
Improving Database Security in Web-based Environments 

Francesco Di Tria, Ezio Lefons and Filippo Tangorra 
Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy 

 

Keywords: SQL Injection, Authentication, Authorization, Web Application, Architecture. 

Abstract: In web applications, databases are generally used as data repositories, where a server-side program interacts 
with a Database Management System (DBMS), retrieves content, and dynamically generates web pages. 
This is known as a three-layer architecture, that is widely exposed to database threats. The attacks are 
usually performed through the injection of SQL code in the forms of the web applications, exploiting the 
dynamic construction of SQL statements. So, the database security relies on the quality of the code and the 
controls done by the web developer in the application level. In this paper, we present a solution for the 
improvement of security of databases accessed by web applications. The security is based on a user 
modelling approach that completely relies on the authorization mechanism of DBMSs. 

1 INTRODUCTION 

In Web-based environments, a three-layer 
architecture is commonly adopted, composed of a 
back-end and a front-end. In the back-end, we find 
two main servers: the web server and a database 
server (or DBMS). Currently, the web server hosts 
static web pages and/or scripts, which are server-
side programs interacting with a DBMS in order to 
access the database and to provide dynamic and on-
demand content. 

A server-side program (or web application) 
needs to store a plain-text account to make 
connections to the database. As a consequence, 
anyone who has granted a physical access to the 
server’s file system is able to view the password 
used for the authentication to the DBMS. In this 
sense, the account of a database user (even the 
administrator, in some cases) is publicly accessible. 

Furthermore, the account is usually formed of a 
couple of username and password. This account is 
used for all the connections to the database, 
independently from the user profile. For the sake of 
simplicity, it is the web application that accesses the 
database, not the user. So, it is not possible for the 
DBMS to know who is really using the web 
application and to apply its own authorization 
mechanism (Gertz and Jajodia, 2007). 

For example, if two roles, namely manager and 
employee, are defined in the web application, with 
the policy that an employee cannot access the 

financial data, then the DBMS is not able to know if 
the current user that is querying the database 
(through the web application) is logged in as a 
manager or an employee. Therefore, the DBMS 
cannot adopts its security model in the case of 
attacks to the database coming from illegitimate 
users (Bertino and Sandhu, 2005). 

Clearly, in these environments, the database 
security widely depends on the web developer’s 
ability and the program code quality. The developer 
has to bear all the controls necessary to protect the 
database. If the application is not well-developed, 
then the database is exposed to a class of attacks 
known as SQL injection that exploits the possibility 
to dynamically construct dangerous SQL statements 
(Roy et al., 2011). Therefore, the threats to database 
security are often attributable to the web developer’s 
negligence or inexperience. To this reason, a web 
application assessment is useful to detect 
vulnerabilities (Huang et al., 2003; Xiang Fu et al., 
2007). Another possible solution is the adoption of 
systems able to analyze the traffic towards a DBMS 
and report anomalies (Pinzón et al., 2010; Rietta, 
2006). 

In this paper, we present an approach to improve 
the database security where the security model does 
not depend on the application level, but it is 
incorporated in the DBMS level. In fact, DBMSs 
always include strong authorization mechanisms 
that, in web-based environments, are de facto 
unutilized. The proposed security model is based on 

Tria, F., Lefons, E. and Tangorra, F.
Improving Database Security in Web-based Environments.
DOI: 10.5220/0005646901930200
In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 193-200
ISBN: 978-989-758-167-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

193



a mapping of web applications users, who access 
resources like dynamic web pages, to database users, 
who must be granted privileges to execute the views 
that generates the contents of those web pages. 

In the following, we refer to a typical WAMP 
(Windows, Apache, MySQL, PHP) or LAMP 
(Linux, Apache, MySQL, PHP) environment to 
illustrate examples. 

The paper is structured as follows. Section 2 
introduces an overview of the threats to the database 
security. Section 3 presents our approach based on a 
mapping of web application users to corresponding 
DBMS users. Then, Section 4 reports some real 
scenarios and practical examples. Finally, Section 5 
concludes the paper with our remarks. 

2 OVERVIEW OF DATABASE 
VULNERABILITY 

The first issue is related to the user modelling. 
DBMSs are provided with both an authentication 
and an authorization mechanism. The authentication 
deals with the identification of the user (who is the 
user) and is usually based on passwords, that is, the 
so-called something you know paradigm. The other 
paradigms are something you are, such as biometrics 
parameters, and something you have, like electronic 
badges. 

On the other hand, the authorization is devoted to 
check whether an authenticated user is enabled to 
access a given resource (what the user can do). The 
authorization is usually done with privileges. So, 
DBMSs have a profile of each registered user (see 
Fig. 1) such that they are able to know the user 
identity and the database objects (such as 
procedures, views or tables) which he/she is allowed 
to access. 

 

Figure 1: DBMS user modelling. 

For these reasons, when users interact with a 

Web Application, the authentication and the 
authorization mechanism of the DBMS might not be 
applied. 

In fact, such applications are configured with a 
unique account that is used to access the system 
database (see Fig. 2), which stores both data and 
user profiles. 

As a consequence, the Web Application knows 
the user identity, but the DBMS does not (Ben 
Natan, 2005). From the DBMS’s point of view, the 
database user is always the web application itself, 
usrWA in this example. 

 

Figure 2: Web Application user modelling. 

The second issue is related to the configuration 
file. The account (that always includes a username 
and a password of a database user) is used by the 
application and it is stored as a plain text, that is, it is 
not encrypted. Anyone, who has a physical (or a 
remote) access to the computer where the 
application resides, is able to read and copy the 
configuration file. Storing a plain-text password is 
the worst threat for any system. 

The third important issue is related to dynamic 
and embedded SQL. Web applications include and 
create SQL instructions by concatenating text strings 
and user inputs. This leads to several security issue, 
known as SQL-injection attacks. According to this 
kind of attack, malicious users can insert specific 
sequences of characters when filling a form of a web 
page, determining the generation of dangerous SQL 
instructions (Boyd and Keromytis, 2004). 

In (Halfond et al., 2006), the authors report a 
complete list of the possible goals that can be 
reached by malicious users performing SQL-
injection attacks. 

Bypassing Authentication. Users performing this 
kind of attack aim at bypassing the application 

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

194



authentication mechanism, by obtaining access to 
the system without providing a valid password. 

This may happen when the web application 
executes no user input validation or uses a weak 
query like the following in order to authenticate the 
users: 

select * from users where 
username=’$username’ and 
password=’$password’ 

where $username and $password are the 
variables containing the user login input. In fact, if 
$username contains a malicious string like “’ 
or 1=1 #”, then the query that is dynamically 
generated by the program is the following 

select * from users where 
username=’’ or 1=1 #and 
password=’$password’. 

(The # symbol is used to comment code). The last 
SQL statement is a tautology and the user is 
authenticated without any password. 

Furthermore, a threat to the authentication may 
be preceded by a port-scanning, a process devoted to 
discover and exploit potentially vulnerable services 
on a network host (Vasserman et al., 2009). 

Extracting Data. This is the most common and the 
most dangerous attack, as it allows the visualization 
of (possible sensitive) data. Also this threat is based 
on alterations of legitimate SQL statements, for 
example adding union clause. As an example, if the 
application generates a query like 

select projectName, projectDescr 
from projects where 
projectResp=’$projectManager’ 

to extract the projects assigned to a given manager 
and the manager’s name is a search parameter, then 
a user who accesses the search page can insert the 
string 

union select username, password 
from user 

to view all the projects and the user accounts. This 
threat can be mitigated using encrypted password 
and, even better, using privileges: the user used to 
query the database must not be granted of read 
privilege on the users table (i.e., the table storing 
user profiles). 

To summarize, the web applications should be 
configured with different database users having 
different privileges. So, when querying the database, 
the web application should connect to the DBMS 
using the user with the lowest privileges. On the 
other hand, when performing system maintenance, 

the application may connect to the DBMS using a 
user with higher privileges. 

In the following, we focus on these two kinds of 
attack, because are strictly related to dynamic and 
embedded SQL statements. 

To complete the overview about threats to web 
applications, other security issues due to network 
protocol or DBMS vulnerability are: 

Performing Denial of Service. This attack is devoted 
to destroy a service, preventing other legitimate 
users to access the database (Jiangtao et al., 2009). 

Performing Privilege Escalation. Users performing 
this kind of attack aim at reaching database 
administrator privileges (the so-called root 
privileges) by exploiting bugs in the DBMS. 

3 USER MODELLING 

Our approach is based on a mapping of web 
application users to database users, as shown in Fig. 
3. So, when a new user is registered in the web 
application, we do what follows. 

 A new record in the users table is inserted. This 
record stores the username chosen by the user. A 
default role, the one with the minimum privilege, 
is assigned to him/her. This information is 
managed at application level. At this level no 
password is necessary anymore. 

 A new password-protected user is created in the 
database, with the same username chosen for the 
application level. 

 

Figure 3: Web Application vs. DBMS users. 

The security model at application level 

Improving Database Security in Web-based Environments

195



establishes the resources accessible for each user on 
the basis of his/her role. So, the username is used by 
the application only to show the correct web pages 
to a logged user. 

When a user requires a resource, by accessing a 
web page, the application executes a call to a 
procedure stored in the database. To make the 
connection to the database, the application must use 
the account provided by the user (and not the 
predefined one, stored in the configuration file). Of 
course, the user must provide username and 
password only the first time he/she accesses a 
resource, as the account can be temporarily stored in 
session variables. 

At this point, the procedure executes the query, if 
the user has the correct privileges, and returns a 
well-formed HTML object, as a table, for example. 

So, this approach is also based on a mapping of 
resources (web pages) at application level and 
corresponding resources (procedures) at DBMS 
level. The procedures dynamically create one or 
more SQL statements and return HTML tables. The 
main strategy is that a user who accesses a web page 
showing data must be granted of the necessary 
privileges by the database to read and/or modify 
those data. 

In Fig. 4, there is depicted an example of a web 
application whose authorization model aims only at 
visualizing the right resources for each user. 
However, the database security is entrusted to the 
DBMS’s authorization mechanism that is based on 
privileges. 

In the example, John and Mary, whose 
usernames are, respectively, john and mary, are web 
application users. John has the student role, while 
Mary has the teacher role. On the basis of his/her 
role, a user can access a predefined set of resources. 
A student can access the courses list, while a teacher 
can access both the courses and teachers lists. So, 
the web application will show (the link for) the 
courses list to John, and it will show both (the links 
for) the courses and teachers lists to Mary. 

In order to display the necessary data, the 
resource (that is, the web page) needs to invoke a 
procedure to retrieve the content. To do so, the 
courses procedure has to generate and execute the 
courses view. At this point, if John does not have the 
read (R) privilege on the courses view, he will not 
able to visualize the content. For the same reason, 
Mary needs the read privilege on both the courses 
and teachers views in order to display the data. 

So, if a user, fraudulently or due to a web 
developer’s error, succeeds in accessing a denied 
resource (at application level), he/she will not able to 

 

Figure 4: DBMS resources vs. application resources. 

access the related data anyway, because he/she does 
not have the necessary privileges on that view and/or 
table. 

The benefits of these approach are the following: 

 the web application does not need to store any 
plain-text password to access the database; 

 for each connection to the database, the personal 
database user account is used instead of a 
common database account assigned to the 
application; 

 the web application must deal only with the 
correct creation of the user interface (leading 
only to the resources the users is allowed to 
access according his/her role); 

 no SQL injection is possible, as the query are 
created at DBMS level by the procedures using 
parameters and not at application level on the 
basis of string concatenation; 

 assuming to correctly assign privileges on 
databases objects, users will never be able to 
view sensitive data, even by performing union-
based SQL injection attacks or exploiting bugs in 
the application; 

 the web application does not need to know 
anything about the logical schema of the 
underlying database; so, a complete 
independence of the application layer from the 
data layer is ensured; and 

 the web application invokes a database resource 
(not a query) to retrieve the contents. 

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

196



4 SCENARIO EXAMPLES 

In this Section, we show some real scenarios 
according to the data that are exchanged between the 
two layers. Figure 5 illustrates the data that are 
currently exchanged in web-based environments.  

 

Figure 5: Traditional data flow. 

Users performs authentication in the web 
application (WA) providing both username and 
password managed at application level. (The 
authentication is usually performed in the login page 
solely on the basis of the user profile stored in the 
database, then the logged user identifier is stored in 
session variables and used to access private pages). 

In order to extract data, the web application uses 
its own database account (wa account¸ in the figure) 
to make a connection to the DBMS. When 
connected, the application generates a dynamic 
query, using the search parameters, and executes it 
on the database. The database returns a recordset 
that is fetched by the application and, as an example, 
transformed in HTML tables. 

In our approach, the two layers exchange data in 
a different way, as shown in Fig. 6. 

The user provides his/her account in the login 
page of the web application. Nonetheless, the 
application ignores the password and uses only the 
username to display the right web pages to the user, 
whereas each username is associated to a role and 
each role can access one or more resources. The 
complete account is stored in session variables, as 
this must be passed to the DBMS when connecting 
to execute queries. 

To read data, the application calls a procedure 
with a well-defined interface (specifying the input 
and output parameters). The procedure eventually 
generates a dynamic query (or uses predefined 
views) and, if the provided user account has the 
correct privileges on views and/or tables, it returns 

an HTML table. To summarize, the application uses 
the personal account provided by the user in order to 
interact with the DBMS. 

 

Figure 6: Proposed data flow. 

4.1 Accessing Resources 

In this subsection, we show an example of the login 
phase performed using our approach. As an 
example, this can be used to generate the home page 
of the user, showing the correct resources he/she is 
allowed to access. 

We can assume the following relational schema 
that manages users and the related resources. 

 resources(id, resource, 
description). The table storing the list of 
resources (web pages) managed at application 
level 

 roles(id, description). The list of 
roles defined for users. 

 users(username, role, 
registration_date). The table storing 
user profiles, without passwords. 

 access(role, resource). The table the 
associates a user role to the allowed resources. 

We report in Code 1 the server-side program. 

Code 1. Access phase. 

Input: 
$username username, 
$password password, 
$db_host database IP address, 
$db_name database name. 
 
Output: 
Web page with the list of the resources the user can 
access 

1. 
$db = mysqli_connect($db_host, $username, 

$password, $db_name); 

Improving Database Security in Web-based Environments

197



2. $query="call resources('$username',@b)"; 
3. $result = mysqli_query($db,$query); 
4. $row = mysqli_fetch_array($result); 
5. print $row['b']; 

This program first reads the account provided by 
the user in the login form, then uses it to connect to 
the DBMS (lines 1), and invokes a procedure (lines 
2-3) which returns a well-formed HTML tables. At 
last, the HTML table is extracted just in a single 
statement, i.e., without a do-while cycle (line 4), and 
displayed (line 5). 

Then, we report the procedure (see Procedure 1) 
stored in the DBMS that retrieves the resources to 
which a user can access on the basis of the role 
associated to his/her username. 

This procedure generates a query (line 5) and 
uses a cursor to fetch the rows (lines 8-15). Each 
row is inserted into a string containing HTML tags 
(line 14). To this end, the MySQL concat function is 
used to create a well-formed HTML table. However, 
a different text format, such as XML or JSON, can 
be used. 

It is worth noting that in line 5 a dynamic query 
is created without a string concatenation, but on the 
basis of the parameters, username in this example. 

To summarize, the first benefit of this approach 
is that the authentication cannot be bypassed using 
SQL-injection. Indeed, the web application does not 
has to generate any SQL statement and it does not 
manage any password neither. 

Procedure 1. Access phase. 

Input: 
username nickname of the user at application and 
database level, 
 
Output: 
b HTML table 
 

1. 
CREATE PROCEDURE 
`security`.`resources` (in username 
varchar(50), out b text) 

2. BEGIN 
3. DECLARE no_more_rows BOOLEAN; 
4. DECLARE a varchar(50); 

5. 

DECLARE cur1 CURSOR FOR 
select resources.resource 
  from resources inner join access on  
    resources.id=access.resource 
      inner join roles on  
        access.role=roles.id 
          inner join users on  
          roles.id=users.role 
  where users.username=username; 

6. 
DECLARE CONTINUE HANDLER FOR 
NOT FOUND 
SET no_more_rows = TRUE; 

7. set b := '<table border=1>'; 
8. OPEN cur1; 
9. r: LOOP 
10.    FETCH cur1 INTO a; 
11.    IF no_more_rows THEN 
12.        LEAVE r; 
13.    END IF; 

14. 
   select  
   concat(b,'<tr><td>',a,'</td></tr>')  
     into b; 

15.    END LOOP r; 
16. select concat(b,'</table>') into b; 
17. select b; 
18. CLOSE cur1; 
19. END 

Of course, if the user provides a wrong username 
and/or password, then a DBMS connection error will 
be triggered. 

Moreover, since the password is provided by the 
user and is stored in session variables, it cannot be 
stolen by anyone who may be able to access the web 
directory (for example, using a brute force attack to 
the FTP server). 

4.2 Search Function 

As another testing scenario, now we show that this 
approach is also resistant to union-based SQL 
injections executed by appending union-clauses in 
fields of traditional search forms used for generating 
reports.  

The server-side code is similar to that illustrated 
in Code 1. So, it is not shown again. For the same 
reason, we do not report the whole procedure stored 
in the DBMS, but only the dynamically generated 
query. 

If the user has the role necessary to access the 
teaching courses list, then he/she will be able to 
reach the web page that contains the search form, 
which represents an application-level resource. 

The only search parameter is year and this will 
be sent to a procedure (see, Procedure 2) in order to 
generate a query. In detail, the query aims at 
retrieving the teaching courses available in a given 
academic year (line 2).  

To access data, the user needs also the privileges 
on both courses and courses_year tables that are 
DBMS-level resources. 

 

 

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

198



Procedure 2.  Search. 

Input: 
year year of the academic course, 
 
Output: 
b HTML table 
 

1. 
CREATE PROCEDURE  
`security`.`teaching` (in year varchar(100), out 

b text) 
 … 

2. 

select courses.name from 
   courses inner join courses_year on  
      courses.id=courses_year.id 
where courses_year.year=year; 

  

In case of an attempt of injecting malicious code 
in the search field by the following statement 

2015 union select username from 
users 

then the procedure will create a syntactically wrong 
SQL instruction equivalent to the following 

select courses.name from courses 
inner join courses_year on 
courses.id = courses_year.id 
where courses_year.year = 
‘2015 union select username 
from users’. 

Notice that the data type of the input parameter is 
varchar in this ad hoc example (line 1). Had we 
used the correct data type, that is year, we would 
have obtained a data truncation error. 

Moreover, assuming to create a syntactically 
correct SQL instruction, the user will not be able to 
view the data, because s/he does not have the 
necessary privileges on the users table. 

5 CONCLUSIONS 

In this paper, we have presented an approach to 
improve database security that is a current threat to 
web-based environments. In fact, the system security 
is always entrusted to web developers who must 
implement all the necessary input validation in order 
to ensure system invulnerability. 

Our approach is based on a replication of user 
accounts at DBMS level such that the personal 
account of a given user is used to connect to the 
DBMS instead of a common password, stored as 
plain text. In this context, web resources, such as 
web pages, are mapped to database resources, such 

as procedures managing further resources that are 
external views. 

The assumption is that a user may pass the 
application’s controls, but that user will never be 
able to access data anyway, if he/she is not granted 
the necessary privileges.  

Future work is devoted to a benchmark between 
the traditional data flow and our approach, as we 
believe that the creation of an HTML object is faster 
when using a cursor to scan a table at DBMS level 
than fetching rows at application level. 

REFERENCES 

Ben Natan, R., 2005. Implementing Database Security and 
Auditing. Elsevier Digital Press. 

Bertino, E., and Sandhu, R., 2005. Database security - 
Concepts, Approaches, and Challenges, IEEE 
Transactions on Dependable and Secure Computing, 
vol. 2, issue 1, pp. 2-19. 

Boyd, S. W., and Keromytis, A. D., 2004. SQLrand: 
Preventing SQL Injection Attacks, Applied 
Cryptography and Network Security, Lecture Notes in 
Computer Science, vol. 3089, pp. 292-302. 

Gertz, M., and Jajodia, S., 2007. Handbook of Database 
Security: Applications and Trends, Springer, 1 edition. 

Halfond, W. G. J., Viegas, J., and Orso, A., 2006. A 
Classification of SQL Injection Attacks and 
Countermeasures, Proceedings of the IEEE 
International Symposium on Secure Software 
Engineering, Arlington, VA, USA. 

Huang, Y-W, Huang, S-K., Lin, T-P., and Tsai, C-H., 
2003. Web Application Security Assessment by Fault 
Injection and Behavior Monitoring, Proceedings of the 
12th International Conference on World Wide Web, 
Budapest, Hungary, pp. 148-159. 

Jiangtao Li, Ninghui Li, XiaoFeng Wang, Ting Yu, 2009. 
Denial of Service Attacks and Defenses in 
Decentralized Trust Management, International 
Journal of Information Security vol. 8, issue 2, pp.89-
101. 

Pinzón, C., De Paz, J. F., Bajo, J., Herrero, A., and 
Corchado, E., 2010. AIIDA-SQL: An Adaptive 
Intelligent Intrusion Detector Agent for Detecting SQL 
Injection Attacks, 10th International Conference on 
Hybrid Intelligent Systems (HIS), pp. 73-78. 

Rietta, F. S., 2006. Application Layer Intrusion Detection 
for SQL Injection, Proceedings of the 44th Annual 
Southeast Regional Conference, Melbourne, Florida, 
pp. 531-536. 

Roy, S., Kumar Singh, A., and Singh Sairam, A., 2011. 
Analyzing SQL Meta Characters and Preventing SQL 
Injection Attacks Using Meta Filter, 2011 
International Conference on Information and 
Electronics Engineering, IPCSIT vol. 6, pp. 167-170. 

Vasserman, E. Y., Hopper, N., and Tyra, J., 2009. 
SilentKnock: Practical, Provably Undetectable 

Improving Database Security in Web-based Environments

199



Authentication, International Journal of Information 
Security, vol. 8, pp. 121-135. 

Xiang Fu, Xin Lu, Peltsverger, B., Shijun Chen, Kai Qian, 
Lixin Tao, 2007. A Static Analysis Framework for 
Detecting SQL Injection Vulnerabilities, 31st Annual 
International Computer Software and Applications 
Conference, Beijing, pp. 87-96. 

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

200


