
Inedited SVM Application to Automatically Tracking and 
Recognizing Arm-and-Hand Visual Signals to Aircraft 

Giovanni Saggio1, Francesco Cavrini2 and Franco Di Paolo1 
1Department of Electronic Engineering, University of Rome “Tor Vergata”, via del Politecnico 1, Rome, Italy 

2Captiks S.r.l., via Giacomo Peroni 442-444, Rome, Italy 
 

Keywords: Visual Signalling, Sensory Glove, SVM. 

Abstract: An electronic demonstrator was designed and developed to automatically interpret the signalman’s arm-and-
hand visual signals. It was based on an “extended” sensory glove, which is a glove equipped with sensors to 
measure fingers/wrist/forearm movements, an electronic circuitry to acquire/condition/feed measured data 
to a personal computer, SVM based routines to classify the visual signals, and a graphical interface to 
represent classified data. The aim was to furnish to the Italian Aircraft Force a tool for ground-to-ground or 
ground-to-air communication, which can be independent from the full view of the vehicle drivers or aircraft 
pilots, and which can provide information redundancy to improve airport security. 

1 INTRODUCTION 

According to the International Code of Signals, by 
National Imagery and Mapping Agency (United 
States Edition, revised 2003), the Visual Signalling 
(VS) is any method of communication, the 
transmission of which is capable of being seen. The 
VS can be implemented by means of different 
methods, among which the arm-and-hand based one, 
treated here. 

This method of signalling is mandatory for 
communication of deaf people, can generally 
improve communication in task collaboration 
(Gander, 1996), and becomes strategical for 
particular communications when radios cannot be 
used or are unavailable. Inter alia, here we consider 
a VS application suitable to meet the requirements 
of the “Armaereo” (a Military Aircraft Force of the 
Italian Ministry of Defence), which funded our 
research. However, the basic idea can be easily  
extended to any field where VS is standardized, as it 
occurs for the Army (reference: visual signals for 
armor fighting vehicles, GTA 17-02-019), for the 
Navy and Marine (reference: Offensive combat I and 
combat signs, by United States Marine Corps, TACT 
3022, Apr 2011), for the Road rules (as an example 
of reference: Washington State Legislature, Rules of 
the road, Chapter 46.61.310), and for sport activities 
(as an example of reference: Basic Officials Manual 
of the USA Hockey, updated August 2013). 

The VS refers to code meanings related to 
specific vocabulary, receipting, acknowledging and 
identification procedures (Visual Signals, 
Department of the army, FM 21-60). Here we 
consider the ground-to-ground or ground-to-air 
visual signal communications between the 
signalman and the vehicles or aircrafts, with the aim 
of furnishing an automatic electronic way of 
interpreting the signalman’s visual signals, so to 
replicate the decoded signal meaning inside the 
military vehicle or inside the aircraft, allowing 
double check to the driver or to the pilot. This 
system has the advantages of being independent on 
the full view of the driver or the pilot, of offering 
information redundancy for management or security 
improvement, and of allowing information recording 
for realizing a sort of a “black box airport runway”, 
similar to the well-known “black box flight 
recorder”. 

The signalman is in charge of communicating 
with standard signals (among which: cut engine(s), 
hook-up complete, release, move right/ left/ ahead/ 
rearward/ downward/ upward, depart, land, do not 
land) or emergency signals (among which: ok, 
affirmative, negative, do not attempt to land, stop). 
These signals are arm-and-hand based and can be 
tracked by means of different technologies. 
Currently, the mostly adopted method of tracking 
relies on optical cameras (Song et al., 2011), but our 
project intended to avoid any camera, so to be 
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independent by camera distance, camera occlusion, 
number of cameras, and insufficient lighting. In 
particular, our system implemented a sort of 
“extended” sensory glove, that is, a glove equipped 
with sensors to measure not only flex/extensions of 
the fingers, but also wrist and forearm movements. 

The sensory glove has been finding very 
different applications, among which the real-time 
control of a granular sound synthesis process 
(Costantini et al., 2010), the monitoring of hand 
rehabilitation (Park et al., 2009; Mohan et al., 2013) 
or clinical hand assessment (Williams et al., 2000), 
the human-computer interaction (Saggio et al., 2012; 
Berlia and Santosh, 2014), the sign-to-language 
conversion (Cavallo et Saggio, 2014), the objective 
surgical skill assessment (Saggio et al., 2015), the 
serious games for training of rescue teams 
(Mugavero et al., 2014), the tele-robotic 
manipulations for astronauts (Saggio and Bizzarri, 
2014), and so on. As far as we know, this is the first 
time the sensory glove is utilized for Aircraft Force 
or Army purposes. 

 

 
Figure 1: The “extended” sensory glove, the electronic 
circuitry (both the source and the receiving one), the 
virtual representation on a personal computer. 

Here, we present an electronic framework, made of: 
an “extended” sensory glove, an electronic circuitry, 
a suitable classifier, and a virtual representation. The 
framework was aimed to measure, record, recognize 
and virtually represent the arm-and-hand visual 
signals. Figure 1 shows the ensemble. 

2 MATERIALS AND METHODS 

The arm-and-hand tracking framework consisted of 
hardware and software levels. In particular, we 
distinguish a sensory glove and an electronic 
conditioning circuitry for the so termed “source sub-

system”; an electronic receiving circuitry, a 
mathematical classifier, and a virtual avatar 
representation for the so termed “receiving sub-
system”. 

2.1 The Sensory Glove 

Our “extended” sensory glove includes a supporting 
Lycra®-based glove equipped with ten 
flex/extension sensors place on-top of the 
metacarpo-phalangeal (MCP) and proximal-inter-
phalangeal (PIP) joints of each fingers, and two 6 
degree-of-freedom (DoF) inertial measuring units 
(IMUs), respectively necessary to measure the wrist 
and forearm movements (Figure 2). Total source 
signals were then 10+2x6=22.  

 
Figure 2: Sensors placings: ten flex sensors on-top of the 
MCP and PIP joints, one 6DoF IMU on the dorsal aspect 
of the hand, and one 6DoF IMU on the forearm. The 
supporting glove is not showed here for clarity reasons. 

We did not measure the distal-inter-phalangeal 
(DIP) joints since their flex/extension capabilities 
are normally correlated to the PIP ones in known 
percentages (Ghosh, 2013). 

We used ten flex/extension sensors termed 
“Bend Sensors®”, (by Flexpoint Sensor Systems 
Inc., Draper, Utah, USA), adopted because of their 
lightness and suitable repeatability and reliability 
characteristics previously measured and reported 
(Saggio and Bizzarri, 2014). 

The two IMUs were the Sparkfun Razor ones (by 
SparkFun Electronics, Niwot, Colorado, USA), each 
with a 3-axis accelerometer and a 3-axis gyroscope. 

2.2 The Electronic Circuitry 

For the electronic circuitry we can distinguish the 
“source” and the “receiving” subsystems. 
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Let’s start considering the source-subsystem 
(Figure 3a) necessary to acquire signals from the 
sensors, to provide A/D conversions, and to 
wired/wireless transmit data to the receiving-
subsystem. The wired transmission is intended for 
testing purposes, while the wireless one to be in-
field adopted. 

Resistance values from the ten flex sensors have 
been converted into voltage values by means of an 
equal number of voltage dividers, while voltage 
values from the IMUs fed directly the circuitry. The 
core of the source-subsystem was the integrated 
circuit PIC18F47J53 (by Microchip, Chandler, AZ, 
US), 48Mhz-clocked, capable of 12bit A/D 
conversion.  

Table 1: Speed, range and consumption transmission 
values among different protocols/standards. 

Protocol/ 
Standard 

Speed Range Consumption
[mW] 

IEEE802.15.4 / 
ZigBee 

20-250[kbps] <1km 40 

Bluetooth- 
Bluetooth Smart/ 

IEEE802.15.1 

1-24 [Mbps] <100m 200 

IEC62591/ 
WirelessHART 

250 [kbps] <100m 40 

ISA100.11a 250 [kbps] <100m 40 

DASH7 27.7-200  
[kbps] 

<10km 1 

Z-WAVE 10-40 [kbps] <300m 80 
ANT 1 [Mbps] <30m 40 

Wavenis 4.8-100 
[kbps] 

<200m 80 

This IC offer only 10 analog inputs so that, in order 
to acquire all the 22 signals from the extended 
sensory glove, we used a 2x16 channel multiplexer, 
the ADG726 (by Analog Devices, Norwood, MA, 
USA) (its 10 spare input channels can be used for 
eventually additional requirements). 

Requests for the wireless protocol included short 
(or medium) transmission range, low-medium 
transmission speed, low-power consumption, and 
scalability so to handle data of up to four sensory 
gloves at a time, all in an auto user-independent 
configuration mode. To respond to these requests, 
we analysed different protocols/standards, in 
particular the Bluetooth and Bluetooth smart/ 
IEEE802.15.1, the IEC62591/ WirelessHART, the 
ISA100.11a, the DASH7, the Z-Wave, the ANT, the 
Wavenis, and the IEEE802.15.1/ ZigBee. Table 1 
reports a comparison among speed, range and 
consumption of the aforementioned protocol/ 
standards. The IEEE802.15.1/ ZigBee was our 

choice, since it better covers the commitment 
requirements. 
 

 
(a) 

 
(b) 

Figure 3: The electronic circuitry, designed using an 
electronic design automation (EDA) tool by Altium 
Designer (by Altium, Belrose, NSW, Australia), of the (a) 
source-subsystem and of the (b) receiving-subsystem. 

Transmission security was not a mandatory 
parameter for our purposes; anyway the 
aforementioned protocols can be considered 
reasonably “similar” from a cryptography point of 
view. The interested reader can find a survey 
comparison in Gomez and Paradells (2010). 

Our wireless transmission was then obtained 
with the IEEE 802.15.4 radio transceiver module 
MRF24J40MA (by Microchip, Chandler, AZ, USA), 
which allows a 0dBm transmission within a 100 
meters range. 

The DC power supply was realized with a Li-Ion 
single-cell battery, charged and controlled by the IC 
BQ25015 (by Texas Intruments, Dallas, TX, USA), 
which includes a DC-DC buck converter capable of 
300mA @3,3V. 

Let’s now consider the receiving-subsystem 
(Figure 3b), necessary to receive signals and to feed 
them, via USB port, to the personal computer. It was 
based on the same integrated circuit MRF24J40MA 
of the source-subsystem. The USB transmission was 
based on the inner full-speed module of a second 
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PIC18F47J53. The DC power supply was obtained 
from the USB port, with its 5V reduced to the 
necessary 3.3V adopting an LDO voltage regulator. 

2.3 Set of Visual Signals 

The visual signals we intended to discriminate come 
from the Field Manual No. 21-60 – Visual Signals, 
by Defence Department, USA, 1987. 

In particular we selected the arm-and-hand 
signals for ground forces, used for controlling 
vehicle drivers (Figure 4 a, b, c, d, e), for combat 
formations (Figure 4 a, c, e, f), for patrolling (Figure 
4 g), for recovery operations (Figure 4 b, h, i). In 
addition, we considered to recognize six numbers 
(from 0 to 5) represented by the hand, as in Figure 5. 
These particular set of visual signals were 
considered as the most representative for our 
purposes, and included both static (maintained for at 
least 3secs) than dynamic (repeated cycling at least 
three times) gestures. 

In order to recognize the dynamic visual signals, 
i.e. the signals performed with arm-and-hand 
moving and cycling to represent a gesture (Figure 
4a-g), it was necessary to acquire electric signals 
from all the sensors of the “extended” sensory glove, 
but in order to recognize the static visual signals, i.e. 
the signals performed keeping the arm-and-hand in a 
static pose (Figure 4 h and i, Figure 5a-f), data from 
IMUs were not necessary, therefore omitted. 

 

 
(a) 

 
(b) (c) 

 
(d)  

(e) 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 4: Visual signals selected as representative for our 
application, in particular: (a) attention or column, (b) start 
engine or in haul the main winch, (c) increase speed or 
rush, (d) advance, (e) slow down or quick time, (f) rally or 
coil, (g) freeze, (h) ok, (i) nack. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) (f) 

Figure 5: Hand visual signals performing six numbers, 
from 0 to 6. 

2.4 Classifier 

We intended to discriminate an arm-and-hand 
gesture within a subset of visual gestures, and this 
was possible by means of a suitable classifier. 

This classifier could better perform when 
preceded by pre-processing and feature extraction 
phases. The pre-processing phase was aimed at 
reduction of the undesired noise components by 
means of digital IIR (Infine Impulse Response) 
filtering. The feature extraction phase involved the 
use of Fourier and Wavelet Transforms (Walker, 
2008), and the calculation of statistical quantities 
(e.g. energy, mean value, variance). 

Concerning the classifier, among the mostly 
adopted ones for recognition of human upper limb 
posture and movement, we may include Artificial 
Neural Network (ANN) (Mitra and Acharya, 2007), 
Hidden Markov Model (HMM), and Support Vector 
Machine (SVM) (He, 2011). The latter was here 
selected as the most suitable for our purposes for 
some of its peculiarities, in particular: its lower 
tendency to overfitting (compared, for instance, to 
ANN), and its good performance even if the data set 
used in the learning phase is of contained dimension. 

The metrics we used to evaluate the SVM 
performances involved the Accuracy=C/T (C: 
number of correctly classified trials, T: total number 
of trials), the ErrorRate=E/T (E: number of wrongly 
classified trials), the AbstentionRate=A/T (A: 
number of abstentions). 

2.5 Virtual Representation 

We implemented software routines to reveal events 
of connection of new sensory gloves (up to four), to 
allow training and testing protocols, to acquire and 
store data from the classifier, to present a graphical 
interface (GUI, Figure 6) with interactive commands 
for the user, and to virtually represent, via human 
avatar, the movements related to the recognized 
visual commands by the signalman. 
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Figure 6: The graphical user-friendly pc-interface for 
training and testing purposes. On the right column the 
recognized gesture, on the middle column the animation of 
the selected gesture via human avatar. 

2.6 Training/Testing Protocol 

Three subjects took part in the experimental 
evaluation of the system. They were male 22-35 
aged (average 27.6) right handed, with no motor or 
intellectual limitations. 

Our training/testing procedure started with a 
calibration phase, which consisted in dressing the 
sensory glove, and posing the hand in a full-open 
(Figure 7a) and full-closed (fist, Figure 7b) position. 
The two positions have to be maintained for two 
seconds each, to allow the acquisition of a sufficient 
number of sample data, from all the sensors, further 
averaged. 

During full-open/full-closed hand position 
(Figure 7a/b), we measured both the 
minimum/maximum electric values (resistances 
converted into voltages) of each of the ten flex 
sensors, and the electrical values (voltages) coming 
from the x,y/z axis of the accelerometers and 
gyroscopes of both IMUs. 

The training/testing protocol always started from 
the same condition, that is, the user was standing-up 
with his/her arms along the body, and followed these 
steps: 

1. Glove dressing and calibration; 
2. Training: three replays of each arm-and-hand 

visual signal; 
3. Glove removal and rest period; 
4. Glove dressing and calibration; 
5. Training: two replays of each arm-and-hand 

visual signal; 
6. Testing: five replays of all the visual signals; 
7. Glove removal and rest period; 
8. Glove dressing and calibration; 
9. Testing: five replays of all the visual signals. 

 

For the number postures we used a training/testing 
protocol identical to the one described above. It 
follows that, both for visual signals and numbers, we 
acquired 5 training repetitions and 10 testing 
repetitions of each posture/gesture. We feel it is 
worth to stress that both training and test data has 
been acquired in two distinct settings, i.e. after glove 
removal and re-dressing, so to improve the 
generalization capability of the classifier (during 
learning) and better estimate performance in a real-
usage scenario (during testing). 

 

Figure 7: The two hand poses (flat hand and fist) for the 
calibration steps. The sensory glove is omitted in the 
figure for clarity reasons. 

3 RESULTS AND DISCUSSION 

Table 2 and Table 3 show the system performance in 
visual signals (Figure 4) and number recognition 
(Figure 5), respectively. It is possible to observe that 
in the latter task the classifier obtained optimal 
performance, i.e. 100% accuracy, for all of the 
involved subjects. In visual signals recognition, 
performance was also close to optimal. In fact, 
subject A reached 100% accuracy, and subjects B 
and C obtained an high accuracy (above 95%) with 
no errors but only abstentions. This is of particular 
importance in all those scenarios in which the wrong 
recognition of a signal could result in damage to 
persons and/or things. 

Table 2: Classifier performances related to the command 
gestures. 

Subject Accuracy(%) ErrRate(%) AbstRate(%) 
A 100 0 0 
B 97.78 0 2.22 
C 95.56 0 4.44 

Table 3: Classifier performances related to the gestures of 
numbering. 

Subject Accuracy(%) ErrRate(%) AbstRate(%) 
A 100 0 0 
B 100 0 0 
C 100 0 0 
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4 CONCLUSIONS 

Here we designed and developed a camera-free arm-
and-hand tracking framework, and implemented 
SVM-routines capable to interpret signalman’s 
gestures, so to obtain an automatic tool not prone to 
human misinterpretation. 

Preliminary experimental results with 3 subjects 
have been quite encouraging (100% mean accuracy 
for the number recognition task and over 97% mean 
accuracy for visual signals identification) and thus 
motivate us for a further investigation involving a 
greater number of users and, possibly, real-time 
continuous-recognition too. Future work will also 
concentrate on the investigation of in-situ usability, 
i.e. in a real or realistic environment. 
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