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Abstract: Information on the advection of a spatio-temporal field is an important input to forecasting or interpolation 
algorithms. Examples include algorithms for precipitation interpolation or forecasting or the prediction of 
the evolution of dynamic oceanographic features advected by ocean currents. In this paper, an algorithm for 
the decentralized estimation of motion of a spatio-temporal field by the nodes of a stationary and 
synchronized Wireless Sensor Network (WSN) is presented. The approach builds on the well-known 
gradient-based optical flow method, which is extended to the specifics of WSNs and spatio-temporal fields, 
such as spatial irregularity of the samples, the strong constraints on computation and communication and the 
assumed motion constancy over sampling periods. A specification of the algorithm and a thorough 
analytical analysis of its communicational and computational complexity is provided. The performance of 
the algorithm is illustrated by simulations of a sensor network and a spatio-temporal moving field. 

1 INTRODUCTION 

Information on the advection of dynamic features in 
the atmosphere or in the ocean is an important input 
to estimation algorithms. Examples include 
algorithms for precipitation field interpolation 
(Fitzner and Sester, 2015), nowcasting (Bowler et 
al., 2004) or the prediction of the evolution of 
oceanographic features advected by ocean currents. 
In this paper we investigate, how the advection of 
spatio-temporal dynamic features, modelled as 
spatio-temporal fields of a scalar attribute value, can 
be estimated decentralized by the nodes of a 
Wireless Sensor Network (WSN) deployed within -  
and sensing the field.  

For estimating the motion, a gradient-based 
optical flow algorithm is used as a basis and adjusted 
to the specifics of WSNs and spatio-temporal fields, 
i.e. the irregularity of samples, the strong constraints 
on communication and computation and the 
assumed motion constancy over sampling periods 
(see Section 4 for a more thorough elaboration on 
the specifics of WSNs and spatio-temporal fields). 
The main contributions of the work can be 
summarized as follows: 
- Approach for Estimation of Optical Flow 

Gradient Constraints in the Network. We 
provide an approach for the estimation of the 

required partial derivatives (i.e. the gradient 
constraint, see Section 3.2 on optical flow) of the 
field from irregular sensor data as well as a 
methodology for error estimation inspired by the 
calculation of error measures from satellite 
configurations for GPS positioning.  

- Incremental Field Motion Estimation. A kalman 
filter based formalization of the optical flow 
equations is provided, in order to account for 
motion vector correlation over sampling steps 
and to allow efficient real-time processing in the 
network by each node.  

- Decentralized Algorithm Specification and 
Complexity Analysis. A decentralized pseudo-
code specification of the algorithm is provided, 
using the structure and formalisms provided by 
(Duckham, 2012), as well as a thorough analysis 
of its communication and computational 
complexity. 

The proposed algorithm requires the specification of 
only three parameters with clear-cut interpretations: 
the maximum communication distance in between 
the sensor nodes, which is, in a real deployment of a 
WSN, determined by the physical hardware. Further 
parameters are the kalman filter prediction and 
measurement noise covariances. 

The paper is structured as follows. In Section 2, 
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the relevant related work is introduced, mainly those 
concerned with the estimation of properties of 
spatio-temporal fields, such as peaks, pits or 
boundaries. In Section 3, the employed WSN and 
field model as well as the basics of image-based 
optical flow are provided. Section 4 contains the 
theory of the proposed approach and Section 5 the 
algorithm specification. In Section 6, the 
performance of the algorithm is illustrated by means 
of a simulated dynamic field and sensor network. 
Section 7 discusses possible extensions of the 
proposed method and concludes. 

2 RELATED WORK 

There exists a significant body of work on the 
estimation of properties of dynamic spatio-temporal 
fields with WSN. Problems include the estimation of 
field boundaries (Sester, 2009), identification of 
critical point such as peaks and pits (Jeong et al., 
2014) or even spatial interpolation in the network 
(Umer et al., 2010). The book of (Duckham, 2012) 
provides a thorough overview on this topic as well 
as a description of the advantages of decentralized 
computation in the network, which also apply to the 
work presented in this paper.  

Another research line related to our work is the 
tracking (here, in the meaning of following) of 
advected spatio-temporal features by mobile nodes 
(Brink and Pebesma, 2014), (Das et al., 2012). 
While in these works mobile nodes are assumed that 
can either move by themselves (Brink and Pebesma, 
2014) or are advected with the field, e.g. buoys 
advected by ocean currents (Das et al., 2012), our 
work assumes a network of stationary sensors and 
aims at estimating the motion from the time series of 
sensor measurements.  

Further, there is a significant amount of work on 
object tracking with WSNs, i.e. generating 
information on the trajectory of a mobile object 
without necessarily following it, such as (Tsai et al., 
2007). However, to the best of our knowledge, the 
problem of estimating field (not object-) motion of a 
spatio-temporal field within a network of stationary 
sensor nodes has not been tackled so far. 

3 BACKGROUND 

3.1 Network and Field Model 

Throughout the paper, a sensor network is modelled 

as a graph ,  where  is the set of sensor 
nodes distributed on the plane and  is the set of 
communication links between nodes. The allowed 
bidirectional communication links are solely 
determined by a maximum Euclidean 
communication distance r in the plane and hence,  
is a unit disk graph (UDG). We assume that a node 
∈  knows its position ,  on the plane, 

e.g. by GPS. Further, the nodes are able to sense a 
real-valued scalar spatio-temporal field :
→  where , ,  is a location in the 

space-time cube (and  indicates matrix 
transposition). A particular sensor measurement of 
sensor  at timestep  is denoted with ,  where 

, , , . 

3.2 Gradient-based Motion Estimation 

Optical flow methods such as (Lucas et al., 1981) or 
(Horn and Schunck, 1981) are usually employed for 
estimating pixel displacement (motion) in between 
two images and use image derivatives for 
estimation. They have successfully been applied for 
computing the motion of spatio-temporal fields, e.g. 
from weather radar images (see e.g. (Bowler et al., 
2004) or (Fitzner and Sester, 2015), mainly for 
nowcasting purposes. The underlying assumption of 
optical flow is that the intensity (pixel / field values) 
remains constant in between the sampling periods 
and a change in values for a particular location 
solely comes from field motion. Formally, this 
means that there exists a vector in the space-time 
cube ∆ , ∆ , ∆  such that Equation (1) holds. 

 

 (1)
 

Gradient-based optical flow methods are further 
based on the assumption that a first-order taylor 
series expansion of the field values is adequate, as 
displayed in Equation (2). 

 

≅ ∆ 	 ∆ 	 ∆ (2)
 

where ,  and  are the partial derivatives in 
space and time directions resp. Equation (2) is called 
the linearity assumption of optical flow, as higher 
order terms are ignored. Combining (1) and (2) and 
dividing by ∆  then results in the gradient constraint 
equation of (3). 
 

∆ ∆⁄ ∆ ∆⁄ 	 ≅ 0 (3)
 

Instantiating the gradient constraint equation (3) 
requires estimates of ,  and . Usually, they 
are estimated with numerical differentiation using 
neighboring (in space and time) pixel values. 
Estimating motion ∆ ∆⁄ 	and ∆ ∆⁄  
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then requires at least two gradient constraints to be 
integrated. More than two constraints are usually 
integrated over a pixel neighborhood by least 
squares adjustment (Lucas et al., 1981), (Fleet and 
Weiss, 2006). 

4 MOTION ESTIMATION WITH 
A WSN 

Estimating spatio-temporal field motion from 
irregular sensor data differs from image based 
optical flow, in that: 

1. The data is irregular, i.e. the samples are not 
aligned along the coordinate axes and direct 
estimation of the partial derivatives, e.g. via 
forward-, backward-, or even central numerical 
differentiation, as e.g. proposed by (Horn and 
Schunck, 1981) is not possible. The methodology 
for estimating the required partial derivatives 
from irregular data is described in Sections 4.1 
and 4.2. 

2. For estimating field motion with a WSN, it is 
likely that the motion per sampling timestep is 
smaller than the spacing in between sensor nodes 
(this corresponds to subpixel motion in images). 
For example, considering two sensors with a 
sampling interval of 1-minute, a spacing of 1 km 
in between and a spatio-temporal field moving 
with a velocity of 60 km/h. In this case, the 
spacing is equal to the field motion per sampling 
time step. However, for the use cases imagined, 
we consider 60 km/h as being already rather fast 
and 1 km spacing as rather dense. For example, 
the average density of rain gauges in Germany is 
one station per 1800 km² (Haberlandt and Sester, 
2010). Therefore, in the remainder of this paper. 
it is assumed that the motion is small compared 
to sensor spacing. For such cases of “subpixel” 
motion, a gradient-based method is adequate, as 
e.g. described by (Huang and Hsu, 1981). This 
assumption of small motion is directly 
implemented in the weighting scheme for the 
estimation of partial from directional derivatives, 
described in Section 4.4. 

3. In contrast to image-based optical flow, it is 
likely that the motion is correlated over several 
sampling periods. For example, (Zawadzki, 
1973) concludes that the taylor hypothesis on 
frozen turbulence, which is closely related to the 
optical flow assumption of (1), is valid for 
precipitation for time periods shorter than 40 
minutes. Therefore, it is likely that past field 

motion can be used to improve the estimate of 
current field motion. A kalman filter 
formalization of this assumption is presented in 
4.5. 

4. Finally, in contrast to motion in images, a-priori 
knowledge on the motion properties can be 
assumed. For example, wind speed statistics exist 
or information on the advection of rainclouds. In 
a real-world application of the algorithm, this 
domain knowledge can be used to specify the 
required parameters, mainly concerning the 
kalman prediction and measurement noise 
covariances. 

4.1 Estimating Directional Derivatives 

When the data is irregularly sampled in space and 
time, estimating the partial derivatives directly is 
impossible, as there might be no samples aligned 
along the coordinate axes. Therefore, the partial 
derivatives need to be estimated from the directional 
derivatives in the space-time cube, defined as 
displayed in Equation (4).  

 

´ lim
| |→

	
| |

 (4)
 

where , ,  is a separation vector in the 
space-time cube,  is a spatio-temporal location and 

| | 	 .   

For any pair of sensor samples ,  and 

,  of sensors  and  and timesteps  and  
(where  is also allowed when  and vice 
versa), an estimate of the directional derivative of 
Equation (4) can be calculated using forward 
differentiation along the particular direction, as 
displayed in equation (5).  
 

̂ , ´ ,
, 	 ,

| , |
 (5)

 

where ,  is the spatio-temporal distance vector 
between the spatio-temporal locations ,  and ,  
and ,  and ,  are field measurements at the 
these locations. 

4.2 Estimating the Gradient Constraint 

Estimating the partial derivatives required for optical 
flow using a set of estimates of directional 
derivatives of the form of (5) requires some form of 
adjustment, e.g. least squares adjustment, to be 
performed by each sensor. The functional 
relationship between the estimate of a particular 
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directional derivative and the partial derivatives 
along the space-time cube coordinate axes is 
displayed in Equation (6). For easing readability, we 
skip the spatio-temporal position , , indicating the 
position of  the particular sensor  at time .  

 

̂ , ´ ̂ 	 ̂ ̂  (6)
 

where , , ,  is the unit vector in the 
particular spatio-temporal direction , , ̂ , ´ is 
the directional derivative estimated with (5) and  ̂ , 
̂  and ̂  are the partial derivatives to be estimated. 

A set of such linear equations available at a specific 
spatio-temporal sensor position ,  then allows 
calculating ̂ , ̂  and ̂ . In matrix form, the linear 
system to be solved is: 

 

 (7)
 

where  is the 3 matrix of unit vectors at , , 
3 is the number of directional derivatives 

available and ̂ , ̂ , ̂  is the 3 1 vector of 
partial derivatives to be estimated.  is the 1 
vector of known estimates of directional derivatives. 
An approximate solution to the equation is given by 
the least-squares estimator displayed in Equation (8).  

 

argmin  (8)
 

where ‖. ‖ is the - or Euclidean norm. The 
minimization is then performed by solving the 
normal equations for the vector of partial derivatives 

, as displayed in Equation (9).  
 

 (9)
 

The weight matrix  contains a weight for each 
estimate of a directional derivative. Certainly, the 
weight should be a function of field properties and 
the distance | , |. In Section 4.4., the methodology 
for the estimation of weights is described. 

4.3 Requirements on Node Stationarity 
and Sampling Synchronicity 

As the distance vector  is a vector in space and 
time, the calculation of the length | | requires the a-
priori specification of a spatio-temporal anisotropy 
factor such as a decision on the unit of measures.  If 
this knowledge is available a-priori, the sensors are 
allowed to move and sample the field 
asynchronously, i.e. at different time steps. 
However, in this work, it is assumed that the 
anisotropy factor is not known. Therefore, the 
assumptions of node stationarity and time 
synchronicity are essential. In this case, space can be 

treated separated from time and there are always 
neighboring sensor samples in space only and time 
only available, while those in space-time can be 
ignored. In Figure 1, a visualization of this 
assumption is displayed. 
 

 

Figure 1: Assumption of node stationarity and sampling 
synchronicity. Red dots represent sensor measurements, 
which are taken at fixed spatial sensor positions at 
synchronized time steps / periods. 

Another advantage is that the amount of 
computation within and communication between the 
nodes can be reduced, since the sensors need to 
communicate their position only once, as it (and 
hence matrix  as well) is constant. Constancy of 

depends on the chosen weight. In Section 4.4, a 
weight is proposed that is solely derived from the 
spatial configuration. Therefore, each sensor can 
compute  once, reducing 
computational and communication costs per 
timestep. Further, the estimation of the temporal 
derivative does not have to be part of the linear 
system of (7). The temporal derivative can be 
estimated by each sensor using simple backward 
differencing along the time axis. Further, the 
temporal difference between sampling steps can be 
set to be equal to 1, i.e. , 	 1. This way, the 
estimated temporal derivative is equal to the 
difference between current and previous value, i.e. 

, ,  for a particular sensor  and no 
division is required.  

4.4 Derivative Weighting and Gradient 
Constraint Error Estimation 

From the assumptions described in 4.3 follows that 
the partial derivative along the time axis can be 
directly estimated. Therefore, no error for the 
estimated temporal derivative is assumed. For 
estimating the error (and therefore the weight) 
associated with the estimate of a particular 
directional derivative in space, the heuristic 
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displayed in Equation (10) is used: 
 

 (10)
 

where  is the maximum possible communication 
range between sensors,  is spatial distance 
between the two sensors  and . The weight 
matrix  then contains the inverse distance 1/  as 
the weight. 

The individual error associated with a gradient 
constraint can then be estimated from individual 
direction derivative errors using the law of 
propagation of error (see e.g. (Langley, 1999) for an 
application to GPS or any textbook on adjustment 
theory adjustment for the derivation of the formula): 

 

 (11)
 

where  is the 2 2 covariance matrix of the 2 1 
vector of estimated partial derivatives . The overall 
quality of a gradient constraint is then computed as 
the sum of the diagonal elements of , similar to 
the calculation of the positional error variance in 
GPS positioning (Langley, 1999). 

 

 (12)
 

This way, a gradient constraint error variance  
reflects the spatial neighborhood configuration of 
the node  generating the constraint. Since field 
properties have been ignored in Equation (10), the 
value  is not a proper representation of a single 
gradient constraint error but only a proper 
representation of the error relationships between 
gradient constraints. Therefore, when the error is to 
be used in the motion estimation algorithm described 
in the next section, it has to be transformed to the 
proper level of error for the specific field under 
consideration. The approach used here is to scale an-
priori known gradient constraint error variance by 

. In the evaluations, it is shown that this, which 
we call configuration-based error, indeed provided 
improved motion estimates compared to a uniform 
weighting and uniform error. 

4.5 Kalman Filter for Incremental 
Motion Estimation 

Depending on sampling rate and field properties, the 
motion vector at a particular position might be 
considered constant or at least highly correlated in 
between sampling periods. A particular model that 
fits nicely to this problem of real-time incremental 
estimation of a real-valued vector is the kalman filter 
(Kalman, 1960). In the following, the theoretical 

model of the kalman filter is described with a 
specific focus on the problem of motion estimation. 
The implementation then follows standard 
implementations as described e.g. in (Greg Welch, 
2006). 

The kalman filter assumes a hidden state in the 
form of a real-valued column-vector that can not 
directly be measured, in our case, the field motion at 
a particular time step , displayed in (13).  
 

, , ,  (13)
 

where ,  and ,  are the motion vector 
components in direction  and , resp. (again, 
subscripts concerning sensor node are omitted as 
each node is assumed to implement the filter). 

The error of the state is formalized in an error 
covariance 2 2	matrix . The filter then assumes 
that a current state is a linear function of a past state 
plus some mean-zero Gaussian noise  with a 
certain covariance , i.e. ~ 0, Q), as displayed 
in Equation (14). 

 

 (14)
 

where  is the matrix that transforms past to current 
state and hence describes motion evolution at the 
particular sensor position. To keep the model and 
computations simple, motion constancy in between 
sampling periods is assumed and therefore,  is the 
identity matrix. In addition to motion evolution, the 
kalman measurement model describes, how noisy 
measurements are related to the state: 

 

 (15)
 

where  is the measurement,  is the linear 
function that maps  to the measurement and 
~ 0,  is zero-mean Gaussian noise with 

covariance . In order to use (15) for updating the 
motion state with a new gradient constraint instance, 
the constraint of (3) has to be recast into the linear 
regression form (see Särkkä (2013) or Watson 
(1983) for the theory on kalman filtering for linear 
regression problems). Then, the temporal derivative 
is considered a linear function of the motion 
components: 

, , 	 (16)
 

Here,  is considered the measurement, i.e. 
, ,  is the measurement matrix 

and  ,  and ,  is as above. This way, the motion 
state is updated with new gradient constraints. Since 

 is scalar,  is scalar as well and therefore, solving 
the kalman update equations does not require matrix 
inversion (Särkkä, 2013), which is advantageous for 
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the amount of processing required. Essential is the 
specification of an a-priori state, which can only be 
set to the zero vector. The a-priori uncertainty  
should contain large values on the diagonal, 
indicating the low confidence in the initial state. The 
uncertainty associated with prediction. , depends on 
the temporal sampling rate, i.e. the time difference 
between kalman filter steps, as well as the assumed 
motion constancy of the spatio-temporal field. The 
scalar measurement noise variance  is a direct 
function of gradient constraint accuracy. In this 
work, it is derived from the accuracies of the 
directional derivatives, as described in Section 4.4. 
Further, it depends on the spatial distance between 
the sensor estimating the motion and the sensor 
estimating the gradient constraint. The assumption 
is: the closer the two sensors are the more similar is 
the motion. 

In addition, as described in work on image-based 
optical flow such as (Lucas et al., 1981), the gradient 
constraint accuracy depends on field properties at 
the site where the gradient constraint is constructed. 
Including these properties (spatial distance and field) 
into the approach is subject to future extensions of 
the algorithm, which are further discussed in Section 
7. 

5 ALGORITHM PROTOCOL 

For specifying the algorithm, the protocol structure 
and pseudo-code elements of (Duckham, 2012) are 
used. 
 

Protocol: Field Motion Estimation 
Restrictions: Graph ,  with nodes ∈  with 
constant positions and comm. links . Function : →  
returning neighbours of a node. : →  returning 
neighbours with >1 neighbours. 
Initialization: All nodes in state INIT 
Data: Each node ∈  implements the kalman filter (Section 
4.5) and stores matrix  and the errors associated with the 
gradient constraints provided by itself or neighbors. 
Parameters: Max. communication range , kalman parameters 

 and .  
 
INIT 
   broadcast ( , ) 
   if | | < 2 

   become PROCESSING 
   Receiving other node position ,  
      if | | > 1 
         compute | | 
         compute unit vector  
         Add  to  
         Add 1/  to    
         if | 	 	 | | |	   
            compute  

      compute   
      broadcast  to  
      become PROCESSING 

 
PROCESSING 
    (1) Whenever new sample ,  is available 
      broadcast , ,  
      if | | > 1  
         compute kalman prediction step 
         compute temporal derivative  
                        ̂ ´ , ,   
     (2) Receiving sample , ,  from neighb.  
        if | | > 1 
           compute  ̂ ´ 
           Add ̂ ´  to  
           if 	 	 | |	   
              compute      
              compute kalman update with   
              broadcast  to  
    (3) Receiving gradient constraint ( , 	) 
       if | | > 1  
          compute kalman update with  

 

In the INIT step, a sensor distributes its position to 
all neighbors. If it has only zero or only a single 
neighbor, it is not able to estimate partial derivatives 
and hence, proceeds to state PROCESSING. 
Otherwise, it waits for receiving the positions of all 
neighbors. If it has done so, the matrix  can be 
computed, the error  associated with the node can 
be broadcast and the node is ready for motion 
estimation (i.e. state PROCESSING). 

At each new sampling step (1) of a sensor, a 
kalman prediction on the motion is performed and 
the temporal derivative is calculated. Further, the 
sensor measurement is transmitted to the neighbors. 
When a new sample from a neighboring sensor 
arrives (2), the current directional derivative is 
estimated and added to the derivative vector . If  
is filled with all data from participating neighbors, 
the gradient constraint is computed, which is then 
used for kalman update and transmitted to all 
neighbors participating in motion estimation. When 
a gradient constraint from a neighboring sensor 
arrives (3), the kalman update step is executed as 
well. 

5.1 Algorithm Analysis 

For analyzing the complexity of the proposed 
algorithm, we follow the approach of  (Duckham, 
2012) and focus on the overall amount of 
communication required (Section 5.1.1). Further, the 
amount of computation performed by each node is 
analyzed in Sections (5.1.2) and (5.1.3). For doing 
this, the widely used notion of a flop is employed, 
representing a floating point operation such as 
addition, multiplication or division (see e.g. (Golub 
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and Loan, 1996) for an introduction to flops and 
their usage in analyzing matrix computations). 

5.1.1 Communication Complexity 

In terms of communication complexity, the 
algorithm requires an initial broadcast of the sensor 
positions and the error associated with the gradient 
constraints provided by a sensor. Therefore, | |
| | messages are sent at the INIT state, where  
is the whole set of sensor nodes and  ⊆  is the 
subset of sensor nodes with at least 2 neighboring 
nodes. Then, each timestep, each sensor sends the 
sensed value and each sensor with at least 2 
neighboring nodes sends the estimated partial 
derivatives in addition, i.e. the gradient constraint. 
Therefore, the number of sent messages per timestep 
is | | | |.  

5.1.2 Complexity of Derivative Estimation 

Estimating the partial derivative along the temporal 
axis requires a single subtraction of values and no 
multiplications / divisions at each timestep. 
Estimating the partial derivatives in space from 
neighboring sensor measurements requires the 
computation of  once at the 
INIT state of the algorithm, plus multiplication 
with the vector of the estimates of directional spatial 
derivatives at each timestep.  

Processing Costs at INIT Step: 

Building the Matrices: The computation of a 
directional derivative requires computing the 
Euclidean distance to each neighboring node. This 
requires 2 subtractions, 2 multiplications and a 
square root.  Building the unit vectors then requires 
another 2 divisions. In addition, building the weight 
matrix  requires  divisions. Hence, in total 
6  flop plus a square root are required. For 
example, a sensor with 5 neighbors requires 35 flop 
and a square root computation for building the 
required matrices and vectors 

Computing :  is a 2 
matrix, where  is the number of neighboring 
sensors.  is a  diagonal matrix of weights. 
Therefore, due to  being diagonal, matrix 
multiplication  requires 2  multiplications 
and no additions and results in a 2  matrix. 
Subsequent multiplication with  requires additional 
2 2  multiplications and 2 2 1  
additions. Inverting the resulting 2 2 matrix  

 requires 2 multiplications and one 
subtraction for the determinant plus 4 divisions. 

Multiplication with the already computed  then 
requires 2 2  multiplications and 2  
additions and results in the 2  matrix  to be 
available for partial derivative estimation at each 
timestep. Computing the gradient constraint error 
from the already computed  requires a 
single addition, as shown in Equation (12). For 
example, a sensor with 5 neighbors requires 84 flop 
for computing  and . 
 

Processing Costs at PROCESSING Step: 
At each timestep, the resulting 2  matrix  is to 
be multiplied with directional derivative 1  
vector , requiring 2  multiplications and 2

1  additions. For example, a sensor with 5 
neighbors requires 18 flop per timestep for 
estimating the required partial derivatives in space. 

5.1.3 Complexity of Motion Estimation  

The computations in the kalman prediction and 
update steps are independent from the number of 
neighbors . However, while the prediction step is 
executed once per timestep, the update step is 
executed  times per timestep. 

Prediction Step: The kalman prediction step 
requires a single matrix addition of the two 2 2 
matrices  and . As  is diagonal, this requires 
two additions or 2 flop. 

Update Step: The following analyses rely on a 
standard kalman filter implementation with the 
matrices as described in Section 4.5. The main part 
is the computation of the kalman gain matrix. 
Computing  requires 4 multiplications and 2 
additions. Subsequent multiplication with  
requires 2 multiplications and a single addition and 
results in a scalar value to be added to measurement 
error variance . The resulting value is inverted, 
requiring a single division. Multiplying with the 
already computed  requires 2 multiplications 
and results in the 2 1 kalman gain matrix . In 
total, 13 flop are required for kalman gain 
computation. Updating with a new measurement 
requires 2 multiplications and one addition for 

, a subtraction and the subsequent scalar 
multiplication with the kalman gain vector. The 
resulting vector is added to the state, requiring two 
additions. In total, 8 flop are required for updating 
the state with a new measurement. Updating the 
error covariance matrix requires 4 multiplications, 4 
subtractions for  plus another 8 
multiplications and 4 additions for the multiplication 
with the previous error covariance matrix . In 
total, 20 flop are required for updating  to . 
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Therefore, the motion estimation update step 
requires 41 flop per neighbour per timestep. 

6 EMPIRICAL EVALUATION 

6.1 Evaluation Methodology 

6.1.1 Simulation of Moving Field and Sensor 
Network 

For evaluation, a set of 25 sensor nodes is 
distributed on the unit square, with a maximum 
communication range of 0.25. In addition, a 
gaussian field of the form of (17) is simulated on a 
larger square. 

 

,
, ,

∗  (17)

 

where  is the number of gaussians, ,  is the x-
coordinate, ,  is the y-coordinate of the center of 
gaussian  and  is the variance. Due to the 
linearity assumption of optical flow of Equation (2) 
and (3), it is clear that the motion estimation works 
well, when the field is approximately linear at the 
sites where the gradient constraints are constructed. 
The degree of linearity of the simulated field can be 
controlled by the parameters  and : the larger the 
number of gaussians and the smaller , the less 
linear is the simulated field. Therefore, for 
evaluation, the field is computed from a large 
number of 300 gaussians using Equation (17), 
each with a variance randomly chosen from the 
small interval [0, 0.01] and a center position , , ,  
randomly chosen on the larger square. 

The simulations are executed over 50 timesteps 
and each of the 25 nodes samples the field at each 
timestep. Further, at each timestep, the whole field is 
displaced along a particular motion vector, i.e. the 
variances of the gaussians remain constant while the 
center coordinates ( , ,	 , ) are shifted uniformly. 
In some of the experiments presented below, the 
motion vector is also manipulated at each timestep 
with a constant acceleration in both directions. 
Further, in some experiments, the motion is spatially 
inhomogeneous, which means each gaussian moves 
differently depending on its current location in the 
unit square. In Figure 2, a snapshot of the field, the 
sensor network with node ids and true motion 
vectors (per timestep) is displayed. 

 

 

Figure 2: Snapshot of the simulated field, sensor network 
and true motion vectors at the beginning of a simulation 
run. 

Figure 3 displays the situation 20 timesteps later, 
with a displaced field and the current (changed) true 
motion vector.  

 

 

Figure 3: Snapshot of the simulated field, sensor network 
and true motion vectors, 20 timesteps after the snapshot of 
Figure 2. 

6.1.2 Kalman Filter Initialization and 
Parameters 

The filter for motion estimation implemented by 
each node is initialized with an initial motion state 
estimate of 0,0  and an initial error 
covariance matrix  containing arbitrarily chosen 
large values on the diagonal, indicating the low 
confidence in the initial motion state.  The remaining 
parameters  and  have been specified based on 
visual evaluations of the motion estimation results. It 
has turned out that the motion estimation 
performance increased with significantly lower 
assumed error for the prediction than for 
measurement. This can be explained by the rather 
low accuracy of the individual gradient constraints. 
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6.2 Results 

In the following, some results of the generated 
motion information are provided in order to explain 
the performance of the proposed algorithm. In the 
first experiment of Section 6.2.1, constant motion in 
space and time is simulated. Then, in Section 6.2.2, 
a spatially varying motion field is generated, that is 
constant in time. In another experiment described in 
Section 6.2.3, the motion vectors are manipulated by 
a constant acceleration. Finally, in Section 6.2.4, it is 
shown that a configuration-based kalman 
measurement error indeed provides an improvement 
compared to a fixed error that is independent of the 
spatial configuration. 

6.2.1 Constant Motion in Space and Time 

In Figure 4, the difference between estimated (upper 
row) and true motion (lower row) is displayed for a 
particular experiment, some sensor nodes and 
constant motion.  

 

Figure 4: Constant Motion example. Estimated motion 
time series (upper row) vs. true motion time series (lower 
row). Temporal snapshots (columns) separated by 10 
timesteps. 

 

Figure 5: Constant Motion Example. Time series of 
motion estimates (kalman state vector, dotted lines) of a 
single sensor (sensor nr. 4 of Figure 4) vs. true motion 
(solid lines). 

At the beginning (first column), the motion 
estimates are rather inaccurate. Over time, the 

accuracy of the kalman motion estimates increases. 
Figure 5 displays the whole time series of motion 
estimates for a particular sensor node (node 4 of 
Figure 4). 

The inaccurate estimates eventually converge to 
the true motion. 

6.2.2 Spatially-varying Motion 

As motion is estimated locally in the sensor 
neighborhood, it is clear that the approach is able to 
cope with locally spatially varying motion. In Figure 
6, a snapshot of spatially inhomogeneous true 
motion vectors is shown, where the vectors differ 
with location. 
 

 
Figure 6: Snapshot of a spatially inhomogeneous motion 
field. 

In Figure 7, the field of Figure 6 after 50 
timesteps and estimated motion vectors are 
displayed. Due to locality of motion estimation in 
the sensor neighborhoods, the motion vectors adjust 
to the local motion, e.g. there is a difference between 
motion estimated in the upper left of the unit square 
and the motion estimated in the lower part or upper 
right part. 

 

 

Figure 7: Snapshot of the experiment of Figure 6, 50 
timesteps later and estimated motion vectors. 
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6.2.3 Dynamic Motion 

In Figure 8, examples of an experiment with 
dynamic motion is presented. Again, the upper row 
shows estimated, the lower row true motion. The 
true motion is manipulated each timestep. Again, the 
motion estimates exhibit large errors at the 
beginning and are refined over time. However, as 
the kalman filter assumes constant motion, the 
motion changes are only slowly adjusted and always 
lag behind the true motion. 

 

 
Figure 8: Dynamic Motion. Estimated motion times series 
(upper row) vs. true motion time series (lower row). 
Temporal snapshots (columns) separated by 10 timesteps. 

This lag can also be recognized from the time 
series of motion estimates of a single sensor (Figure). 

 
Figure 9: Dynamic Motion Example. Time series of 
motion estimates (i.e. kalman state vector, dotted lines) of 
a single sensor (sensor nr. 23 from Figure 8) vs. true 
motion (solid lines). 

6.2.4 Fixed vs. Configuration-based Kalman 
Measurement Noise 

In another experiment, the methodology for error 
estimation described in Section 4.4. is compared 
with an assumed fixed kalman measurement error 
variance, which is independent of the spatial 
configuration. The simulations show, that the 

proposed methodology indeed provides improved 
motion estimates in most cases. Figure 10 shows an 
example of the time series of motion estimates of a 
single sensor for both methodologies. The 
performance of the configuration-based error 
estimation is, at most timesteps, improved (i.e. 
estimated motion is closer to the true motion). 
 

 
Figure 10: Comparison of the motion estimation 
performance for a fixed kalman measurement error 
variance vs.  a configuration-based measurement error 
variance and dynamic motion. 

In Figure 11, the average motion estimation error 
is displayed over all timesteps, sensor nodes and 10 
different simulation runs. The error is calculated as 
the norm of the vector difference between true and 
estimated motion, normalized by the norm of true 
motion. 
 

 

Figure 11: Average overall error for a fixed kalman 
measurement error variance (dark grey) and a 
configuration-based measurement error variance (light 
grey) for ten experiments. 

The results show that the configuration-based 
error provides an improvement in almost all 
experiments. The magnitude of error depends on a 
plethora of factors, mainly field properties. 
Therefore, it is not further discussed here. 
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7 DISCUSSION & CONCLUSION  

An approach for the decentralized estimation of the 
motion of a spatio-temporal field with a WSN has 
been presented. The performance of the algorithm 
has been illustrated by examples of a simulated 
dynamic field and sensor network. In the following, 
possible extensions of the proposed algorithm are 
discussed. 

Sensor Network: Currently, stationary sensors and 
time-synchronized sampling is assumed, since this is 
considered the base case and eases the equations. 
However, moving sensors monitoring spatio-
temporal fields, such as cars for measuring rainfall 
(Fitzner et al., 2013); (Haberlandt and Sester, 2010), 
exist and provide interesting possibilities for 
extension. Further, the approach uses single-hop 
communication and therefore assumes local 
translational motion within the sensor neighborhood. 
If motion is assumed to be constant over larger 
neighborhoods, motion estimation accuracy could be 
improved by multi-hop communication. 

Accuracy of Gradient Constraint: Currently, the 
accuracy of a gradient constraint is solely 
determined by spatial configuration of the 
neighborhood generating the constraint. However, it 
is clear and already discussed in early work on 
optical flow such as (Lucas et al., 1981) that field 
properties such as the magnitude of the first or 
second derivative are indicators of the accuracy. 
Including these as well as weighting measures based 
on spatial distance is planned for future extensions. 

Kalman Filter: The kalman filter proposed in this 
work comprises the motion vector only and 
therefore, constant motion over time is assumed. 
Possible motion changes are solely modeled by the 
prediction error variance, which is larger zero and 
hence, allows for state changes over time. A more 
realistic assumption is motion change constancy that 
could be implemented by adding motion change 
variables to the kalman state. Further, the kalman 
filter assumes white gaussian noise for both, 
prediction and measurement, a requirement that has 
to be tested in a real deployment of the algorithm. In 
addition, the values for the kalman filter noise 
parameters  and  have been set rather arbitrarily 
based on a visual evaluation of the motion 
estimation results. In future work, methods for 
estimating these from the data will be investigated.  
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