
Confluent Factors, Complexity and Resultant Architectures in
Modern Software Engineering
A Case of Service Cloud Applications

Leszek A. Maciaszek1,2 and Tomasz Skalniak1
1Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland

2Macquaire University, Sydney, Australia
leszek.maciaszek@ue.wroc.pl, tomasz.skalniak@ue.wroc.pl

Keywords: Software Engineering, Service-oriented Cloud-based Applications, Software Complexity, Adaptive
Systems, Architectural Design, Dependency Relationships, Meta-Architecture, Resultant Architecture.

Abstract: There is a wealth of evidence that contemporary landscape of software development has been resisting the
disciplined, rigorous, formally managed, architecture-driven, forward-engineering practices. The whole
field of traditional software engineering needs a re-definition alongside the practices widely used in
production of modern software systems, in particular service-oriented cloud-based applications. This paper
argues that contemporary software engineering must re-focus and re-define its theoretical foundations and
base it on acknowledgment that quality software and systems can (and by and large should) be constructed
using principles of resultant architectures and roundtrip engineering.

1 INTRODUCTION

Software engineering has never matured enough to
match theory and practice of traditional engineering
disciplines, such as civil engineering. Based on
computer science as its foundation, software
engineering has struggled to ensure software
production with predictable outcomes. The main
culprit is the "soft" nature of software and associated
demands of users for change and evolution. When
combined with the ever growing complexity of
application domains that software systems solve, a
need for new software engineering has been finding
many vocal supporters (e.g. Jacobson and Seidewitz,
2014).

Such a need is additionally propped up by the
demands placed by the fact that we live in service
economy (Chesbrough and Spohrer, 2006). Almost
every modern agricultural or manufacturing product
is combined with services, and it is the joint product-
service experience that is judged by service
requestors, thus truly generating real value for
individuals and profit growth for businesses.
Interaction and collaboration between actors of a
service (suppliers, consumers, and intermediaries)
create value-in-context, employment and economic
growth. A supplier offers a value proposition that

can be realized in a separate process involving
requestors and intermediaries. The benefits to all
actors define the context of value co-creation.

Service economy exerts new business and
pricing models for using information systems
without owning them. Such systems are delivered to
users over Internet (the cloud) as Software-as-a-
Service (SaaS). Services (e-services) in SaaS
systems are running software instances, which can
be dynamically composed and coordinated to
provide executable applications.

The delivery of Service Cloud Applications
(SCA) to actors is performed (typically) on
Everything-as-a-Service models (Banerjee, 2011), in
which software, platform and infrastructure are
made available as services paid for according to the
usage. This creates ubiquitous marketplace where
commercial, social, government, health, education
and other services are facilitated, negotiated,
coordinated and paid for through marketplace
platforms.

We recognize that e-marketplaces for services
(such as Airbnb, OpenTable, or BlablaCar) are
governed by different business and technology
principles than e-marketplaces for products (such as
Alibaba, eBay, MarcadoLivre, or Amazon).
However, we also recognize that e-service systems

37
Maciaszek L. and Skalniak T.
Confluent Factors, Complexity and Resultant Architectures in Modern Software Engineering - A Case of Service Cloud Applications.
DOI: 10.5220/0005885300370045
In Proceedings of the Fifth International Symposium on Business Modeling and Software Design (BMSD 2015), pages 37-45
ISBN: 978-989-758-111-3
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

narrow the differences between services and
products. The dichotomy between these two
concepts has been replaced by a service-product
continuum (Targowski, 2009). On one hand,
software products are servitized; on the other hand,
software services are productized (Cusumano,
2008). On one hand, vendors of traditional “boxed”
software products use the cloud as a means of
servitizing the product (and using it without owning
it); on the other hand, productized services (i.e.
automation of services, such as movies over
Internet) enable “people to participate in a growing
number of service-related activities without having
to be physically present” (Targowski, 2009, p.57).

The service-product continuum has posed new
challenges on the very idea of complexity and
change management in a modern-age service
enterprise. The responsibilities for complexity and
change management have been placed squarely in
the hands and minds of the producers and
suppliers/vendors of service systems and
applications (but much of the risk is still endured by
the enterprises and consumers receiving/buying the
services).

The established disciplines of software
engineering (e.g. Maciaszek and Liong, 2005) and
systems analysis and design (e.g. Maciaszek, 2007)
have advocated architecture-driven forward-
engineering processes. Modern practices challenge
the merits and economics of the architecture-first
approach to software engineering (Booch 2007).
They also challenge the rigid top-down development
epitomized in three consecutive phases of systems
analysis, design and implementation. They do not,
however, challenge the traditional architectural
design role of managing system complexity
expressed in terms of dependencies between system
elements.

The paper is organized as follows. The next
Section considers service cloud applications as a
significant disruptive technology and it explains the
main confluent factors that shape the future of
modern software engineering.

Section 3 reiterates the fact that complexity of
modern software systems lies in the interactions and
dependencies between software elements, which –
by the object-oriented paradigm – are internally
relatively simple (or at least they should be simple).
This section classifies dependencies and explains
how SoaML can be used to model SCA software
structures.

Section 4 discusses the idea of resultant
architecture as a replacement for the architecture-
first paradigm. The section proposes a meta-

architecture for service cloud applications and it
positions the roundtrip engineering as a modus
operandi of modern software engineering.

The final Section contains concluding remarks. It
emphasizes the necessity of designing for change as
opposed to just programming for change. It makes
also a clear distinction between emergent and
resultant architectures.

2 CONFLUENT FACTORS

The contemporary practice of development of
service-oriented cloud-based web and mobile
applications changes the pressure points and creates
new expectations with regard to modern software
engineering. Figure 1 is a Venn diagram that names
the main confluent factors that bring about a need
for redefinition of software engineering as a
discipline. The overlapping between factors is
significant. It emphasizes that the factors frequently
come together in various combinations.

Figure 1: Confluent factors of modern software
engineering.

The SCA are delivered over Internet as a kind of
utility/commodity similar to energy, water, gas,
telephony, and alike. They are a fact of live and are
omnipresent - they are available on mobile devices
at any time and any place and they can adjust to the
context of use (including the current user needs, the
geographical position, the temporal information, the
weather conditions, the signals from the Internet of
Things (IoT) sensors and actuators, etc.). Utility
computing is the first confluent factor of modern
software engineering.

Service innovation is consumer-focused.
Consumer market, as the primary driver of CSA
innovation, challenges the way companies innovate
and evolve with IT. The innovation ideas need to tap
into the phenomenon of consumerization and

1. Utility
Computing

2.
Consumerization

and
Personalization

3. User‐Centered
Software

Engineering

4. Agile Software
Development

5. Application
Integration and
Interoperability

6. Service Line
Software

Engineering

Fifth International Symposium on Business Modeling and Software Design

38

personalization as the tendency for new IT solutions
to emphasize consumer-focused service provision
and to emerge first in the personal consumer market
and then spread into business and government
organizations. Consumerization and personalization
open up an opportunity for new business models and
ways of value creation, and it is the second confluent
factor of modern software engineering.

By centering on consumerization,
personalization, and collaborative context-dependent
value creation, the modern software engineering
shifts decisively towards user-centered engineering
(Richter and Fluckinger, 2014; Ko, et al., 2011) and
what Brenner et al. (2014) call user, use & utility
research (or 3U research, to use another parlance).
Although software engineering has always been
recognizing significance of user’s acceptance of a
solution, the development of SCA systems not just
recognizes, but focusses on users by emphasizing
the software quality of usability (ISO, 2011) and
delivery of a great User eXperience (UX) instead of
delivery of software product. User-centered software
engineering is the third confluent factor of modern
software engineering.

The user-centered software engineering
synchronizes nicely with the agile software
development that dominates contemporary software
engineering practice (Moran, 2015). The agile
development methods, such as Scrum, are
responsible for a real shift from the architecture-first
approach - if not in theory, then certainly in practice.
The agile software development is the fourth
confluent factor of modern software engineering.

Although the agile methods are called
development methods, in reality a great majority of
software projects are undertakings in value-added
software integration and interoperability (Maciaszek,
2008a). Most new software applications must
integrate and interoperate with existing applications
and databases, thus making them value-added
applications. The whole technology of web service
orchestration is about integration and
interoperability of SCA-s. Application integration
and interoperability is the fifth confluent factor of
modern software engineering.

The owner/supplier of a SCA platform sets up
instances for the SCA users. Customization and
variability of instances is based on the technology of
multi-tenancy and uses the emerging principles of
Service Line Engineering (SLE) (Mohabbati et al.,
2013; Walraven et al., 2014)). Service Line Software
Engineering is the sixth confluent factor of modern
software engineering.

3 COMPLEXITY IN-THE-WIRES

The times when software complexity could be
measured in lines of code or function points are long
gone. Since the object-oriented paradigm has
replaced the structured programming reminiscent of
Cobol systems, the monolithic size of a program
ceased to be an indication of software complexity.

Complexity of modern modularized systems
comes from the relations between the modules (be
them objects, classes, components, packages,
services). Complexity is in-the-wires between the
modules, not in the modules themselves.

In our past research, we have extensively
discussed the complexity in-the-wires principles for
large on-premise enterprise information systems
(e.g. Maciaszek and Liong, 2005; Maciaszek, 2007).
We have demonstrated that complexity minimization
is synonymous with the minimization of the inter-
module dependencies, where dependency is “a
relationship that signifies that a single or a set of
model elements requires other model elements for
their specification or implementation. This means
that the complete semantics of the depending
elements is either semantically or structurally
dependent on the definition of the supplier
element(s).”(OMG, 2009)

It is important that complexity management
revolves around software metrics that monitor and
measure dependencies in the engineered code. The
Design/Dependency Structure Matrix (DSM) (e.g.
Eppinger and Browning, 2012) is an excellent
method for visualizing, measuring and analyzing
dependency relationships in software. Today many
tools exist that support the DSM method, e.g.
Structure101 (Structure, 2015).

In Maciaszek (2008b) and elsewhere we have
discussed the ways of using DSM for the analysis
and comparison of software complexity in large
systems. We have applied the DSM analysis to the
PCBMER meta-architecture consisting of six
hierarchical-ordered software layers: Presentation,
Controller, Bean, Mediator, Entity, Resource (e.g.
Maciaszek, 2007).

When using DSM or other software metrics to
calculate dependencies, it is important to consider
various categories of dependencies and their relative
importance (weight) in measuring complexity and
adaptability. At a relatively high level of abstraction
pertaining to complexity analysis of traditional
enterprise applications, four categories need to be
considered: message dependencies, event
dependencies, inheritance dependencies and

Confluent Factors, Complexity and Resultant Architectures in Modern Software Engineering: A Case of Service Cloud
Applications

39

interface dependencies (Maciaszek and Liong,
2005).

Complexity of modern service-oriented cloud-
based applications can also be discussed based on
these four categories of dependencies, but better
classifications seem to be those that put services at
the forefront of the discourse. One possibility is to
consider just three categories of dependencies:
services, references, and properties (only services
are discussed in any depth in this paper).

Since “a service is value delivered to another
through a well-defined interface” (SoaML, 2015,
p.7), we need to concentrate on interface
dependencies when engineering SCA-s. To this aim,
we can adopt the SoaML (Service oriented
architecture Modeling Language) standard (SoaML,
2015). The standard distinguishes three ways of
service interaction: a simple interface, a service
interface, and a service contract.

A simple interface is a UML-style interface as
supported by popular object-oriented languages,
such as Java, and web services called via RPC
(Remote Procedure Call). Simple interfaces are uni-
directional – the consumer calls a provider’s service
and the provider does not callback the consumer and
may not even know it.

A service interface involves bi-directional
communication between provider and consumer.
“The service interface may also specify the
choreography of the service - what data, assets and
obligations are sent between the provider and
consumer and in what order. ... The consumer must
adhere to the provider’s service interface, but there
may not be any prior agreement between the
provider and consumer of a service.” (SoaML, 2015,
pp.8-9).

A service contract defines how participants
(providers, consumers, and other roles) work
together to exchange value. To this aim, service
specifications are defined in a service contract. The
contract determines the participants, the interfaces,
choreography, and any other terms and conditions
for the enactment of the service. Service contracts
are therefore encapsulation (implementation
handling) mechanisms.

Service interactions via interfaces and contracts
are principle communication means between
software architectural layers. The layers can be
represented as UML collaborations. They can
contain the SoaML service capabilities, which
“identify or specify a cohesive set of functions or
resources that a service provided by one or more
participants might offer.” (SoaML, 2015, p.29).

Capabilities may be related to show intra-layer
dependencies. They can aslo be used to visualize and
define intra-layer dependencies, in particular they
can specify the behavior and structure of interfaces
(realized by the capability, which in turn is realized
by a service participant). Capabilities can be
nested/combined to form larger capabilities.

Capabilities can be related by ‘usage’
relationships. An ‘expose’ relationship can be used
to indicate what capabilities (required or provided by
a participant) should be exposed through a service
interface. However, the operations and properties of
a service interface may differ from operations and
properties of a capability it exposes. “It is possible
that services supported by capabilities could be
refactored to address commonality and variability
across a number of exposed capabilities” (SoaML,
2015, p.47).

The UML interface realization can be used to
denote service interfaces that a capability ‘realizes’
(implements). As with the ‘expose’ relationship, the
operations and properties of a service interface and a
capability may differ.

SoaML also defines the notion of a service
channel as a communication path between consumer
requests and provider services. The service channels
between and within the architectural layers
determine the complexity and adaptability of a
service system.

4 RESULTANT ARCHITECTURE

In our past research we have argued that a valid
answer to the software complexity and adaptability
is the architecture-first design, i.e. that the
architecture should be designed into the system.
However, we have always recognized that the
proactive forward-engineering architecture-first
approach requires a parallel contribution from a
reactive reverse-engineering approach (Maciaszek,
2005). In other words, we have recognized that the
architecture should result from roundtrip
engineering. The concept of a resultant architecture,
used in the titles of this paper and this section, is a
consequence of of the above interpretation of
roundtrip engineering.

The primary purpose of an architecture is to
minimize complexity of expected outcome and to
lead to a solution that is adaptive, i.e.
understandable, maintainable, and extendable.
Software engineering and management has struggled
to properly address systems complexity and
adaptability. The reason is twofold: deficient

Fifth International Symposium on Business Modeling and Software Design

40

architectural design and/or nonconformance of
software implementation to the architectural design.

The paradigm shift to SCA-s has introduced new
threats and opportunities with regard to complexity
management and delivery of adaptive solutions. On
one hand, the SCA-s assume dynamic composition
of services and tenant variability and, therefore, they
emphasize implementation over architecture (and
over project management at large). On the other
hand, the SCA-s are built on the technologies that,
by their very nature, support adaptability. The
concepts such as loose coupling, abstraction,
orchestration, implementation neutrality,
configurability, discoverability, statelessness,
immediate access, etc. are exactly the ideas of
adaptable architectural design.

Figure 2 represents our meta-architecture (i.e. an
architectural reference model) for SCA-s, called
Meta-SCA. The model retains the conceptual thrust
of the PCBMER meta-architecture and it provides
roundtrip engineering perspective on our recently
defined STCBMER (Smart Client, Template,
Controller, Bean, Mediator, Entity, Resource) meta-
architecture (e.g. Maciaszek et al., 2015).

The Meta-SCA model recognizes and even
emphasizes the fact that SCA engineering activities
are facilitated by software toolkits and frameworks.
Toolkits enable code reuse. They support
programmers in writing the real code – the main
body of the program. Frameworks enable design
reuse. They provide to programmers a skeleton of
the program and inform programmers which code to
write, so that the framework can call it.

Toolkits and frameworks deliver reusability at
the level of software implementation, but they need
to be chosen to facilitate the forward engineering
objective of minimizing complexity and maximizing
adaptability. Frameworks need to facilitate
implementation of the meta-architecture; toolkits
need to facilitate implementation of patterns and
principles. In the reality of SCA-s, toolkits and
frameworks can be encapsulated within the
technology of Platform-as-a-Service (PaaS).

The Meta-SCA model defines four hierarchical
layers for the application code placed on top of a
Data Storage layer. The four layers are called Client
Front-end, Client Back-end, Business Service and
Data Access. They are modeled as SoaML
collaborations and stereotyped as
<<ServicesArchitecture>>.

Each layer contains single SoaML
<<Participant>> realizing specific capabilities.
Participant at a higher layer requests services
implemented in participants in lower layers. This is

represented on the model by the UML notation of
required and provided interfaces (so called lollypop
notation). It also indicates a top-down single
directional interface dependency between layers.

Figure 2: Meta-architecture for service cloud applications
(Meta-SCA).

The service discovery can be realized through
WSDL (Web Services Description Language). The
service binding can be realized through SOAP
(Simple Object Access Protocol), but even better
degree of software adaptiveness can be achieved if
the statelessness of the system is not an issue. If it is
not, then the REST (Representational State Transfer)
architecture might be more desirable than the SOAP.

Confluent Factors, Complexity and Resultant Architectures in Modern Software Engineering: A Case of Service Cloud
Applications

41

In parallel to the layers, the Meta-SCA model
defines other participants, which are third-party
frameworks and toolkits supporting the system's
implementation. Each framework is understood as a
service offering a special “framework interface” that
is needed by some of the components of the
proposed meta-architecture.

Relations between frameworks and layer
participants are defined as bi-directional service
interfaces. This is because to use a framework you to
have to deliver to it a code, which satisfies strict
conditions defined by the framework. Also, the
frameworks have to offer a given set of
functionalities to the layer participants.

Some frameworks in Meta-SCA – Responsive
Client Framework and SW MVC Framework – are
needed and used by two different layers. In such a
case, each framework has its own framework
instance (this way the Meta-SCA does not introduce
to the model disallowed dependencies).

Each layer participant has various components
inside. The dependencies between those components
can be organized in various ways – according to
different need of a specific environment,
technologies and project as well as chosen
frameworks (which support the implementation).
The organization of those dependencies follows the
guidelines and propositions consistent with and
based on the PCBMER and STCBMER studies.

The Client Front-end and Client Back-end layers
form an abstract application layer, while the
Business Service and Data Access layers together
form an abstract business layer (e.g. Maciaszek et
al., 2015).

The Front-end MVC framework is a JavaScript
framework needed to implement complex, off-line,
widget-based asynchronous web applications. The
Responsive Client Framework is a presentation
framework supporting implementation of
Responsive Web applications.

The Web Services MVC Framework is a server-
side framework, which offers building the web
services communication as well as layering the code
into separate parts based on different variants of the
MVC pattern. These types of frameworks are often
called just web frameworks.

The PEAA Framework means a framework
containing different, needed implementations of the
patterns from the Catalog of Patterns of Enterprise
Application Architecture by Martin Fowler (2013).

The Events Framework refers to frameworks and
toolkits offering project-specific event-based
implementations. This includes authorization tools
and notification schemes (e.g. SMS notifications),

but also any other event-driven mechanisms
allowing interoperability with cyber-physical
monitoring systems (IoT sensors and actuators) and
integration with enterprise, government and social
networking systems.

The Data Mapper Framework is a type of
framework, which offers connecting to a database or
other data stores, mapping of database entities to
programming objects, transaction management, etc.

Table 1 presents examples of Meta-SCA
frameworks and toolkits.

Table 1: Examples of Meta-SCA frameworks.

Framework Examples

Front-end MVC
Framework

Angular.js, Backbone.js,
Knockout.js

Responsive Client
Framework

Bootstrap,
Foundation

WS MVC Framework Django, Pyramid, Rails,
Spring MVC, ASP .NET,
Symfony

PEAA Framework Spring, .NET, Django
REST Framework

Events Framework JMS (Java Message
Service), Activiti,
Kinoma

Data Mapper
Framework

Hibernate,
SQL-Alchemy

Some of the meta-architecture components

(Tenant Routing, Tenant Mapping, Tenant
Configuration Activator] are placed in the diagram
to emphasize that modern tenant-oriented systems
often need to have tenant-specific code in different
layers. In addition, this special code has to cooperate
with the frameworks used in a specific project. As a
result there is a need of having the code organized in
independent modules that can be easily used when
needed.

There are several ways of building the tenant-
based systems. Separation of data and functionalities
can be implemented on different layers of the system
(also the databases often are playing a role in it).
That is why the proposed meta-architecture has
different tenant-specific components placed in
different layers. In reality not all of them might be
needed – based on the chosen design patterns,
different layers might or might not need the tenant-
specific code.

Fifth International Symposium on Business Modeling and Software Design

42

Concrete instances of architectures derived from
the Meta-SCA in the roundtrip engineering process
need to conform to the additional rules and
principles over and above the layering shown in
Figure 2. Because of the space limitations of this
paper we cannot describe them in any details.
Nevertheless most of the twelve principles defined
for the STCBMER meta-architecture (Maciaszek et
al., 2015) remain relevant for the Meta-SCA.

Three most fundamental principles from the
PCBMER and STCBMER - DDP (downward
dependency principle), UNP (upward notification
principle) and CEP (cycle elimination principle) -
fully apply to the Meta-SCA. This means, that
message dependencies are only allowed in
downward communication between layers and the
upward communication requires event notifications
from lower layers, possibly combined with the use
of interface inheritance. Implementation inheritance
is disallowed between layers; it is restricted to intra-
layer implementations. Cycles of message
communications (method invocations) are
disallowed between layers, inside layers, and for any
granularities of objects (classes, components,
packages, web services). Cycles need to be
eliminated using well-known software engineering
rules, exhaustively explained for example in
Maciaszek and Liong (2005).

In reality – when programmers start to code – it
is very hard to stick to the abstract meta-architecture
without breaking some of its principles and
assumptions. This is because of different patterns
chosen to base the frameworks on and because of
various technologies used by the frameworks.

Since the frameworks in modern software
engineering are more and more becoming the
backbones of the software solution, it is very
important to choose the right ones for implementing
a concrete instance of the architecture so that it fully
conforms to the abstract meta-architecture. There are
two ways of how to do this. The first is by choosing
the frameworks which are compatible with the meta-
architecture. The second is by choosing the
frameworks which are modular and flexible enough
to set them up in a way that is satisfying the meta-
architecture. Nowadays many frameworks have
sufficient modularity and flexibility so that the
programmers can easily replace predefined
framework's components with other
implementations – written by themselves or by third-
party organizations.

The conformance of the project’s resultant
architecture to the meta-architecture and its
principles should be evaluated by an in-depth

analysis of dependencies. This must involve some
reverse-engineering of code to establish factual
dependencies to compare them against the allowed
dependencies of the meta-architecture. The DSM
method briefly discussed in Section 3 provides an
excellent vehicle for dependency analysis and
calculation of dependency metrics.

Unfortunately measuring the dependencies in a
project built with the help of a number of
frameworks and toolkits is a difficult task. It
constitutes a new and important research challenge.
We intend to focus on this problem in our future
work and to measure the impact of contemporary
frameworks and toolkits on architectural design of
SCA-s from the viewpoint of software complexity
and adaptiveness.

5 CONCLUDING DISCUSSION

Traditional software development lifecycles assume
architecture-first design (Booch, 2007; Maciaszek,
2007). However, the confluent factors of modern
software engineering have led to practices where
software architecture evolves in parallel with
software construction. As noted by Jacobson and
Seidewitz (2014), “...agile development have made
it possible to create high-quality software systems of
significant size using a craft approach - negating a
major impetus for all the up-front activities of
software engineering" (p.50).

Moreover, modern multi-tenant SaaS
applications (Walraven et al., 2014) demand the
built-in capability of dynamic software adaptation
(Kakoutsis et al., 2010). This in turn requires
inventing new architectural styles that respond to
and embrace the dynamic runtime software
adaptability (not addressed in this paper, but refer
e.g. Kakoutsis et al., 2010).

Roundtrip engineering activities that aim at
resultant architectures for SCA-s are based on and
driven by various reuse strategies (e.g. Maciaszek,
2007). The forward engineering activities are driven
by an assumed meta-architecture. Associated with
the meta-architecture are matching architectural
patterns and architectural principles. A meta-
architecture delivers reusability at the level of a
solution idea. Patterns and principles deliver
reusability at the level of software design.

The reverse engineering activities aim at
software architecture recovery (e.g. Solms, 2015)
and at measurably validating the conformance of a
system’s resultant architecture to the meta-
architecture (Maciaszek, 2008b). An ultimate

Confluent Factors, Complexity and Resultant Architectures in Modern Software Engineering: A Case of Service Cloud
Applications

43

objective is a SCA that minimizes complexity and
maximizes adaptability.

Information systems in general, and service
cloud applications in particular, need to be designed
for change. They need to be adaptive. Ideally, they
need to be self-adaptive, but such an aim is
unreachable as yet in practical software engineering
(Maciaszek, 2012).

The confluent factors of modern software
engineering reflect the necessity of designing for
change. Unfortunately, this is not sufficiently
reflected in contemporary practice of software
engineering. Current practice is full of ideas,
methods and tools to facilitate
development/programming for change, but lacks
systematic and rigorous approach to designing for
change.

The development/programming for change is
exemplified, for example, by the growing popularity
of DevOps, which is an approach to merging
development and operations (Huttermann, 2012).
Another example, on the level of user interface and
web programming, are approaches known as
responsive development, progressive enhancement,
graceful degradation (Overfield et al., 2013).

The design for change must revolve around the
software architecture, which sets a fundamental
structural organization for a software system. Such
an organization must determine hierarchical layers
of software elements (components, objects, services)
ensuring separation of concerns and resulting in a
tractable/adaptive complexity of the solution.

There seem to be three approaches to considering
software architecture in software engineering
projects. The architecture:
1. can be designed into the system,
2. can emerge from the implementation,
3. can result from roundtrip engineering

The first approach is synonymous with the
architecture-first approach. It is a commendable
approach, but increasingly impractical in the fast-
paced world demanding immediate software
solutions.

The second and third approach can be best
understood by reference to complexity theory (e.g.
Agazzi, 2002). Since complexity entails existence of
relations/dependencies between elements, then - by
opposition - simplicity (something that is
analytically simple) entails no internal relations.

Further, the complexity theory distinguishes
between emergence and resultance. We speak of
emergence when a complex structure emerges from
the properties of the “analytic simples” in a way that
is not completely understandable and explainable. In

this sense, software architecture can emerge in a
bottom-up fashion from the implementation of
software elements.

By contrast, we speak of resultance when a
complex structure results from the properties of the
analytic simples by the guidance of the relations
between software elements. This means that a meta-
architecture exists prior to the implementation and it
guides software engineers in designing concrete
system architecture (an instance of meta-
architecture) in parallel with software
implementation. This is a roundtrip engineering
effort leading to, what we call, a resultant
architecture.

REFERENCES

Agazzi, E. (2002). What is Complexity? In Agazzi, E.,
Montecucco, L. (Eds) Complexity and Emergence.
Proceedings of the Annual Meeting of the International
Academy of the Philosophy of Science, pp. 3-11, World
Scientific.

Banerjee, P. et al. (2011). Everything as a Service:
Powering the New Information Economy, Computer
(IEEE), March, pp.36-43

Booch, G. (2007). The Economics of Architecture-First,
IEEE Software, Sept./Oct., pp.18-20

Brenner et al. (2014). User, Use & Utility Research. The
Digital User as New Design Perspective in Business
and Information Systems Engineering, Business &
Information Systems Engineering, 1, pp.56-61

Chesbrough, H. and Spohrer J. (2006). Research
Manifesto for Services Science, Comm. ACM, Vol. 49,
No. 7, pp.35-40

Cusumano, M.A. (2008). The Changing Software
Business: Moving from Products to Services, IEEE
Computer, January, pp.20-27.

Eppinger, S.D., Browning T.R. (2012). Design Structure
Matrix Methods and Applications, The MIT Press.

Fowler, M. (2003). Patterns of Enterprise Application
Architecture, Addison-Wesley.

Huttermann, M. (2012). DevOps for Developers, Apress.
ISO (2011). International Standard ISO/IEC 2510:

Systems and Software Engineering - Systems and
Software Quality Requirements and Evaluation
(SQuaRE) - System and Software Quality Models,
ISO/IEC.

Jacobson, I. and Seidewitz, E. (2014). New Software
Engineering, Comm. ACM, Vol. 57, No. 12, pp.49-54

Kakoutsis, K., Paspallis, N., Papadopoulos, G.A. (2010).
A Survey of Software Adaptation in Mobile and
Ubiquitous Computing, Enterprise Information
Systems, Vol. 4, No. 4, pp.355-389

Fifth International Symposium on Business Modeling and Software Design

44

Ko, A.J. et al. (2011): The State of the Art in End-User
Software Engineering, ACM Computing Surveys, Vol.
43, No. 3, pp.21:1-21:44

Maciaszek, L.A. (2005). Roundtrip Architectural
Modeling, In Hartmann, S. and Stumper, M. (Eds),
Second Asia-Pacific Conference on Conceptual
Modelling, Newcastle, Australia, Australian Computer
Science Communications, Vol. 27, No. 6, pp.17-23.

Maciaszek, L.A. (2007). Requirements Analysis and
System Design, 3rd ed., Addison-Wesley

Maciaszek, L.A. (2008a). Adaptive Integration of
Enterprise and B2B Applications. In Filipe, J.,
Shishkov, B., M. Helfert, M. (Eds.) ICSOFT 2006,
CCIS 10, pp. 3–15, Springer-Verlag Berlin Heidelberg.

Maciaszek, L.A. (2008b). Analiza struktur zależności w
zarządzaniu intencją architektoniczną systemu, In
Huzar, Z., Mazur, Z. (Eds), Inżynieria
Oprogramowania – Od Teorii do Praktyki, pp.13-26,
Wydawnictwa Komunikacji i Łączności, Warszawa.

Maciaszek, L.A. (2012). An Architectural Style for
Trustworthy Adaptive Service Based Applications, In
Ardagna, C.A. Damiani, E. Maciaszek, L.A.
Missikoff, M.M. and Parkin, M. (Eds), Business
System Management and Engineering. From Open
Issues to Applications, Lecture Notes in Computer
Science, Vol. 7350, pp.109-121, Springer.

Maciaszek, L.A., Liong, B.L. (2005). Practical Software
Engineering. A Case-Study Approach. Addison-
Wesley.

Maciaszek, L.A. Skalniak, T. and Biziel, G. (2015).
Architectural Principles for Service Cloud
Applications, In Shishkov, B. (Ed.), Business Modeling
and System Design, Lecture Notes in Business
Information Processing LNBIP 220, 21p., Springer, (to
appear)

Mohabbati, B. Asadi, M. Gasevic, D. Hatala M. and
Mueller, H.A. (2013). Combining Service-Orientation
and Software Product Line Engineering: A Systematic
Mapping Study, Information and Software Technology,
http://dx.doi.org/10.1016/j.infsof.2013.05.006, 15p.

Moran, A. (2015). Managing Agile. Strategy,
Implementation, Organisation and People, Springer.

Overfield, E., Zhang, R., Medina, O. and Khipple, K.
(2013). Responsive Web Design and Development. In
Overfield, E., Zhang, R., Medina, O. and Khipple, K.
(Eds), Pro SharePoint 2013 Branding and Responsive
Web Development, pp.17-46, Apress

Richter M. and Fluckinger, M. (2014). User-Centred
Engineering. Creating Products for Humans, Springer.

OMG (2009). Unified Modeling Language™ (OMG
UML), Superstructure, Version 2.2.

Shaw, M. (2009). Continuing Prospects for an
Engineering Discipline of Software, IEEE Software,
November/December, pp.64-67

SoaML (2015). Service Oriented Architecture Modeling
Language (SoaML), Retrieved from:
http://www.omg.org/spec/SoaML/

Solms, F. (2015). A Systematic Method for Architecture
Recovery, In Filipe, J. and Maciaszek, L. (Eds),
ENASE 2015 10th International Conference on
Evaluation of Novel Approaches to Software
Engineering Proceedings, pp.215-222, SciTePress

Structure (2015). Structure101, Retrieved from:
http://structure101.com/.

Targowski, A. (2009). The Architecture of Service Systems
as the Framework for the Definition of Service Science
Scope, International Journal of Information Systems in
the Service Sector, 1(1), pp.54-77

Walraven, S., Landuyt, Van D., Truyen, E., Handekyn, K.,
Joosen, W. (2014). Efficient Customization of Multi-
Tenant Software-as-a-Service applications with Service
Lines, The Journal of Systems and Software, 91, pp.48-
62

Confluent Factors, Complexity and Resultant Architectures in Modern Software Engineering: A Case of Service Cloud
Applications

45

