
Bringing Search Engines to the Cloud using Open Source
Components

Khaled Nagi
Dept. of Computer and Systems Engineering, Faculty of Engineering, Alexandria University, Alexandria, Egypt

Keywords: Search Engine, Scalability, Fault Tolerance, Open-Source, Lucene, Solr, NoSQL, Hadoop.

Abstract: The usage of search engines is nowadays extended to do intelligent analytics of petabytes of data. With
Lucene being at the heart of the vast majority of information retrieval systems, several attempts are made to
bring it to the cloud in order to scale to big data. Efforts include implementing scalable distribution of the
search indices over the file system, storing them in NoSQL databases, and porting them to inherently dis-
tributed ecosystems, such as Hadoop. We evaluate the existing efforts in terms of distribution, high availa-
bility, fault tolerance, manageability, and high performance. We believe that the key to supporting search
indexing capabilities for big data can only be achieved through the use of common open-source technology
to be deployed on standard cloud platforms such as Amazon EC2, Microsoft Azure, etc. For each approach,
we build a benchmarking system by indexing the whole Wikipedia content and submitting hundreds of sim-
ultaneous search requests. We measure the performance of both indexing and searching operations. We
stimulate node failures and monitor the recoverability of the system. We show that a system built on top of
Solr and Hadoop has the best stability and manageability; while systems based on NoSQL databases present
an attractive alternative in terms of performance.

1 INTRODUCTION

Since Doug Cutting originally wrote Lucene
(McCandless et al., 2010) in 1999 after a long series
of scientific publications dating back to 1990 (Cut-
ting and Pedersen, 1990), it has emerged as the
standard full text search engine in the open-source
community. Several other open-source projects, such
as Solr (Smiley et al., 2015) and Elasticsearch (Kuc
and Rogozinski, 2015), are built on top of Lucene
and offer extended search facilities, such as faceted
navigation, hit highlighting, auto-suggest, Geo-
spatial search.

Now, search engines are required to do intelli-
gent analytics of petabytes of data. Back in 2007, the
first attempts (Nagi, 2007) were made to provide
scalable, robust and distributed search engines by
porting the core of Lucene storage classes to run on
relation database management systems. With the
emergence of NoSQL database management systems
and inherently distributed ecosystems, such as Ha-
doop, many open-source prototypes and implemen-
tations attempt nowadays to support the necessary
features for any large-scale cloud-based implementa-
tion of a search engines (Karambelkar, 2015).

In this work, we investigate the most prominent
publicly available implementations. We believe that
the key to the success of any large-scale search en-
gine will remain the same as the success of the orig-
inal Lucene, which is openness. In our Work, we
explicitly refrain from adding any customized im-
plementation to the off-the-shelf open-source com-
ponents. We apply only the tweaks supplied by the
official performance tuning recommendations from
the providers.

Our contribution is the independent evaluation of
the existing approaches in terms of support for dis-
tribution - in which data partitioning and replication
while maintaining consistency - play a major role.
We always investigate the effect of node failures,
since almost all popular and modern cloud providers
nowadays, such as Amazon EC2 (Akioka and Mu-
raoka, 2010) and Microsoft Azure (Bojanova and
Samba, 2011), are built on commodity hardware.
Furthermore, we take into consideration the ease of
management of the cluster. However, our main focus
is the evaluation of the performance of both index-
ing and searching of these systems.

The rest of the paper is organized as follows. In
Section 2, the features desired in a distributed high-
ly-scalable search engines together with a brief

116
Nagi, K..
Bringing Search Engines to the Cloud using Open Source Components.
In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 1: KDIR, pages 116-126
ISBN: 978-989-758-158-8
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

background of the technologies in use are presented.
Section 3 brings a detailed description of the sys-
tems under investigation. In Section 4, the perfor-
mance evaluation is presented. Section 5 concludes
the paper and presents an outlook to our future work
in this area.

2 BACKGROUND AND RELATED
WORK

The following features are the key to the success of
any cloud-based large-scale search engine:

 Partitioning (Sharding): It is splitting the index
into several independent sections. Each section
can be viewed as a separate index and is indexed
independently. A query is answered by pro-
cessing it at the shards in question before the re-
sult is consolidated and returned to the user.

 Replication: It provides redundancy and in-
creases data availability. With multiple copies of
data on different servers, replication protects an
index from the loss of a single node. In some
cases, replication can be used to increase read
capacity.

 Consistency: A newly indexed document is not
necessarily made available to the next search re-
quest. However, the index data structure must be
consistent under whatever storage model used to
store it. Taking a deeper look into the structure of
Lucene (“Lucene - Index File Formats”, n.d.), for
example; the content of one internal block is de-
pendent on the content of another. Consistency
between these blocks must be guaranteed all
times, whereas consistency across the independ-
ent shards is not a must.

 Fault-tolerance: it means the absence of any
Single Point of Failure (SPoF). Most modern
clouds are based on commodity hardware. The
temporary absence of a node is expected to occur
at any point of time. This should never lead to
the failure of the whole search engine.

 Manageability: A cloud-based search engine is
spread across several dozens of servers. The ad-
ministration of these servers and the services de-
ployed on them must be made easily: either
through a Command Line Interface (CLI), pro-
grammatically embeddable interface, e.g., JMX,
or most preferably via web administration con-
soles.
 High Performance: Cloud-based search engines

should be capable of indexing the shards in par-
allel. They should also process hundreds of

search queries in parallel with a reasonable re-
sponse time (e.g., under 3 seconds).

2.1 Lucene-based Search Engines

A full text search index is an efficient cross-
reference lookup data structure. Usually, a variation
of the well-known inverted index structure is used
(Cutting and Pedersen, 1990).

The indexing process begins with collecting the
available set of documents by the data gatherer. The
parser converts them to a stream of plain text. In the
analysis phase, the stream of data is tokenized ac-
cording to predefined delimiters and a number of
operations are performed on the tokens, e.g., the
removal of all stop words and the reduction of the
words to their roots to enable phonetic searches.

The searching process begins with parsing the
user query. The tokens have to be analyzed by the
same analyzer used for indexing. Then, the index is
traversed for possible matches. The fuzzy query
processor is responsible for defining the match crite-
ria and the score of the hit.

Lucene (McCandless et al., 2010) is at the heart
of almost every full-text search engine. It provides
several useful features, such as ranked searching,
fielded searching and sorting. Searching is done
through several query types including: phrase que-
ries, wildcard queries, proximity queries, range que-
ries. It allows for simultaneous indexing and search-
ing by implementing a simple pessimistic locking
algorithm (“Lucene - Class LockFactory”, n.d.).

An important internal feature of Lucene is that it
uses a configurable storage engine. In its standard
release, it comes with a codec to store the index on
the disc or maintain it in-memory for smaller indi-
ces. The internal structure of the index file is public
and is platform independent (“Lucene - Index File
Formats”, n.d.). This ensures its portability. Back in
2007, this concept was used to store the index effi-
ciently into Relational Database Management Sys-
tems (Nagi, 2007). The same technique is used today
to store the index in other NoSQL databases, such as
Cassandra (Lakshman and Malik, 2010) and mon-
goDB (Plugge et al., 2010).

Apache Solr (Smiley et al., 2015) is built on-top
of Lucene. It is a web application that can be de-
ployed in any servlet container. It adds the following
functionality to Lucene:

 XML/HTTP and JSON APIs
 Hit highlighting
 Faceted search and filtering
 Geospatial search
 Caching

Bringing Search Engines to the Cloud using Open Source Components

117

 Near real-time searching of newly indexed
documents.

 Web administration interface

SolrCloud (Smiley et al., 2015) was released in
2012. It is an extension to Solr that allows for both
sharding and replication. The management of this
distribution is seamlessly integrated into an intuitive
web administration console. Figure 1 illustrates the
configuration of one our setups in the web admin-
istration console.

Figure 1: Screenshot of the web administration console.

Elasticsearch (Kuc and Rogozinski, 2015)
evolved almost in parallel to Solr and SolrCloud.
Both bring the same set of features. Both are very
performant. Both are open-source and use a different
combination of open-source libraries. At their hearts,
both have Lucene. In general, Solr seems to be
slightly more popular than Elasticsearch; whereas
Elasticsearch is expanding more in the direction of
data analytics.

2.2 NoSQL Databases

The main strength of NoSQL databases comes from
their ability to manage extremely large volumes of
data. For this type of applications, ACID transaction
properties are too restrictive. More relaxed models
emerged such as the CAP theory or eventually con-
sistent emerged (Brewer, 2000). It means that any
large-scale distributed DBMS can guarantee for two
of three aspects: Consistency, Availability, and Par-
tition tolerance. In order to solve the conflicts of the
CAP theory, the BASE consistency model (BAsical-
ly, Soft state, Eventually consistent) is defined for
modern applications (Brewer, 2000). This principle
goes well with information retrieval systems, where
intelligent searching is more important than con-
sistent ones.

A good overview of existing NoSQL database
management systems can be found in (Edlich, et al,

2010). Mainly, NoSQL database systems fall into
four categories:

 graph databases,
 key-value systems,
 column-family systems, and
 document stores.

Graph databases concentrate on providing new
algorithms for storing and processing very large and
distributed graphs. They are often faster for associa-
tive data sets. They can scale more naturally to large
data sets as they do not require expensive join opera-
tions. Neo4j (“neo4j”, n.d.) is a typical example of a
graph databases.

Key-value systems use associative arrays (maps)
as their fundamental data structure. More complicat-
ed data structures are often implemented on top of
the maps. Redis (“Redix”, n.d.) is a good example of
a basic key-value systems.

The data model of column-family systems pro-
vides a structured key-value store where columns are
added only to specified keys. Different keys can
have different number of columns in any given fami-
ly. A prominent member of the column family stores
is Cassandra (Lakshman and Malik, 2010). Apache
Cassandra is a second generation of distributed key
value stores; developed at Facebook. It is designed
to handle very large amounts of data spread across
many commodity servers without a single point of
failure. Replication is done even across multiple data
centers. Nodes can be added to cluster without
downtime.

Document-oriented databases are also a subclass
of key-value stores. The difference lies in the way
the data is processed. A document-oriented system
relies on internal structure in the document order to
extract metadata that the database engine uses for
further optimization. Document databases are sche-
maless and store all related information together.
Documents are addressed in the database via a
unique key. Typically, the database constructs an
index on the key and all kinds of metadata. mon-
goDB (Plugge et al., 2010), first developed in 2007,
is considered to be the most popular NoSQL nowa-
days (“DB-Engines”, n.d.). mongoDB provides high
availability with replica sets.

In all attempts to store Lucene index files in
NoSQL databases, the contributors take the logical
index file as starting point. The set of logical files
are broken into logical blocks that are stored in the
database. It is therefore clear that plain key-value
data stores and graph databases are not suitable for
storing a Lucene index. On the other hand, docu-
ment stores, such as mongoDB, are ideal stores for

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

118

Lucene indices. One Lucene logical file maps easily
to a mongoDB document. Similarly, the Lucene
logical directory (files) is mapped to a Cassandra
column family (rows), which is captured using an
inherited implementation of the abstract Lucene
Directory class. The files of the directory are
broken down into blocks (whose sizes are capped).
Each block is stored as the value of a column in the
corresponding row.

2.3 Inherently Distributed Ecosystems

After the release of (Dean and Ghemawat, 2008),
Doug Cutting worked on a Java-based MapReduce
implementation to solve scalability issues on Nutch
(Khare et al., 2004); which is an open-source web
crawler software project to feed search engines with
content. This was the base for the Hadoop open
source project; which became a top-level Apache
Foundation project. Currently, the main Hadoop
project includes these modules:

 Hadoop Common: It supports the other Hadoop
modules.

 Hadoop Distributed File System (HDFS): A dis-
tributed file system.

 Hadoop YARN: A job scheduler and cluster re-
source management.

 Hadoop MapReduce: A YARN-based system for
parallel processing of large data sets.

Each Hadoop task (Map or Reduce) works on the
small subset of the data it has been assigned so that
the load is spread across the cluster. The map tasks
generally load, parse, transform, and filter data. Each
reduce task is responsible for handling a subset of
the map task output. Intermediate data is then copied
from mapper tasks by the reducer tasks in order to
group and aggregate the data. It is definitely appeal-
ing to use the MapReduce framework in order to
construct the Lucene index using several nodes of a
Hadoop cluster.

The input to a MapReduce job is a set of files
that are spread over the Hadoop Distributed File
System (HDFS). In the end of the MapReduce oper-
ations, the data is written back to HDFS. HDFS is a
distributed, scalable, and portable file system. A
Hadoop cluster has one namenode and a set of
datanodes. Each datanode serves up blocks of data
over the network using a block protocol. HDFS
achieves reliability by replicating the data across
multiple hosts. Hadoop recommends a replication
factor of 3. Since the release of Hadoop 2.0 in 2012,
several high-availability capabilities, such as provid-
ing automatic fail-over of the namenode, are imple-

mented. This way, HDFS comes with no single point
of failure. HDFS was designed for mostly immuta-
ble files (Pessach, 2013) and may not be suitable for
systems requiring concurrent write-operations. Since
the default storage codec for Solr is append-only, it
matches HDFS. With the extreme scalability, ro-
bustness and wide-spread of Hadoop clusters, it
offers the perfect store for Solr in Cloud-based envi-
ronments.

Additionally, there are three ecosystems that can
be used in building distributed search engines: Katta,
Blur and Storm.

Katta (“Katta”, n.d.) brings Apache Hadoop and
Solr together. It brings search across a completely
distributed MapReduce-based cluster. Katta is an
open-source project that uses the underlying Hadoop
HDFS for storing the indices and providing access to
them. Unfortunately, the development of Katta has
been stopped. The main reason is the inclusion of
several of the Katta features within the SolrCloud
project.

Apache Blur (“Blur”, n.d.) is a distributed search
engine that can work with Apache Hadoop. It is
different from the traditional big data systems in that
it provides a relational data model-like storage on
top of HDFS. Apache Blur does not use Apache
Solr; however, it consumes Apache Lucene APIs.
Blur provides data indexing using MapReduce and
advanced search features; such as a faceted search,
fuzzy, pagination, and a wildcard search. Blur shard
server is responsible for managing shards. For Syn-
chronization, it uses Apache ZooKeeper
(“ZooKeeper”, n.d.). Blur is still in the apache incu-
bator status. The current release version 0.2.3 works
with Hadoop 1.x and is not validated using the
scalability features coming with Hadoop 2.x.

The third project Storm (“Storm”, n.d.) is also in
its incubator state at Apache. Storm is a real time
distributed computation framework. It processes
huge data in real time. Apache Storm processes
massive streams of data in a distributed manner. So,
it would be a perfect candidate to build Lucene indi-
ces over large repositories of documents once it is
reaches the release state. Apache Storm uses the
concept of Spout and Bolts. Spouts are data inputs;
this is where data arrives in the Storm cluster. Bolts
process the streams that get piped into it. They can
be fed data from spouts or other bolts. The bolts can
form a chain of processing, with each bolt perform-
ing a unit task in a concept similar to MapReduce.

Bringing Search Engines to the Cloud using Open Source Components

119

3 SYSTEMS UNDER
INVESTIGATION

3.1 Solr on Cassandra

Solandra is an open-source project that uses Cassan-
dra instead of the operating system file system for
storing indices in the Lucene index format (“Lucene
- Index File Formats”, n.d.). The project is very
stable. Unfortunately, the last commit dates back to
2010. The current Solandra version available for
download uses Apache Solr 3.4 and Cassandra 0.8.6.
That's why any installation would use Solr and not
SolrCloud. The details of the Cassandra-based dis-
tributed data storage is completely hidden behind the
CassandraDirectory class and its associated
classes. Solandra uses its own index reader called
SolandraIndexReaderFactory by overriding the
default index reader.

Under Solandra, Solr and Cassandra run both
within the same JVM. However, with a slight recon-
figuration, we run a Cassandra cluster instead. In a
small implementation, the Cassandra cluster spreads
over 3 nodes and 7 nodes in the larger one as illus-
trated in Figure 2.

Figure 2: Our Solandra installation.

On Cassandra, each node exchanges information
across the cluster every second. A sequentially writ-
ten commit log on each node captures write activity
to ensure data durability. Data is then indexed and
written to an in-memory structure. Once the memory
structure is full, the data is written to disk in an
SSTable data file. All writes are automatically parti-
tioned and replicated throughout the cluster. A clus-
ter is arranged as a ring of nodes. Clients send
read/write requests to any node in the ring; that takes
on the role of coordinator node, and forwards the
request to the node responsible for servicing it. A
partitioner decides which nodes store which rows.

This way, both sharding and replication are au-
tomatically made available by Casandra. Cassandra
also guarantees the consistency of the blocks read by
its various nodes. Although fault-tolerance is a
strong feature of Cassandra, Solr itself is the single
point of failure in this implementation, due to the
absence of the integration with SolrCloud. Unfortu-
nately, Solandra does not support the administration
console of Solr. The only management option is
through the Cassandra CLI.

3.2 Lucene on mongoDB

Another open-source NoSQL-based project is Lu-
Mongo (“LuMongo”, n.d.). LuMongo provides the
flexibility and power of Lucene queries with the
scalability and ease of use of mongoDB. All data in
LuMongo is stored in mongoDB including indices
and documents. Inherently mongoDB can be sharded
and replicated. LuMongo itself operates as a cluster.
On error, clients can fail to another cluster node.
Nodes in the cluster can be added and removed dy-
namically through a simple CLI command. The CLI
offers to query the health status of cluster, list avail-
able indices, get their counts, submit simple queries,
and fetch documents.

LuMongo indices are broken down into shards
called segments. Each segment is an independent
index. A hash of the document's unique identifier
determines which segment a document's indexed
fields will be stored into. In our smaller implementa-
tion, illustrated in Figure 3, the segments are stored
in a 3x3 mongoDB cluster for the small setup and 7
shards and 3 replicas for the larger setup to match
the number of LuMongo servers; which is 3 and 7
respectively.

Figure 3: Our LuMongo implementation.

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

120

In this setup, sharding is implemented in both
LuMongo and mongoDB. The mongoDB takes care
of partitioning seamlessly. mongoDB guarantees the
consistency of the index store, while LuMongo
guarantees the consistency of the search result.
There is no single point of failure in mongoDB and
LuMongo.

3.3 SolrCloud

SolrCloud (Smiley et al., 2015) contains a cluster of
Solr nodes. Each node runs one or more collections.
A collection holds one or more shards. Each shard
can be replicated among the nodes. Apache
ZooKeeper (“ZooKeeper”, n.d.) is responsible for
maintaining co-ordination among various nodes. It
provides load-balancing and failover to the Solr
cluster. Synchronization of status information of the
nodes is done in-memory for speed and is persisted
on the disk at fixed checkpoints. Additionally, the
Zookeeper maintains configuration information of
the index; such as schema information and Solr
configuration parameters. Usually, there are more
than one Zookeeper for redundancy. Together, they
build a Zookeeper ensemble. When the cluster is
started, one of the Zookeeper nodes is elected as a
leader. The same occurs for Solr. There is a leader
responsible for each shard.

SolrCloud distributes search across multiple
shards transparently. The request gets executed on
all leaders of every shard involved. Search is possi-
ble with near-real time; i.e., after a document is
committed. Figure 4 illustrates our small cluster
implementation. We build the cluster using a
Zookeeper ensemble consisting of 3 nodes. We
install 3 SolrCloud instances on three different ma-
chines, define 3 shards and replicate them 3 times.

Figure 4: Our SolrCloud Implementation.

In the larger cluster, we extend the Zookeeper en-
semble to spread 7 machines. We use 7 SolrCloud
instance to master 7 shards while keeping the repli-
cation factor at 3.

3.4 SolrCloud on Hadoop

Building SolrCloud on Hadoop is an extension to the
implementation described in Section 3.3. The same
Zookeeper ensemble and SolrCloud instances are
used. Solr is then configured to read and write indi-
ces in the HDFS by implementing an HdfsDirec-
toryFactory and implementing a lock type based
on HDFS. Both come with the current stable version
of Solr (“Solr”, n.d.), version 5.2.1. Figure 5 illus-
trates our small cluster implementation. We leave
replication to the HDFS. We set the replication fac-
tor on HDFS to 3 to be consistent with the rest of the
setups. For the small cluster, we also use a 3 node
Hadoop installation. For the large cluster, we use a 7
node cluster.

Figure 5: Our SolrCloud implementation over Hadoop.

Solr provides indexing using MapReduce in two
ways. In the first way, the indexing is done at the
map side (“Solr-1045”, n.d.). Each Apache Hadoop
mapper transforms the input records into a set of
(key, value) pairs, which then get transformed into
SolrInputDocument. The Mapper task then cre-
ates an index from SolrInputDocument. The
Reducer performs de-duplication of different indices
and merges them if needed. In the second way, the
indices are generated in the reduce phase (“Solr-
1301”, n.d.). Once the indices are created using
either ways, they can be loaded by SolrCloud from

Bringing Search Engines to the Cloud using Open Source Components

121

HDFS and used in searching. We use the first way
and employ 20 nodes in the indexing process.

3.5 Functional Comparison

Table 1 summarizes the functional differences be-
tween all 4 systems under investigation.

Table 1: Functional Comparison of the systems under
investigation.

 Solr on
Cassandra

Lucene on
mongoDB

SolrCloud SolrCloud
on Hadoop

Sharding done by
Cassandra

done by
mongoDB

done by Solr done by
Solr

Replica-
tion

done by
Cassandra

done by
mongoDB

sync. on the
level of the file
system under
to coordination
of Zookeeper

done by
HDFS

Con-
sistency

guaran-
teed by
Cassandra

guaranteed
by Lu-
Mungo and
mongonDB

done by Solr
and managed
by Zookeeper

guaranteed
by HDFS,
Solr and
Zookeeper

Fault-
tolerance

Solr is
SPoF

No SPoF No SPoF No SPoF

Manage-
ability

CLI CLI Web web for
Solr + web
for Hadoop

4 BENCHMARKING

In our order to evaluate the performance of the vari-
ous search engine clusters under investigation, we
build a full text search engine of the English Wik-
ipedia (“Wikipedia-dumps”, n.d.). The index is built
over 49 GB of textual content. We develop a
benchmarking platform on top of each search engine
under investigation as illustrated in Figure 6.

The searching workload generator composes
queries of single terms, which are randomly extract-
ed from a long list of common English words. It
submits them in parallel to the application. The in-
dexing workload generator parses the Wikipedia
dump and sends the page title, the content, and other
attributes such as timestamp and revision numbers to
the benchmarking platform workers, which in turn
pass them to the search engine cluster be indexed.
The benchmarking platform manages two connec-
tion pools of worker threads. The first pool consists
of several hundreds of searching workers threads
that process the search queries coming from the
searching workload generator. The second pool
consists of index inserting workers threads that
process the updated content coming from the index-
ing workload generator. Both worker types submit

their requests over http to the search engine cluster
under investigation. The performance of the system
including that of the search engine cluster is moni-
tored using the performance monitor unit.

Figure 6: Components of the benchmarking platform.

4.1 Input Parameters and Performance
Metrics

We choose the maximum number of fetched hits to
be 50. This is a realistic assumption taking into con-
sideration that no more than 25 hits are usually dis-
played on a web page. We choose to read the content
of these 50 hits and not only the title while fetching
the result-set. This exaggerated implementation is
intended to artificially stress test the search engines
clusters under investigation. The number of search
threads is varied from 32 to 320 to match the size of
connection pool for the searching worker threads. In
case of high load, the workload generator distributes
its searching search threads over 4 physical ma-
chines to avoid throttling the requests by the hosting
client. Due to locking restrictions inherent in Lu-
cene, we restrict our experiments to maximum one
indexing worker per node in the search engine clus-
ter.

In all our experiments, we monitor the response
time of the search operations from the moment of
submitting the request till receiving the overall re-
sult. We also monitor the system throughput in terms
of:
 searches per second, and
 index inserts per hour.

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

122

Additionally, the performance monitor constantly
monitors CPU and memory usages of the machines
running the search engine cluster.

4.2 System Configuration

In order to neutralize the effect of using virtualized
nodes in globalized data cloud centers; such as Am-
azon EC2 or Microsoft Azure, we conduct our ex-
periments in an isolated cluster available at the In-
ternet Archive of the Bibliotheca Alexandrina (“In-
ternet Archive BA”, n.d.). The Bibliotheca Alexan-
drina possesses a huge dedicated computer center for
archiving the Internet, digitizing material at Biblio-
theca Alexandrina and other digital collections.

The Internet Archive at the Bibliotheca Alexan-
drina has about 35 racks each rack is comprised of
30 to 40 nodes and a gigabit switch connecting
them. The 35 racks are connected also with a gigabit
switch. The nodes are based on commodity servers
with a total capacity of 7000 TB.

The Bibliotheca Alexandrina dedicated one rack
with 20 nodes to our research for approx. one month.
The nodes are connected with a gigabit switch and
are isolated from the activities of the Internet Ar-
chive during the period of our experiments. Each
node has an Intel i5 CPU 2.6 GHz, 8 GB RAM, 4
SATA hard disks 3 TB each.

For each search engine cluster, we construct a
small version and a larger one as described in Sec-
tion 3. The small cluster consists of three nodes each
containing a shard (a portion of the index) while the
larger one is built over 7 nodes. In all installations
have a replication factor of 3.

4.3 Indexing

Indexing speed varies largely with the number of
nodes involved in the index building operation.
Lucene; and hence Solr; employs a pessimistic lock-
ing mechanism while inserting data into the index.
This locking mechanism is being kept for all
backend implementations. From our current experi-
ments and from previous ones (Nagi, 2007), we
conclude that there is no benefit in having more than
one indexing thread per Lucene index (or Solr
shard).

This means that the increase in number of shards
and their dedicated indexing Lucene/Solr yields to a
proportional increase in the speed of indexing. The
increase is also linear for all systems under investi-
gation. In other words, the indexing speed of a 3
nodes cluster is 3 times that’s of a cluster consisting
of a single node. Respectively, the indexing speed of

a 7 nodes cluster is 2.3 times that’s of a cluster con-
sisting of 3 nodes. A clear winner in this contest is
SolrCloud on Hadoop that employs MapReduce in
indexing. Using all 20 nodes available in the
MapReduce operation increases the speed by factor
of 18. A minimum overhead is wasted later on in
merging the indices into 3 and 7 nodes, respectively.

In order to normalize a comparison between all
systems, we plot the throughput of using one index-
ing thread on a 3 shards, 3 replica cluster in Figure
7. These numbers are roughly multiplied by the
number of nodes involved to get the overall indexing
speed.

Figure 7: Normalized indexing speed.

On the normalized scale, NoSQL backends bring
very different results. Casandra has by far the fastest
rate of insertion (60% faster than SolrCloud). This
experiment confirms the results reported by (Rabl et
al., 2012) proving the high throughput of Cassandra
as compared to other NoSQL databases. On the
other hand, mongoDB-based storage is the slowest.
SolrCloud brings very good results on the file sys-
tem. The overhead of storage on HDFS is about 26%
which is very acceptable taking into consideration
the advantages of storing data on Hadoop clusters in
cloud environments and the huge speed-ups due to
the use of MapReduce in indexing.

4.4 Searching

Searching is more important than indexing. We
repeat the search experiments with the number of
search threads varying from 32 to 320. The duration
of each experiment is set to 15 minutes to eliminate
any transient effect.

The set of experiments is repeated for both the
small cluster and the large cluster. The response time
for the small cluster is illustrated in Figure 8 and the
large cluster in Figure 9. The throughput in terms of
number of searches per second versus the number of

Bringing Search Engines to the Cloud using Open Source Components

123

searching threads is plotted in Figure 10 for the
small cluster and in Figure 11 for the larger one.

The bad news is that the response time of the
single Solr on the Cassandra cluster is far higher
than the other systems (>10 seconds). So, we
dropped plotting its values for both clusters. The
same applies to the throughput, which was much
lower than its counterparts (< 50 searhes/second).
Again this matches the findings in (Rabl et al.,
2012), where the high throughput of Cassandra
comes at the cost of read latency.

The good news is that the response time for the
other systems is very much below the usual 3 sec-
onds threshold tolerated by a searching user. The
maximum search time measured on the small cluster
is below 1.8 seconds and 1.4 seconds for the larger
cluster. The curves also show that the response time
of the larger cluster is better than the smaller cluster
under all settings. This means that the performance
of the system is enhanced by the increase of the
number of nodes. The system did not achieve its
saturation yet.

The figures also illustrate the impact of HDFS
on the response time and the overall throughput of
the search. Although the search time is increased by
almost 40% and the throughput is almost halved, the
absolute values remain far below the user threshold
of 3 seconds by retrieving the hits and the contents
of each hit for a result-set size of 50 in less than 2
seconds.

Another important remark is that the perfor-
mance of all systems degrade gracefully with the
increase of workload except for LuMongo. Under
heavy workloads, (192 for the small cluster and 288
for the large cluster) LuMongo runs out of heap
memory. We track down the problem to be in fetch-
ing the content of the documents after returning the
document ids from the search engine. There is a
small memory leakage in LuMongo that causes the
abortion of the searches under heavy loads. Hav-
ingthis solved in future releases on LuMongo, Lu

Figure 8: Search time on the small cluster.

Mongo will be a very important choice regarding its
superior response time illustrated in Figure 8 and
Figure 9.

Figure 9: Search time on the large cluster.

The throughput curves, Figure 10 and Figure 11,
illustrate that the throughput saturates after a certain
number of concurrent search threads. In the small
cluster, Figure 10, the three setups saturate at 64
concurrent threads. On the large cluster, Figure 11,
this number increases to 128.

Figure 10: Throughput of the small cluster.

Figure 11: Throughput of the large cluster.

5 CONCLUSION AND FUTURE
WORK

In this paper, we investigate the available options for

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

124

building large-scale search engines that are capable
of running in the Cloud. We restrict ourselves to
open-source libraries, including Lucene, Solr, mon-
goDB, Cassandra, and Hadoop. We explicitly do not
add extra implementation other that publicly availa-
ble components. We investigate each variation, in
terms of scalability through data partitioning, redun-
dancy through replication, consistency either
through the NoSQL databases or through open-
source synchronization libraries, such as Zookeeper.
The ease of management of the multi-node cluster is
also an important issue in our evaluation. Perfor-
mance plays a major part in our analysis. We build a
benchmarking platform on top of the systems under
investigation. For each variation, we construct a
small and a large cluster. In our experiments, we
measure both the speed of indexing as well as the
search time and the throughput of the searching
threads. The results of the experiments show that
Solr and Hadoop provide the best tradeoff in terms
of scalability, stability and manageability. Search
engines based on NoSQL databases offer either a
superior indexing speed, or fast searching times.
Unfortunately, they suffer from stability in their
integration implementations.

In the future, we plan to contribute to LuMongo
by fixing its memory leakage problem. A good con-
tribution would also be the extension of Solandra to
support SolrCloud instead of a single Solr instance.
Having done this, the owner of the large-scale search
engine would have the choice between either using
the Hadoop infrastructure or a NoSQL cluster instal-
lation depending on availability in his/her environ-
ment and his/her knowledge.

ACKNOWLEDGEMENTS

We would like to thank the Bibliotheca Alexandrina
for providing us with the necessary hard-ware for
conducting the benchmarking experiments.

REFERENCES

Akioka, S. and Muraoka, Y., 2010. HPC Benchmarks on
Amazon EC2, Proceedings of the IEEE 24th Interna-
tional Conference on Advanced Information Network-
ing and Applications Workshops (WAINA).

Bojanova, I. and Samba, A., 2011. Analysis of Cloud
Computing Delivery Architecture Models, IEEE
Workshops of International Conference on Advanced
Information Networking and Applications (WAINA).

Blur, n.d., Apache Blur (Incubating) Home,

https://incubator.apache.org/blur/, retrieved July
2015.

Brewer, E., 2000. Towards Robust Distributed Systems.
ACM Symposium on Principles of Distributed Compu-
ting.

Cutting, D. and Pedersen, J., 1990. Optimizations for
Dynamic Inverted Index Maintenance, Proceedings of
SIGIR ’90.

DB-Engines, n.d., Knowledge Base of Relational and
NoSQL Database Management Systems, http://db-
engines.com/en/ranking, retrieved July 2015.

Dean, J. and Ghemawat, S., 2008. MapReduce: simplified
data processing on large clusters. Communications of
the ACM. 51, 1, 107–113.

Edlich, S., Friedland, A., Hampe, J., Brauer, B., 2010.
NoSQL: Introduction to the World of non-relational
Web 2.0 Databases (In German) NoSQL: Einstieg in
die Welt nichtrelationaler Web 2.0 Datenbanken,
Hanser Verlag.

Internet Archive BA, n.d., Internet Archive at Bibliotheca
Alexandrina, http://www.bibalex.org/en/project/
details?documentid=283, retrieved July 2015.

Karambelkar, H.V., 2015. Scaling Big Data with Hadoop
and Solr, Packt Publishing, 2nd Edition.

Katta, n.d., http://katta.sourceforge.net/, retrieved July
2015.

Khare, R. et al., 2004: Nutch: A flexible and scalable
open-source web search engine. Technical Report Or-
egon State University. 1, 32–32.

Kuc, R. and Rogozinski, M., 2015. Mastering Elas-
ticsearch, Packt Publishing, 2nd Edition.

Lakshman, A. and Malik, P., 2010. Cassandra: a decentral-
ized structured storage system. SIGOPS Operating
Systems Review, 44(2):35–40.

Lucene - Index File Formats, n.d. https://lucene.apache.
org/core/3_0_3/fileformats.html, retrieved July 2015.

Lucene - Class LockFactory, n.d., http://lucene.apache.
org/core/4_8_0/core/org/apache/lucene/store/LockFa
ctory.html, retrieved July 2015.

LuMongo, n.d., LuMongo Realtime Time Distributed
Search, http://lumongo.org/, retrieved July 2015.

McCandless, M., Hatcher, E., and Gospodnetić, O., 2010.
Lucene in Action, Manning, 2nd Edition.

Nagi, K., 2007. Bringing Information Retrieval Back To
Database Management Systems, Proceedings of
IKE'07, International Conference on Information and
Knowledge Engineering.

Neo4j, n.d., http://www.neo4j.org, retrieved July 2015.
Pessach, Y., 2013. Distributed Storage: Concepts, Algo-

rithms, and Implementations, CreateSpace Independ-
ent Publishing Platform.

Plugge, E., Hawkins, D., and Membrey, P., 2010. The
Definitive Guide to mongoDB: The NoSQL Database
for Cloud and Desktop Computing, Apress.

Rabl, T. et al., 2012. Solving big data challenges for en-
terprise application performance management, Pro-
ceedings of the VLDB Endowment, Volume 5 Issue 12,
pp 1724-1735.

Redix, n.d., http://redis.io/, retrieved July 2015.
Solr, n.d., Solr - Apache Lucene - The Apache Software

Bringing Search Engines to the Cloud using Open Source Components

125

Foundation! http://lucene.apache.org/solr/, retrieved
July 2015.

Solr-1045, n.d., Build Solr index using Hadoop MapRe-
duce, https://issues.apache.org/jira/browse/SOLR-
1045, retrieved July 2015.

Solr-1301, n.d., Add a Solr contrib that allows for building
Solr indices via Hadoop's Map-Reduce., https://issues.
apache.org/jira/browse/SOLR-1301, retrieved July
2015.

Smiley, D., Pugh, E., Parisa, K., Mitchell, and Apache M.,
2015. Solr Enterprise Search Server, Packt Publishing,
3rd Edition.

Storm, n.d., Storm - The Apache Software Foundation,
https://storm.apache.org/, retrieved July 2015.

Wikipedia-dumps, n.d., Wikipedia article dump,
https://dumps.wikimedia.org/enwiki/, retrieved July
2015.

ZooKeeper, n.d., Apache Zookeeper, https://zookeeper.
apache.org/, retrieved July 2015.

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

126

