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Abstract: Detecting salient regions in an image or video frame is an important step in early vision and image understand-
ing. We present a visual saliency detection method by measuring the difference in color content of an image
segment with that of its neighbors. We represent each segment with richer color descriptors in the form of a
regional dominant color descriptor. The color difference between a pair of neighbors is found using the Earth
Mover’s Distance. The cost of moving color descriptors between neighboring segments robustly captures the
difference between neighboring segments. We evaluate our method on standard datasets and compare it with
other state-of-the-art methods to demonstrate that it has better true positive rate at a fixed false positive rate
in detecting salient pixels relative to the ground truth. The proposed method uses local cues without being an
edge highlighter, a common problem of local contrast-based methods.

1 INTRODUCTION

Visual saliency detection is a useful early step in many
computer vision applications to focus attention to the
most prominent object or region in an image or video.
As such, a salient region is one that stands out, or acts
as an outlier, with respect to other regions in its vicin-
ity. The important considerations for a pixels or re-
gion to be salient are as follows. First, we consider
the uniqueness in color space: color is one of the most
important feature which differentiates between salient
and non salient pixels; a salient group often stands
out because it is different in color content compared
to other groups. Secondly, visual fixation occurs in
clusters (Treisman, 1982), (Ben-Av et al., 1992). The
so-called superpixels are a suitable representation of
clustering of pixels. Superpixels are mostly homo-
geneous in image content and often conform to edge
definition in an image. Hence, superpixel segment
(Felzenszwalb and Huttenlocher, 2004) can be chosen
as the lowest level primitives. When so doing, it has
the additional benefit of reducing the computational
cost of comparisons drastically when compared to the
cost using pixels or pixel-centered neighborhoods.

A number of methods have been proposed in
the literature to detect image saliency (Liu et al.,
2007),(Itti et al., 1998),(Harel et al., 2006),(Ma and

Zhang, 2003),(Goferman et al., 2010),(Lin et al.,
2013). The color contrast-based methods for saliency
detection is done using either global comparison
(Singh et al., 2014), (Cheng et al., 2011), (Perazzi
et al., 2012) or local comparison (Goferman et al.,
2010), (Liu et al., 2007). Since the eye fixation pro-
cess of biological vision responses to local cues, the
local comparison methods are de facto edge high-
lighters in that they highlight the region around the
edge boundary (Fig 1).

In this paper we present a method which uses lo-
cal contrast to highlight a whole salient segment. The
saliency detection method is based on the difference
of the salient region within its neighborhood, or the
outlierness of the region. We summarize the color
content of each segment by its dominant color de-
scriptors (DCD). An advantage of using the DCDs is
that DCDs of all image segments or regions are of the
same size, irrespective of the number of pixels in the
region. This DCD property facilitates the use of the
Earth Mover’s Distance to measure the difference of
the region’s DCD and those of its neighbors to deter-
mine the outlierness of a region.

The novelty of our method lies in exploiting the
segment signatures of DCDs and the choice of met-
ric, viz. the Earth Mover’s Distance (EMD) to com-
pute the color contrast. EMD was considered to be the
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Figure 1: Examples of image saliency detection. Top row:
Input image. Middle row, left to right: Methods SO (Liu
et al., 2007), IT (Itti et al., 1998), GB (Harel et al., 2006);
Bottom row, left to right: Methods MZ (Ma and Zhang,
2003), CA (Goferman et al., 2010), EMD proposed in the
present paper. The saliency map’s highlighted area varies
depending on the method used.

best metric when comparing equal sized signatures,
such as in the case of DCDs (Rubner et al., 2000a).
EMD also enables us to make a weighted comparison
between color feature vectors, so that color is used
proportional to its importance. The contrast differ-
ence between segments is estimated by the amount of
work needed to move the color from one segment to
another. The more the amount of work is required for
moving the contents, the more is the perpetual differ-
ence between segments.

When compared to the other color-contrast meth-
ods, the proposed algorithm uses only the neighbor-
ing segments to infer saliency and uses richer descrip-
tors than, say, color averages. By highlighting whole
salient objects, it overcomes problems associated with
the local methods that act as edge highlighters (Per-
azzi et al., 2012).

2 SALIENCY DETECTION

We formulate the visual saliency as a measure of the
amount of color difference between neighboring im-
age segments. This formulation results in a graphi-
cal structure where each image segment is seen as the
receiver of color from connected segments. In this
section we discuss in detail the color description of
each segment, a metric for comparison and a multi-
resolution step for finding best segment. Fig. 2 shows
the flow diagram for the saliency detection algorithm.

2.1 Superpixel Segmentation and
Summarization

An input image is first divided into superpixel seg-
ments. Superpixels are usually homogeneous and
conform to image edges, making them good primi-
tives for comparison. Superpixels are of various sizes
and to make true comparisons we need to use a nor-
malized representation. Each superpixel’s color infor-
mation is summarized using the DCD.

The dominant color descriptor was introduced in
the MPEG-7 standard (Manjunath et al., 2001) to pro-
vide a compact description of an image for appli-
cations such as content-based image retrieval from
a collection of images of different sizes. We com-
pute a DCD not for the entire image but for each
superpixel segment. A descriptor for each super-
pixel therefore consists of a set of representative col-
ors and their corresponding percentages in the super-
pixel region. DCDs provide a perceptually closer rep-
resentation of the input image (Singh et al., 2014),
hence they form a better descriptor model for com-
parison. The DCD for the kth image segment is given
by DCDk = {(cki, pki) : i = 1, · · · ,Nk}, where cki is a
color in the CIE L*a*b* space, pki is a percentage
of pixels in the superpixel represented by the corre-
sponding color. The CIE L*a*b* color space is cho-
sen, as it supports double opponency and is perceptu-
ally similar to the color scheme in the human visual
cortex (Engel et al., 1997). There are different ways
proposed in the literature to compare two DCDs. One
such comparison method (Yang et al., 2008) is given
as

D2(DCD1,DCD2) = 1−
N1

∑
i=1

N2

∑
j=1
{(1− (p1i− p2 j))

×min(p1i, p2 j)a1i,2 j}
(1)

where a1i,2 j is the similarity between colors c1i and
c2 j, given by

a1i,2 j =

{
1−d1i,2 j/Td , d1i,2 j ≤ Td
0, otherwise (2)

where d1i,2 j is the Euclidean distance between colors
c1i and c2 j, and Td is a threshold set between 0 and 1.

2.2 Saliency Computation

In this section we discuss in detail the steps followed
to compute the saliency of a superpixel segment. As
mentioned before, the color signature of each segment
is represented by the clustered dominant colors.
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Input Segments DCD Segment Signatures EMD Flow Final Output

Figure 2: Flow diagram for the proposed local comparison-based saliency detection algorithm.

Algorithm 1: DCD computation.

Input: Pixels ∈ Superpixel
Output: Dominant Color Desciptors
RGB→CIEL∗a∗b∗ transform;
N = superpixel.size() ;
while i≤ N do

Read all pixels in a superpixel[i] ;
Create 4 DCD cluster C1,C2,C3,C4;
Cluster colors using K-means;
for j← 1; j < 4 do

for k← j+1; j < 4 do
if ‖C j−Ck‖2 < δ then

Merge Clusters ;
else

Continue;

Compute % of pixels for each DCD;

Figure 3: Image signature computed using dominant color
descriptors.

The difference in DCD signatures is calculated us-
ing the Earth Mover’s Distance (EMD). The EMD
measures the minimum amount of work required to
move the color contents of one superpixel segment
to those of another superpixel segment. This metric
gives us the amount of perceptual color difference be-
tween the superpixel segments.

The EMD finds its roots in a known solution of the
transportation problem or Monge-Kantorovich prob-
lem. Suppose there are several suppliers and several

consumers; the solution of the transportation problem
is to find the least expensive flow of goods from the
suppliers to the consumers.

For comparing visual information, the EMD
(Rubner et al., 2000a) was introduced as a metric to
compare two distributions in a transformed feature
space, where a measure is computed as the amount of
ground distance moved. EMD has been used as a met-
ric for comparing the dissimilarity between two distri-
butions of color and texture in image retrieval (Rubner
et al., 2000b) and saliency detection (Lin et al., 2013).

The EMD is formalized as a linear program-
ming problem (Rubner et al., 2000a). In our con-
text, let P and Q be two segments represented by
the dominant color descriptors as two signatures
DCDP = ((cP1,wP1) · · ·(cPm,wPm)) and DCDQ =
((cQ1,wQ1) · · ·(cQn,wQn)), where cPi and cQ j are
color cluster representatives of P and Q, respectively,
and wPi and wQ j are the corresponding percentages of
pixels as weight of the clusters. Let D = [di j] be the
cost matrix or the ground distance matrix for moving
color between DCDP and DCDQ so that di j is the pair-
wise distance in the CIE L*a*b* space between two
colors, one from each DCD:

di j = ||cPi− cQ j||. (3)

The flow F = [ fi j] between DCDP and DCDQ is min-
imized by

WORK(P,Q,F) =
m

∑
i=1

n

∑
j=1

di j fi j. (4)

The EMD is defined as the work done from Equation
4, normalized by the total flow and given as

EMD(P,Q) =
∑m

i=1 ∑n
j=1 di j fi j

∑m
i=1 ∑n

j=1 fi j
(5)

where total flow ∑m
i=1 ∑n

j=1 fi j is given as
min(∑m

i=1 wPi,∑n
j=1 wQ j).

The EMD solution is subjected to the following
constraints:
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1. Supplies are moved only from P to Q one way;
i.e.,
fi j ≥ 0,1≤ i≤ m,1≤ j ≤ n

2. Limits the amount of supplies that can be sent
from clusters to the weights; i.e.,
∑n

j=1 fi j ≤ wPi,1≤ i≤ m

3. Limits the clusters in their weights; i.e.,
∑m

i=1 fi j ≤ wQi,1≤ j ≤ n

4. Force to move maximum amount of supply; i.e.,
∑m

i=1 ∑n
j=1 fi j = min(∑m

i=1 wPi,∑n
j=1 wQ j)

The major advantage of using EMD for superpixel
comparison is that it captures the signature of super-
pixels better than an average color or position value.
Another advantage of using EMD is that it matches
similarities (or finds dissimilarities) in a way that is
consistent with human perception. EMD is a true met-
ric of comparing the distributions of similar masses,
which is the case when the superpixels are approxi-
mately similarly sized. Our use of the EMD is similar
to comparing histograms, where the amount of work
done to move the bin contents from one histogram to
another is a measure of the dissimilarity between the
two histograms.

We note that EMD has been used to compare his-
tograms in saliency detection (Lin et al., 2013). In that
work, EMD was used to compute the center-surround
difference in the framework of (Itti et al., 1998). The
center-surround difference is computed directly from
the color values of two image regions, so that the his-
tograms have a large number of bins. Two histograms
a and b have the same number of bins and the corre-
sponding bins ai and bi represent the same range of
colors, for all i. In our work the color information in
each segment is summarized by a DCD. Each of the
DCDs being compared may have up to 4 components
and each component can represent a different color. In
terms of EMD computation, the cost matrix D in (Lin
et al., 2013) is large, computed once, and fixed for all
pairs of histograms in an image whereas the matrix D
in our work is much smaller (at most 4 by 4) and is
computed for each pair of DCDs being compared.

Aggregating the Difference: The saliency of the
Pth segment is computed by aggregating all the work
done associated with moving colors from neighbor-
ing segments. The aggregated average saliency for
segment P is given by

ˆSalP =
K

∑
k=1

EMD(P,Qk) (6)

where K is the total number of neighbors, and the
EMD between segment P and a neighboring segment
Qk is found using Equation 5.

Biasing for Center: There is an inherent central
bias in visual saliency maps (Borji and Itti, 2013).
The central bias is updated by penalizing the segments
that are far from the center in the following way:

SalP = ˆSalP(1−δ) (7)

where ˆSalP is the saliency value for Segment P and δ
is the normalized distance of the segment center from
the center of the image.

2.3 Normalization Step

The human visual system suppresses the low level re-
sponses and focuses attention on stimuli with higher
level responses. In this algorithm, the focus is desired
to be on salient objects. A generic objectness measure
is used, which is the probability of occurrence of an
object in a window (Alexe et al., 2012). Sampling for
object windows gives the notion of objectness (Sun
and Ling, 2013), which ensures a higher probability
value for the occurrence of an object. The normalized
saliency map is given by

Salnorm =
1
2
(Salmap +Ob jmap) (8)

where Salmap is the final saliency map formed by
compositing the saliency values of the superpixel seg-
ments computed from Equation 7 and Ob jmap is the
objectness map.

2.3.1 Choosing the Best Segmented Image

The major limiting factor is the quality of the super-
pixel segmentation algorithm. If the segmentation al-
gorithm divides the salient region into very small seg-
ments, the overall saliency algorithm enhances small
segments found between salient and non-salient re-
gions. In Fig. 4, an example of this is shown. To

Input Image Segments Saliency Map Ground Truth

Figure 4: Limitations due to non cohesive segmentation.
Non-cohesive(top row) and cohesive (bottom row) segmen-
tation.
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Input Saliency Map Ground Truth Input Saliency Map Ground Truth Input Saliency Map Ground Truth

Figure 5: Saliency map results for four publicly available, standard datasets. Each row corresponds to a different dataset. On
each row, we show three representative triplets of an input image, the saliency map, and the ground truth image.

overcome this, a measure for finding best segment
(Bagon et al., 2008) is integrated into the algorithm.
The goodness measure is based on the following con-
ditions: i) every pixel belongs to a region, ii) every
region is spatially connected, iii) regions are disjoint;
and iv) all pixels in a region satisfy a specified simi-
larity.

Initially, the input image is segmented into multi-
ple images, each with superpixels at a particular res-
olution. The resolution that gives the the best good-
ness measure is chosen for further processing. From
this resolution, the superpixels image with best cohe-
sive segmentation is generated. The more cohesive
the segments will result in better saliency detection.

3 EXPERIMENTS

3.1 Implementations

The local comparisons based saliency detection algo-
rithm was implemented using C++ and the OpenCV
library, which has an implementation of EMD. For su-
perpixel segmentation, the publicly available imple-
mentation given by Felzenszwalb et al(Felzenszwalb
and Huttenlocher, 2004) was used. On average, the
saliency computation took about 0.4 seconds on a sin-
gle core, 3 GHz Intel i5 processor with 8 GB RAM.

Data Sets: For the experiments, the standard
data sets ASD (Achanta et al., 2009), LSD (Li
et al., 2013), 2-SED (Alpert et al., 2007) and
complex-scene (CSD) (Yan et al., 2013) were used.
ASD and CSD are two of the largest data sets
publicly available with 1,000 images each. Each
image in ASD has a single stand out object while
each image in the CSD set has multiple stand

Algorithm 2: EMD-based saliency detection.
Input: Input Image
Output: Saliency Map
RGB→CIEL*a*b* ;
numRes→ 20 ;
for j← 0; j ≤ numRes do

Res[ j]→ goodSegmentScr() ;

BestSeg = max(Res[ j]→ goodSegmentScr()) ;
N = BestSeg.size() ;
while i≤ N do

Compute DCDi ;
Compute spi avgX,avgY;
Compute Image signature ;
Compute neighListi ;

while i≤ N do
sumSal = 0 ;
while k ≤ N do

Compute cost matrix ;
Compute emdik = ;
sumSal = sumSal + emdik;

Aggregate total difference ;
δ = ||spi→ avgX ,avgY − img→
avgX ,avgY ||2 ;
Account for center bias Sali(1−δ) ;

out objects; each image in 2-SED has two salient
objects and LSD has images with different categories.

Results: The results of testing the proposed method
are shown in Fig. 5, in which each row shows the
results of a dataset, organized as triplets of an in-
put image, the result saliency map, and the ground
truth. The saliency map should be visually closer to
the ground truth image.
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Figure 6: ROC curves of comparing the proposed method (“EMD”) with (a) the baseline average color method, (b) other local
contrast methods, and (c) other global contrast methods.

3.2 Evaluation

We assess the performance of different methods as
follows. For each input image, we obtain the saliency
map from a given method and compare it to the
ground truth. The ground truth map is either on (“1”)
or off (“0”). Over a threshold value, when a ground
truth “1”-pixel is labeled as “salient,” that pixel is
considered a true positive. On the other hand, when a
ground truth “0”-pixel is labeled as “salient,” it is con-
sidered as false positive. We average the performance
over all images in a dataset. We plot the true positive
rate against the false positive rate to obtain the ROC
curve, which is used for quantitative evaluations. The
area under the curve shows how well the saliency
algorithm predicts against the ground truth, which is
the human fixation data or the salient segment. The
following two sets of quantitative evaluation are done.

Baseline Comparison: It shows that EMD is a
better metric by comparing it to commonly used av-
erage color comparison. For consistency, the average
color map is normalized with the objectness map.
From Fig. 6a, it can be seen that the EMD-based
metric works better.

Comparison to State-of-the-Art Methods:
A comparison with local contrast-based saliency
detection methods CA (Goferman et al., 2010), IT
(Itti et al., 1998), GB (Harel et al., 2006), MZ (Ma
and Zhang, 2003), LC (Zhai and Shah, 2006), and
global contrast-based saliency detection methods AC
(Achanta et al., 2009), MRSD (Singh et al., 2014),
SF (Perazzi et al., 2012), RC (Cheng et al., 2011) on
the data set ASD (Achanta et al., 2009) is done. It
is worth noting that each of these methods is based
on contrasting the color information, either locally
or globally, to detect the salient regions. For this

data set, each author has publicly available results.
The ROC curve implementation given by (Borji and
Itti, 2013) is used to compare the proposed method
(“EMD”) to local methods and global methods,
shown in Fig. 6b and Fig. 6c, respectively.

Visual Comparison: A visual comparison of the
results is also presented to illustrate the performance
of the proposed method (“EMD”) compared to other
local contrast methods. (Fig. 7). The visual compari-
son shows that our method robustly highlights salient
segments for various input images.

4 CONCLUDING REMARKS

A novel saliency detection algorithm by finding the
amount of work done by moving dominant color de-
scriptors from the neighboring superpixel segments is
presented. This work overcame earlier problems of
edge highlighting associated with local comparison-
based methods. The EMD along with DCD captures
the color difference better hence resulting in a bet-
ter saliency map. Experimental results show that our
results are more consistent with the human vision’s
attention.

Our work shows a new promising direction of us-
ing EMD metric for local comparison-based saliency
detection with quantitative results better than local
comparison-based state-of-the-art methods. Ongoing
work includes comparing the information from the
objectness measure (Alexe et al., 2012) with other
methods of extracting objects recently proposed (Li
et al., 2014). Other ongoing work includes extending
the method to compute saliency not just from a single
frame but from a larger collection of images.
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Input Image CA GB IT LC MZ EMD Ground Truth

Figure 7: Visual comparison with other state-of-the-art-methods. In each row, from left to right are an input image, followed
by results from methods CA (Goferman et al., 2010), GB (Harel et al., 2006), IT (Itti et al., 1998), LC (Cheng et al., 2011),
MZ (Ma and Zhang, 2003), result from the proposed EMD-based saliency method (“EMD”), and the ground truth.
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