeneration of the ATB with
property annotations. The heart of the enrichment
method is specially in the third phase. It consists on
the verification of the satisfaction of the GP property
for each ATB phrase. The verification result is used
to enrich the ATB. We had good experimentation
results and various properties of different types in the
enriched ATB.

As perspectives, in order to offer a very precise
representation of the syntactic information in the
ATB, we can enrich or improve the relation set
presented in the induced GP. For example, proposing
an interpretation of the dependency property or
modify the description of the obligation and exclusion
properties. In future works, we can optimize our
enrichment method by integrating several control
mechanisms into determining syntactic categories
and verification of their properties. We can go further
by applying our enrichment method to other
annotated corpora obtained from existing parsers.

REFERENCES

Abdul-Mageed, M., Diab, M., 2012. AWATIF: A Multi-
Genre Corpus for Modern Standard Arabic Subjectivity
and Sentiment Analysis. Language Resources and
Evaluation Conference (LREC’12), Istanbul, Turkey.

Alkuhlani, S., Habash, N., 2011. A Corpus for Modeling
Morpho-Syntactic Agreement in Arabic: Gender,
Number and Rationality. Association for
Computational Linguistics (ACL’11), Portland,
Oregon, USA.

Alkuhlani, S., Habash, N., Roth, R., 2013. Automatic
Morphological Enrichment of a Morphologically
Underspecified Treebank. North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (HLT-NAACL’13), pp. 460-
470, Atlanta, Georgia, USA.

Bensalem R. B., Elkarwi, M., 2014. Induction d’une
grammaire de propriétés à granularité variable à partir
du treebank arabe ATB. Rencontre des Étudiants
Chercheurs en Informatique pour le Traitement
Automatique des Langues (RECITAL’14), pp. 124-135,
ATALA, ACL-ontology, Marseille, France.

R. B. Bensalem, Elkarwi, M., Haddar, K., Blache, P., 2014.
Building an Arabic Linguistic Resource from a
treebank: The Case of Property Grammar. Text, Speech

and Dialogue (TSD’14), pp. 240-246, Springer, Czech
Republic.

Blache, P., Rauzy, S., 2012. Hybridization and treebank
enrichment with constraint-based representations.
LREC’12- Workshop on Advanced Treebanking.
Istanbul. Turkey.

Cahill, A., 2008. Treebank-Based Probabilistic Phrase
Structure Parsing. Language and Linguistics Compass
2 (1), 18-40.

Çakıcı, R., 2005. Automatic induction of a CCG grammar
for Turkish. ACL Student Research Workshop, pp. 73–
78, Ann Arbor, Michigan.

El-taher, A. I., Abo Bakr, H. M., Zidan, I., Shaalan, K.,
2014. An Arabic CCG approach for determining
constituent types from Arabic treebank. Journal of King
Saud University - Computer and Information Sciences,
pp. 1319-1578.

Habash, N., Rambow O., 2005. Arabic Tokenization, Part-
of-Speech Tagging and Morphological Disambiguation
in One Fell Swoop. ACL, pp. 573-580, Ann Arbor,
Michigan.

Hovy, E., Marcus, M., Palmer, M., Ramshaw, L.,
Weischedel, R., 2006. OntoNotes: The 90% Solution.
North American Chapter of the Association for
Computational Linguistics (NAACL’06), pp. 57–60,
USA.

Koller, A., Thater, S., 2010. Computing weakest readings.
ACL, Uppsala, Sweden.

Maamouri, M., Bies, A., Buckwalter, T., Mekki, W., 2004.
The Penn Arabic Treebank: Building a Large-Scale
Annotated Arabic Corpus. NEMLAR Conference on
Arabic Language Resources and Tools, Cairo, Egypt.

Müller, H. H., 2010. Annotation of Morphology and NP
Structure in the Copenhagen Dependency Treebanks
(CDT). International Workshop on Treebanks and
Linguistic Theories, pp. 151-162, University of Tartu,
Estonia.

Oepen, S., Flickinger, D., Toutanova, K., Manning, C. D.,
2002. LinGO Redwoods - A Rich and Dynamic
Treebank for HPSG. LREC’02 - workshop on parsing
evaluation, Las Palmas, Spain.

Palmer, M., Babko-Malaya, O., Bies, A., Diab, M.,
Maamouri, M., Mansouri, A., Zaghouani, W., 2008. A
Pilot Arabic Propbank. LREC’08, Marrakech,
Morocco.

Tounsi, L., Attia, M., Van-Genabith, J., 2009. Automatic
Treebank-Based Acquisition of Arabic LFG
Dependency Structures. The European Chapter of the
ACL (EACL) Workshop on Computational Approaches
to Semitic Languages, pp. 45–52, Greece.

A Formal Modeling Method to Enrich the Arabic Treebank ATB with Syntactic Properties

117

