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Abstract: This paper addresses a shift-scheduling and localization problem of medical staff for home-healthcare 
services. In this problem a private company has to decide where to locate its mobile units and its operational 
times. Locations and schedules define the system capacity to attend patients, capacity produces acceptable 
service level but operational costs, in contrast, a capacity overestimation requires subcontracting services and 
consequently a decrease in expected profit. In this talk we present the situation studied and a mathematical 
approach to deal with. The method was used in a real situation improving net profit and increased the expected 
served demand. 

1 INTRODUCTION 

Home-healthcare service allows patients to be treated 
in the comfort of their own homes as long as their 
situation does not warrant attending a specialized 
emergency center. Given the complexity of decisions 
about organizing the scheduling of shifts and 
deployment of vehicles for a home care emergency 
service, on the one hand, and the importance of cost-
benefit factors, on the other hand, in many cases 
empirical solutions or ones based on unverifiable 
assumptions do not provide a good approach and may 
lead to high losses for any business. 

Health care providers are broadly classified into 
public and private sector. Due to the competitiveness 
of the private sector, made up of a large number of 
home- healthcare providers, such companies face the 
challenge of increasing their coverage and the quality 
of their services and simultaneously controlling 
excessive costs, that is, they need to ensure that they 
meet an increasing demand and boost their profits. To 
achieve that, they must find an ideal trade-off 
between per-patient income and the per-patient cost 
of the treatments and for the latter, take into account 
the availability of vehicles, scheduling of shifts and 
the number of doctors who attend patients. 

Given the competitive nature of a private sector, it 
is necessary to count on a specialized staff which is 
available to assist its affiliates in their own homes. 
When a call for assistance is received, caregivers 
must travel to such homes in a vehicle from a 
predefined site. If a vehicle within range of the home 

is not available, the healthcare provider must rely on 
help from an associated company, which amounts to 
a failure to meet the demand and results in a loss of 
profits. When the available vehicles exceed the 
demand, on the other hand, it amounts to an additional 
operational cost. Thus, the problem consists of 
finding the ideal locations and operational intervals 
for both the medical staff and the vehicles, taking into 
account: 

• Demand distribution changes during the day; 
• There is a potential number of sites where 

vehicles can be located; 
• There is a limited number of vehicles; 
• Travel times between potential sites and patient 

locations are influenced by the time of day; 
• There is a limit on response time: the maximal 

time permitted to reach a patient; 
• The company has to both meet the demand and 

increase profits. 
The focus of this paper is on locational and 

scheduling decisions made at the tactical level. More 
specifically, the aim is to develop and solve a model 
to locate qualified resources on a network and 
allocate this resources to specific shifts to meet 
demand.  

This paper is organized as follows. Section 2 
provides a summary of the literature on the subject. 
Section 3 presents two different mathematical 
formulations. Section 4 compares both mathematical 
formulations by analyzing some computational 
experiments.  Finally,  last   section   presents   some 
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conclusions. 

2 LITERATURE REVIEW 

One of the principal aspects studied here is the 
location of vehicles over a network, this situation is 
similar to the ambulance location problem. The aim 
of ambulance location models is to provide adequate 
coverage. In that problem a usual goal is to find the 
best locations, fulfilling a certain level of demand, 
minimizing the number of ambulances needed. 
Models are based on the Location Set Covering 
Problem (LSCP) as proposed by Toregas et al. 
(1971). The main characteristic of these models are 
that demand should be met; therefore it is likely that 
infeasibility will arise when no location node ensures 
coverage for a demand node. Church & Velle (1974) 
presented The Maximal Covering Locating Problem 
(MCLP), in which the objective is to maximize the 
demand covered by a fixed number of facilities. An 
important limitation of previous models is that 
coverage is binary, so a zone or demand point is to be 
covered in full or is not covered at all.  

Previous models guaranties coverage when all 
ambulances are available, if different services are 
needed, while a vehicle is busy, other vehicles in 
other locations can cover that points. In this case, 
models with multiple coverage aimed obtaining 
several covers for each point of demand. For 
example, Church & Gerrard (2003) considered the 
multi-level location set-covering model (ML-LSCP) 
as a search for the smallest number of facilities 
needed to cover each demand a preset number of 
times. The models proposed by Gendreau, Laporte, & 
Semet (1997) and Karaman (2008) introduced 
various service times. Aringhieri et al. (2007) 
developed the Lower-Priority Calls Coverage Model 
in which they introduced priority for calls and also 
took the capacity of facilities into account, as Pirkul 
& Schilling (1989) did, but without restricting the 
number of vehicles in each location. It is important to 
note that they considered the variation in terms of 
demand throughout the day and solved the problem 
for several intervals in the day. 

Another aspect dealt with in previous studies is 
the variability of demand and its effect on the location 
decisions (Drezner & Wesolowsky, 1991). Most use 
the information to relocate locations and thus improve 
operations, for example in cases of seasonal 
variations in the demand (Ndiaye & Alfares, 2008; 
Farahani et al. 2009). Recent studies have shown that 
the demand for services can be increased by creating 
routes for a fleet in a not fixed-resource environment 

(Halper & Raghavan, 2011). The idea of regarding 
the demand in terms of points rather than continuous 
regions has received some criticism (Yao & Murray, 
2013; Franco et al. 2008) but more work needs to be 
done on these kinds of formulations to demonstrate 
their real benefits, for example, in terms of real 
applications and computational complexity. 
Nevertheless, in discussing the variability of demand, 
our study addresses not only the location but also with 
the scheduling of resources, in order to dealing with 
dynamic demand patterns. 

Taking all of the above into account for the 
problem we seek to solve, it becomes evident that the 
factor of response time is more flexible in a home-
healthcare service, because, in contrast with the 
coverage standard in the ambulance problem, it does 
not put the patient´s life at risk. This is an important 
difference between the two services, and it led to the 
decision to use a deterministic model adding three 
new elements: 1. An analysis of profitability and its 
relation to the trade-off between meeting the demand 
and the resulting costs of doing so. 2. Shift scheduling 
in order to avoid relocations. 3. The addition of three 
new variables to the problem: served demand, served 
demand by coverage, and served demand by capacity. 
A source of demand is defined as covered if it is 
located within a specified response distance or 
response time from a mobile unit, a sum of all sources 
of demand covered from a mobile unit is call “served 
demand by coverage”. Not necessary all the demand 
can be met in a given period of time, because there is 
a limit number of vehicles, and also because vehicles 
need to travel and attend patients at home. The 
amount of demand that vehicles can be met due to 
restrictions of capacity (time) is call “served demand 
by capacity”. The amount of demand that a vehicle 
can met in a period of time depends from both 
coverage and capacity, this demand is call “served 
demand”. 

3 PROBLEM FORMULATION 

Let suppose we have a group of demand points, each 
has its location and activity during a day. In order to 
supply the demand points, we will locate a group of 
vehicles and assign a preconfigured shift, within 
given locations. A single demand point can be 
supplied by a vehicle if the demand point is in the 
maximal time permitted to reach it. Vehicles can 
work on different shifts and can supply a group of 
demand points restricted by the time to reach and 
assist them. The problem can be formulated using 
next two mathematical formulations: 
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3.1 Formulation based on Binary 
Variables 

Let us assume the following notation: 
Index and sets 
i: index the set of demand points I 
j: index the set of location points J 
s, k: index the set of  shifts S 
v,w: index the set of vehicles V 
t: index the set of interval times T 

Decisional variables ,  : 1 if vehicle  is assigned in shift s to location j; 
 : 1 if node i is covered in the time interval t; ,  : The fraction of demand at point i that is covered 

by the vehicles in location  in the interval	 . 

Auxiliary Decisional variables 
: Expected number of clients (demand) served 

during the time interval t; 
: Number of vehicles active in the time interval t. 

Parameters 
L: Number of units of time for a time interval; 

 : Expected demand at point i	during interval t; 
 : Limit on the number of vehicles at location j 

during time interval t; ∶ Desired response time: maximum time permitted 
to travel to a patient; , 	: Expected travel time to demand point i from 
location 	during time interval t; C ,  : Coverage = 1 if 	T , ≤ R; 

 : Expected time for a doctor to examine a patient; 
: Revenue for serving one unit of demand; 
 : Cost of an activated vehicle; ∶ 1 if shift s is available in time interval t; 

 : 1 if shift s is active in time interval t: 
First and last time intervals in a shift are 

considered active but unavailable, this time is used by 
vehicles to leave and return to depots; ,  : 1 if shift  overlaps shift	 ; 

 : Weighted average travel time at location j during 
time interval t = = ∑ ∗ ,∈ ∗ ,∑ ∈ ∗ ,   (1)

The problem can be defined by using a graph G = 
(  U , ) consisting of a set of demand nodes	 , a set 
of location points  and  as the set of arcs [( . ): 	 ∈
, 	 ∈ ). The objective is to obtain the greatest 

possible profit given the revenue from the expected 
served demand in each interval:	 , and the costs 
generated by active vehicles in each interval: . 
These costs include not only the operating expenses 

and maintenance of vehicles but also the salaries of 
medical staff assigned to them. 

The mathematical model is described as: : (∑ ∈ ) − (∑ ∈ )  (2). . ∑ ∗ , ∗ ,∈ ≤(∑ ∑ ∗ , ∗ , )∗∈∈ ∗ , ∀ ∈ , ∀ ∈   
(3)

∑ ,∈ ≤ 1, ∀ ∈ , ∀ ∈   (4)

≤ ∑ ∗∈ , ∀ ∈  	 (5)

≤ ∑ ∑ ∑ ∗ ,∈∈ ∗∗ , ∀	 	 ∈∈  	 (6)≤ ∑ ∑ ∑ ∗ , ∗ ,∈ 	∈∈ , ∀	 ∈, ∀ ∈  
(7)∑ ,∈ + ∑ , ,∈ ≤ 1,			∀ ∈ , 	 ∈, = + 1…  
(8)

∑ ,∈ ≤ 1, 	∀ ∈ , ∀ ∈  	 (9)

∑ ∑ ,∈∈ ≤ , ∀ ∈ , 		∀ ∈  	 (10)

= ∑ ∑ ∑ ∈∈∈ , 	, ∀	 ∈  	 (11)

, ∈ 0,1 ∀ ∈ , ∈ , ∈  	 (12)

∈ 0,1 , ∀ ∈ , ∀ ∈  	 (13)

, ∈ [0,1], ∀ ∈ , ∀ ∈ , ∀ ∈ 		   (14)

∈ ℝ , ∀ ∈  (15)

∈ ℤ , ∀ ∈   (16)

Constraint (3) ensures that there are enough 
vehicles to meet the demand that is assigned at each 
location  in the interval	 . Constraint (4) ensures that 
the maximum percentage of satisfied demand in each 
demand point i is 100%. Constraints (5) and (6) 
determine the actual amount of demand that can be 
served, while constraint (5) refers to coverage limits, 
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constraint (6) to capacity limits.  Constraint (7) is 
used to determine which nodes are covered in the 
desirable response time. Constraint (8) guarantees 
that the shifts assigned to the same vehicle do not 
overlap. Constraint (9) ensures that a vehicle is 
assigned at most to a single location in an entire shift. 
Constraint (10) limits the number of vehicles that can 
be accommodated in one location. Constraint (11) is 
used to determine the number of vehicles in each 
interval. Finally, the variables are defined in (12) to 
(16) 

3.2 Formulation based on Integer 
Variables 

The family of constraints (8) and binary 
characteristics in the previous model made its 
solution very difficult; as is shown in Table 1, we 
were able to solve to optimality only a small problem. 
So a new approach is proposed, with a formulation 
similar to the above except that the variable , 	is 
modified by  and constraints (8) and (9) are 
removed. The decision now involves the number of 
vehicles that should be assigned to the shift  at 
location j ( ).  

The formulation does not match specific vehicles 
with shifts and also it does not have into account the 
maximal number of vehicles than can be used 
(implicitly defined by the cardinality of set V in the 
Binary Model, section 3.1). So, an additional step is 
needed in order to assign different shifts (that not 
overlapping) to the same vehicle, this determines the 
real number of vehicles needed. To do this, an 
assignment model is proposed.  

3.2.1 Grouping Method 

In the proposed model, the objective is to minimize 
the number of groups of vehicles that can be formed. 
Let G represents the set of groups and W the set of 
vehicles; note that |W| =∑ ∑ . Let us define 	  
as the parameter that indicates whether the shift 
assigned to vehicle 	 ∈  overlaps the shift assigned 
to vehicle	 	 ∈ .  

The model uses two binary decisional variables: 
:  1 if the vehicle 	  is assigned to group ; and  

to indicate whether the group  is opened or not. It is 
presented below 	 ∑ 		∈  	 (17). . 

∑ ∈ = 1, ∀ ∈  (18)∑ ∈ ≤ ∗ , ∀ ∈  	 (19)+ ∗ ≤ 1, ∀ 	 ∈ 	 , = + 1… | |, ∈  (20)∈ 0,1 , ∀ ∈ (21)∈ 0,1 , ∀ ∈ , ∈  	 (22)

Constraint (18) ensures that all vehicles are 
assigned to a group. Constraint (19) determines the 
opening of a group, a maximal number of shifts 
assigned to each vehicle (S) can be used. Constraint 
(20) ensures that the same group does not have two 
vehicles with overlapping shifts. The variables are 
defined in (21) and (22). 

4 COMPUTATIONAL RESULTS 

To test models, instances were generated by 
randomly changing parameters related to the number 
of nodes (demand points), locations and the response 
time. Table 1 presents the computational results. The 
headings in that table are: N: number of demand 
nodes, LOC: number of candidate locations, RT: 
Response time, OF: objective function obtained by 
running both models, IM refers to the integer model 
and BM to the binary model; Column DIFF compares 
the values of objective function for both models - in 
percentages. TIME represents the maximum time in 
seconds that the model optimizer ran; for values equal 
to 3600 the optimizer finished without finding an 
optimal solution. %Served Demand represents the 
percentage of served demand returned for both 
solution approaches.  

Due to the number of variables and constraints 
that are required when modeling the problem directly 
as a mixed linear integer problem, the Binary Model 
is only feasible for small problem instances. We use 
the mixed integer solver XPRESS-MP, running on a 
computer with an Intel Core i5 processor at 2.53 GHz 
and 4 GB of RAM memory.  

The results of comparing both models are 
presented in Table 1. For both models the solver was 
programmed to run for a maximum of one hour. For 
those problems taking a time less than 3600 in 
Column TIME, the solver was able to find an optimal 
solution.  
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Table 1: Comparison between the integer model (IM) and the binary model (BM). 

N LOC RT  
(min) 

OF Time (Sec) % Served Demand

IM BM DIFF IM BM IM BM 

36 5 5 7,065,880 7,065,880 0% 0.1 4.1 54% 54% 

36 5 15 11,313,916 11,313,916 0% 0.5 3,600 96% 96% 

36 5 30 10,119,238 10,119,238 0% 0.5 3,600 92% 91% 

36 10 5 13,567,621 13,567,621 0% 0.6 3,600 97% 97% 

36 10 15 12,307,853 12,307,853 0% 1.0 3,600 97% 96% 

36 10 30 11,973,344 11,973,344 0% 0.6 3,600 97% 97% 

100 10 10 10,488,912 10,488,912 0% 4.1 3,600 84% 83% 

100 10 20 10,023,735 10,023,735 0% 2.2 3,600 97% 94% 

100 10 30 8,690,822 8,689,170 0.02% 9.4 3,600 95% 95% 

100 20 10 11,717,514 11,716,026 0.01% 299.4 3,600 93% 91% 

100 20 20 10,557,368 10,550,887 0.06% 3,600.0 3,600 97% 94% 

100 20 30 9,141,004 9,137,759 0.04% 1.9 3,600 95% 94% 

196 10 10 6,361,196 6,361,196 0% 1.2 3,600 58% 57% 

196 10 20 9,108,291 9,097,342 0.12% 3,600.0 3,600 95% 95% 

196 10 30 7,401,324 7,385,140 0.22% 1.4 3,600 97% 92% 

196 20 10 10,768,594 10,768,594 0% 5.3 3,600 90% 89% 

196 20 20 10,367,695 10,339,842 0.27% 410.3 3,600 97% 94% 

196 20 30 8,491,289 8,491,289 0% 2.2 3,600 96% 95% 

612 20 20 9,243,522 9,226,088 0.19% 300.5 3,600 96% 95% 

612 20 27.5 7,623,919 7,623,919 0% 55.1 3,600 97% 90% 

612 20 35 5,864,936 5,864,936 0% 4.1 3,600 94% 90% 

1300 20 27.5 7,350,881 7,332,983 0.24% 300.7 3,600 85% 83% 

1300 30 27.5 8,620,143 8,580,416 0.46% 1,482.8 3,600 94% 89% 

   Average DIFF                  0.071%   

As is shown in the Table 1, the binary model is 
more time consuming and in all cases except one was 
not able to find optimal solutions in less than an hour. 
Insofar as the computational time is concerned, the 
results show that for the binary model, the number of 
demand nodes and location has a strong influence, the 
more demand nodes and locations, the greater the 
time needed to solve the problem. By contrast, the 
same cannot be established using the integer model. 
Finally, the percentage of served demand for the 
integer model was always higher than, or at least 
equal to, to the result of the binary model. 

In order to determine the characteristic of the 
solution in relation to the effect of the response time 
on the served demand by capacity, coverage and 
finally profits, we resolved ten instances in which the 
response time (R) varied between 12.5 minutes and 

35 minutes and the number of demand nodes and 
locations remained constant, with values of 612 and 
20 respectively. In these examples the time-lapse for 
an interval (L) was 60 (one hour). Figures 1 and 2 
show the impact of the response time.  

It is interesting to note that for low response times, 
the profits are low, and when the response time 
increases, so do the profits. The fact that profits begin 
to fall at a certain point implies that there is a response 
time that maximizes profits. This behavior can be 
explained as follows: for lower response times, the 
served demand by coverage is small because there are 
demand nodes that cannot be reached.  By contrast, 
the served demand by capacity is high because the 
time that it takes to serve a patient is short and so a 
higher demand can be served per hour. 
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Figure 1: Relation between served demand and profits. 

 
Figure 2: Relation between served demand, served demand 
by capacity and served demand by coverage. 

On the other hand, when we have higher response 
times, the served demand by coverage is high (we can 
reach more demand nodes) and the served demand by 
capacity is low (we spend more time attending a 
patient). In conclusion, for lower response times, we 
have low profits because the costs are low but the 
revenues are low and also because we cannot cover 
so many patients. For higher response times, we have 
low profits because the costs related to the number of 
vehicles are high. 

5 CONCLUSIONS 

This study provides some initial practical insights into 
the location and shift problem for home-healthcare 
services. We employ two mathematical models to 
solve the problem. The results of the experiment show 
that our Integer model can provide much better 
solutions than the Binary model in terms of resolution 
time. In future works we want to explore solution 
methods for larger instances using open-source 
solvers. 

In the model we use, profits become an objective 
and depend on the number of served patients and the 
associated costs of attending those patients, which is 
defined by the number of vehicles and shifts used. To 
describe and calculate the actual served demand, we 
used two variables: served demand by capacity and 
served demand by coverage. The former represents 
the amount of patients who can be served in relation 
to the number of available vehicles and the time 
needed to attend to one patient; and the latter 
represents the number of patients who can be reached 
in the response time. Similarly, we investigated the 
influence of the response time on these variables, 
concentrating on profits and how it is possible to find 
a value for the response time which yields the best 
results. For the solution strategy, we propose two 
mathematical models but more research is needed to 
deal with large problems. 
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