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Abstract: We present a framework that allows monitoring of the cloud-based applications and environments to verify 
fulfilment of Service Level Agreements (SLAs), to analyse and remediate detectable security breaches that 
compromise the validity of SLAs related to storage services. In particular, we describe a system to facilitate 
identification of the root cause of each violation of integrity, write-serializability and read-freshness 
properties. Such a system enables executing remediation actions specifically planned for detectable security 
incidents. The system is activated in an automated way on top of storage services, according to an SLA, 
which can be negotiated with customers. 

1 INTRODUCTION 

Most of the Cloud Service Providers (CSPs) today 
offer their services through a Service Level 
Agreement (SLA) and the importance of it is 
undisputed. However, most of the SLAs are 
relatively simple and usually cover at most 
availability, support, and disaster recovery. While 
having these properties defined in SLAs is 
absolutely crucial, there are numerous incidents 
which are not covered. Imagine, for example, the 
scenario where for some reason the Cloud Service 
Customer’s (CSC’s) data on the cloud server gets 
corrupted. In this case, the service is still available 
and thus no recovery of service is needed, the 
support is available, too, but most probably the CSP 
does not have a mechanism to restore the corrupted 
file. Moreover, it is most likely that the data 
corruption would be detected, by the CSC, only 
when trying to access the file for the next time 
(which might be months after the corruption date). 

Thus, there is a need to introduce new properties 
in SLAs. In this paper, we focus on security 
properties that are the most critical in the cloud 
storage SLAs, i.e., confidentiality (C), integrity (I), 
write-serializability (i.e., consistency among up-
dates; denoted as WS), and read-freshness (i.e., 
assurance that the requested data is always fresh as 
of the last update; denoted as RF). Apart from 

providing C, I, WS, and RF guarantees to CSCs, 
there are also other needs: i) to continuously monitor 
the system in order to assure that the CSP’s 
commitments with respect to these features are 
fulfilled, and ii) to automatically react in case of 
detected violations in order to guarantee business 
continuity. Moreover, in order to enable the CSCs to 
prove a violation of some commitment to the CSP 
and to enable the CSP to disprove any potential false 
accusations from the CSC, developing a proof-based 
system is of utmost importance when it comes to 
assuring and enforcing security in cloud storage 
environment. We firmly believe that no SLA should 
be signed without an assurance of the existence of 
such a proof-based system (as without it the CSC 
has no mechanism to claim the compensations). As 
oppose to availability violations, which are usually 
quickly noticed and reported in news, the violations 
of integrity could be noticed only by the affected 
CSC. Thus, the CSC should have an undisputable 
proof of the SLA violation and should be notified 
about it immediately when the violation occurs.  

The authors of this paper are involved in a FP7-
ICT project SPECS (SPECS, 2013) whose objective 
is to address the issue related to cloud SLAs as far as 
security is concerned. To provide a solution to all 
these issues, we adopt the SPECS SLA management 
framework, enriching it with a proof system for the 
security properties that the CSP guarantees for 
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storage services. The SLA management framework 
can be put on top of any cloud storage provider to 
enhance it with the above mentioned security 
features. The framework supports continuous 
monitoring and automatic responses to violations of 
assured security properties specified in SLAs. In the 
following we focus on the innovative features 
related to storage services, while we suggest (Rak et 
al., 2015) for more details on the SPECS framework. 

Some of the above discussed concerns have 
already been tackled. How to enforce the above 
mentioned security features with SLAs and how to 
detect violations related to them has been discussed 
earlier. For example, Popa et al. (2011) provided a 
proof-based system (named CloudProof) for 
enforcing and monitoring each of the properties C, I, 
WS, and RF. We go one step further and provide an 
extension of the system that is able to distinguish 
among different types of attacks in case of their 
violations (CloudProof only detects that some 
security property is violated and it does not try to 
determine the root cause). Root cause analysis is 
important not only because it gives an insight into 
what is going on in the system, but also because with 
that kind of additional information CSPs can choose 
and apply optimal reactive measures to recover from 
the incident. 

This paper gives the following contributions.  

Auditor Extension. Our first novelty is the 
extension of the CloudProof’s Auditor in order to 
facilitate identification of the root cause of each 
violation of I, WS and RF properties. Such an 
extension enables us to develop and automatically 
apply specific remediation actions. 

Proof-based SLA Management Framework. In 
addition to the extended design of the Auditor, we 
provide a proof-based SLA management framework 
that monitors the system to verify fulfilment of 
SLAs, and analyses and remediates all detectable 
eventualities that compromise validity of SLAs. The 
proof-based system also assures proofs of violations 
which are valuable not only to the CSC which can 
prove CSP's misbehaviour, but also to the CSP 
which can disprove any false accusation. 

The paper is organized as follows. The current 
state of the art is discussed Section 2. Further details 
about SLAs and the introduced SLA management 
framework are presented in Section 3. The initial 
CloudProof’s Auditor is briefly discussed in Section 
4 and its proposed extension is presented in Section 
5. The proposed techniques for monitoring SLAs 
and automatically remediating SLA violations 
related to I, WS, and RF are elaborated in Section 6. 

Implementation details are discussed in Section 7, 
and the conclusions are discussed in Section 8. 

2 RELATED WORK 

An SLA is essential in formalizing a relationship 
between a CSC and a CSP. It specifies the way both 
parties share responsibilities and risks that are 
attached to them. Security breaches and system 
failures are just a few of the incidents that can occur. 
In all of these cases the consequences can include 
contractual termination and loss of customers, 
financial penalties and lawsuits, severe damage to 
CSP's business reputation and CSC's loss of 
sensitive data. Therefore, a number of SLA 
standardisation initiatives are working on defining a 
standard format for cloud SLAs. For example, the 
European Commission has developed 
standardisation guidelines for cloud SLAs (European 
Commission, 2014), Cloud Standards Customer 
Council published a practical guide to understanding 
cloud SLAs (Cloud Standards Customer Council, 
2015), and ISO/IEC JTC1/SC38 standardisation 
committee is actively working on defining a 
standard for cloud SLA framework and terminology 
(ISO/IEC, 2014). 

Every CSC should negotiate the desired and 
required cloud service and its security level in the 
form of an SLA, and each CSP should continuously 
monitor the provisioned service to assure the 
fulfilment of all commitments specified in the SLA. 
We consider every CSP to be untrusted, thus even 
something better than just an SLA management 
framework is needed, i.e., a proof-based system that 
guarantees transparency of CSP's operations and 
thus assures CSP's trustworthiness. For example, 
SLA management frameworks like SLA@SOI 
(SLA@SOI, 2009) and mOSAIC (mOSAIC, 2010) 
can detect SLA violations and are even able to 
recover from them, but no proof-based system is 
integrated that would provide proofs of violations. 
Thus nothing assures CSCs that they will be notified 
about any SLA violation and, most importantly, they 
will not be able to prove it and claim compensation. 

Some solutions exist that cover these issues for 
some specific security properties. For example, 
direct anonymous attestation scheme (Brickell et al., 
2004) is a privacy enhancing scheme that enables 
assertion of a physical or a virtual component by a 
trusted source while preserving confidentiality and 
privacy. The proof of data possession (see (Ateniese 
et al., 2007); (Erway et al., 2015); (Kaaniche et al., 
2014)) and proof of retrievability (see (Juels et al., 
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2007); (Shacham and Waters, 2013); (Bowers et al., 
2009)) notions enable the detection of tampering of 
the stored data. The first scheme allows the CSC to 
verify the integrity of its data stored in the cloud and 
the later scheme enables the CSC to verify that the 
CSP possesses the originally stored data without 
retrieving it. 

Similarly, the concept of proof of data ownership 
(Halevi et al., 2011) has been introduced to alleviate 
the CSP from storing multiple copies of the same 
data, and the transparency logging scheme (Pulls et 
al., 2013) has been introduced to enable data 
processors to inform users about the actual data 
processing that takes place on their personal data. 

Due to various laws and regulations requiring 
data to be stored and processed in specific 
geographic location, it is becoming very important 
to enable the CSC to have a proof of data location 
(see (Katz-Bassett et al., 2006); (Albeshri et al., 
2014); (Ateniese et al., 2011); (Watson et al., 2012)). 

CloudProof (Popa et al., 2011) addresses the 
issue of provable violations related to C, I, WS, and 
RF. The authors designed a cloud storage mechan-
ism that enables detection (with a specific 
monitoring system, namely the Auditor) and proofs 
of SLA violations related to these properties. 

The Auditor in CloudProof is based on 
attestations which are signed messages that 
accompany each CSC's request and each CSP's 
response. The CSP stores CSC's attestations for 
potential cases when the CSC would trigger false 
accusations. Similarly, the CSC saves all attestations 
received from the CSP. Additionally, the CSC sends 
all attestations to the Auditor, which then checks 
them in order to verify validity of I, WS, and RF 
commitments. Once attestations are sent to the 
Auditor, the Client can delete them. 

CloudProof attestations enable detection of I, 
WS, and RF violations. However, no work has yet 
been done to either identify root causes or to 
automatize the remediation actions. Note that once a 
violation is detected either due to a security breach 
or a system failure, more of them will most likely 
follow. So it is crucial to first identify the root cause 
of the event and then restore the system to the 
normal state accordingly. 

The Auditor can be used as a monitoring 
component of an SLA management framework. 
However, as opposed to many SLA management 
frameworks (e.g., SLA@SOI (SLA@SOI, 2009), 
mOSAIC (mOSAIC, 2010), SPECS (SPECS, 2013)) 
that have monitoring component tightly integrated 
with the rest of the components of the framework 
that is operated by the CSP, we claim that the 

monitoring and auditing components need to be 
independent and not operated by the service 
provider.  

To the best of our knowledge, none of the 
existing SLA management frameworks deal with 
automatic remediation of provable SLA violations. 
The majority of proposed solutions either focus on 
automatic deployment of cloud services (e.g., 
(Bonvin et al., 2011); (Addis et al., 2010); (Badidi, 
2013); (SLA@SOI, 2009)), SLA monitoring (Sahai 
et al., 2002), or prediction and detection of SLA 
violations (like (Emeakaroha et al., 2012); (Leitner 
et al., 2010)). Some SLA management solutions are 
focused on detection and remediation of 
performance related SLA violations (see 
(SLA@SOI, 2009), (Brandic et al., 2010)). 
However, a framework that would automatically 
negotiate, enforce, and monitor security SLAs, and 
remediate detectable security incidents through a 
proof-based system does not yet exists.   

To this end, the rest of the paper presents a new 
approach to solving the above discussed issues that 
was also adopted in SPECS (see (SPECS, 2013) and  
(Rak et al. 2015)). We present an enhancement of 
the CloudProof scheme and its integration into a 
new proof-based SLA management framework that 
not only detects and analyses security incidents and 
system failures, but also reacts to them in an 
automated way. 

3 SLA MANAGEMENT 
FRAMEWORK 

An SLA specifies all aspects of the service being 
provisioned by the CSP to the CSC. The agreement 
details not only the infrastructure and resources to be 
provisioned, but also the level of security to be 
assured for the acquired service, along with 
remedies for the failure to meet those levels. All 
these aspects are formalised with Service Level 
Objectives (SLOs) that represent CSP’s commit-
ments for a specific security property (i.e., for a 
specific security metric, e.g., WS or RF).  

Each SLA management framework and each 
CSP that offers SLAs are in need of the followings 
items: i) a system to negotiate CSP's services and 
their security properties in terms of SLOs; ii) a 
system that automatically deploys negotiated 
services in a secure manner; iii) a system that 
monitors negotiated commitments; and iv) a system 
that manages detected incidents or system failures 
that compromise validity of negotiated SLOs. 
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The SLA management framework that we 
propose aims at providing monitoring and remedia-
tion functionalities in the secure cloud storage 
domain. We assume that negotiation and deployment 
activities are managed by the CSP and are out of the 
scope of this paper. 

The framework comprises eight components and 
involves three entities, as depicted in Figure 1. 

The Client component handles all uploads and 
downloads of data and provides client-side encrypt-
ion (enforcing confidentiality). It operates directly 
on the CSC’s side independently from the CSP.  

 

Figure 1: Proof-based SLA management framework. 

The Main Server orchestrates all upload and 
download requests from the Client and handles all 
associated operations (i.e., writes and reads to the 
Main DB, performs backups). Similarly, the Backup 
Server and the Backup DB components manage and 
store, respectively, a copy of all CSC's data that can 
be retrieved in case of incidents or failures.  

The Monitoring System component monitors 
availability of both servers to guarantee business 
continuity and thus the fulfilment of all undertaken 
SLAs. In case of any SLA violation, either notified 
by the Monitoring System or the Auditor, the 
Remediation System component manages entire 
remediation process. These components reside on 
CSP's infrastructure. 

Note that in the proposed architecture, in order to 
increase security, both servers should be separated 
from database components; they should all reside on 
different VMs. In order to ensure the disaster-proof 
system, the CSCs’ data, the Backup Server and 
Backup DB should be physically separated from the 
main components. Additionally, all four components 
should be separated from the Monitoring and 
Remediation Systems.  

The functionalities of the Monitoring System and 
Remediation System are further elaborated in 
Section 6. 

The last entity involved in secure storage chain is 
a trusted Third Party (TP) that hosts the Auditor. I, 
WS, and RF are continuously evaluated by the 
Auditor. If any violations are detected, both CSP and 
CSC are notified. It is up to the CSP's Remediation 
System component to identify and apply the optimal 
corrective measures. Note that violation of I is 
evaluated and confirmed by the Auditor, but only the 
Client can detect it. 

Some might argue that a CSP cannot be trusted 
and that there is no guarantee for the CSC that the 
CSP will handle SLA violations in the CSC's best 
interest. But since the Auditor is and independent 
entity, there is no way for the CSP to not react to 
detected violations and hide it. If I, WS, and RF 
violations are not handled, the Auditor will keep 
detecting violations and keep notifying the CSC 
which might result in a termination of an SLA. 

When the CSC signs an SLA with C, I, WS 
and/or RF guarantees, the CSC is provided with the 
Client component and an URL of the Auditor.  

Confidentiality is enforced with the client-side 
encryption. But since the Client component which 
orchestrates encryption resides on the CSC’s infra-
structure, the CSP has no way of monitoring the 
code and ensuring its correctness. Thus confidentia-
lity is enforced by the CSP in terms of providing the 
CSC with the right Client code when the SLA is 
signed, but it is up to the CSC to maintain the code 
and assure its validity. 

Details about how the Auditor detects I, WS, and 
RF violations are presented in Section 4. 

4 AUDITOR IN CLOUDPROOF 

As mentioned in Section 2, the core objects of the 
auditing process are attestations. Each time the CSC 
wants to upload a file to the cloud, the Client 
performs a put request which contains the CSC’s 
data to be stored and a client put attestation. The 
CSP (i.e., the Main Server component) stores the 
data in the Main DB and returns the cloud put 
attestation. The Client has to provide the client put 
attestation in order to authorize the overwriting of a 
certain existing data with a new content. The CSP 
must respond to the request with the cloud put 
attestation which affirms that CSP received the data 
unchanged and successfully stored it. 

Similarly, every time the CSC wants to down-
load data from the cloud, the Client performs a get 
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request which contains the block ID of the desired 
data. The CSP (i.e., the Main Server component) 
returns the requested data along with the cloud get 
attestation. With this attestation the CSP certifies 
that the returned data is the right one. 

The Client automatically sends all cloud attesta-
tions to the Auditor. After each epoch (i.e., a prede-
fined fixed period of time) the Auditor checks the 
chain of attestations for the current epoch. The chain 
of attestations is correct if for each two consecutive 
attestations A1 and A2 the chain hash in A2 is equal 
to the hash of A2’s data and A1’s hash.   

For more details about the initial CloudProof 
system see (Popa et al., 2011). Details about the 
extension of the initial idea are discussed in the next 
sections. 

5 AUDITOR’S EXTENSION 

As mentioned Section 4, the CloudProof's Auditor is 
able to detect when CSC's commits have not been 
handled consistently by the CSP (violation of WS or 
modified illegitimately for some other reason; 
however, it does not distinguish between the two) 
and when the CSC has not received data when 
executing put request (violation of RF).  

The CloudProof’s Auditor can detect violations 
of I, but only after each epoch, when it checks all 
attestations (some get request attestation would not 
have the same data as the put request attestation for 
this data and this version). However, the Client can 
detect such a violation immediately and can trigger 
the auditing process right away to verify it (sends a 
notification to the Auditor). The Client can detect 
violation of I because it can calculate the hash of the 
encrypted data and compare it with the value in the 
attestation – also, authenticated encryption should be 
used which means that decryption handled by the 
Client would report an error when the data is 
changed illegitimately. 

An additional limit of the existing CloudProof’s 
Auditor is that it is unable to determine what the root 
cause of violations of WS and RF might be. It 
cannot determine whether a violation is an attack or 
a system error. But distinguishing between root 
causes of violations is crucial because entirely 
different incident responses are required for a system 
error and an actual attack. While detection of an 
attacker requires significant changes like restoring 
the service on another virtual machine, the detection 
of a database error might require only switching 
from a primary database to the backup. 

It has to be noted that CloudProof’s Auditor does 
not take into account violations of I detected by 
CSCs. The Auditor can by itself detect violation of I, 
but not in real-time. The Client can detect in real-
time with a get request that a block has been 
illegitimately changed and send a notification to the 
Auditor immediately. When the Client sends the get 
request to the server, the cloud get attestation is 
returned and contains chain hash and block hash of 
the requested data. With received chain hash the 
Client can calculate the block hash itself and 
compare it with the received block hash. If they do 
not match, the Client detects a violation of I. 

Moreover, not only integrity violations can be 
detected by the Client, a chain hash incorrectness 
can be discovered as well by checking whether the 
chain hash returned by the server in the put request 
is correct. The Client has a chain hash from the last 
get request for a block and can calculate the chain 
hash that is to be returned by the put request for the 
block (the chain hash that is to be contained in the 
returned cloud put attestation) using the hash of a 
block and other block metadata. If the Client’s 
calculated chain hash and the one returned from the 
Main Server are not equal, the Client detected hash 
incorrectness. Chain hash incorrectness means a WS 
violation. It can be detected by the CloudProof’s 
Auditor only at the end of an epoch. 

Since all this information detected by the Client 
is crucial for sustaining the security level specified 
in an SLA, with our approach all integrity violations 
and any detected chain hash incorrectness are imme-
diately notified to the Auditor for further analysis. 

In the following we describe an algorithm 
executed by the Auditor at the end of each epoch 
and when (if) the Client detects integrity violations 
or a chain hash incorrectness. The auditing process 
is also depicted in Figure 2 where each end node 
outlines metrics that have been affected by the 
detected violation (in bold), and remediation actions 
to be taken to recover from it. 

When the auditing process starts (either after an 
epoch or after a notification from the Client), the 
Auditor first checks if the chain of attestations (CA) 
is correct. If the chain of attestations is correct, the 
Auditor has to consider possible system failures 
notified by the Client. If the auditing process has not 
been triggered by the Client, then there is no viola-
tion of any SLA and the monitoring process can 
continue. If the auditing process has been Client trig-
gered due to a detected integrity violation, then the 
result is a violation of I and WS. In this case, a new 
Main Server and a new Main DB should be set up. 
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Figure 2: Auditing process. 

If the chain of attestations is not correct, the 
Auditor has to check for the occurrence of the fork 
attack, where the cloud maintains two copies of the 
data and conducting some writes and reads on the 
original data and others on its copy. In order to 
confirm or rule out the fork attack, the Auditor 
checks whether each put request has a correct chain 
of attestations behind it. 

If all put attestations have a correct chain behind 
them, then at some point the fork attack occurred 
which is a violation of WS. This is also a violation 
of RF since the CSC did not get the latest changes 
made by some other CSC. The Auditor can deter-
mine with which request the data has been forked. 
This information can later be used to set the system 
back to the time before the fork attack took place. In 
this case, a new Main Server and a new Main DB 
should be set up and the data should be restored 
from the backup to the version before the attack. 

In the case where some put request does not 
have a correct chain of attestations behind it, the 
Auditor has to check whether there exist two get 
requests for the same block that received the same 
version number but different block content. 

If such a pair of get requests exists, an attack 
might have happened. Two different CSCs received 
different block data accompanied by the same 
version and block number (violation of RF). This is 
with high certainty due to a deliberate attack thus the 
Main Server and the Main DB should be replaced. 
Note that also I might be violated in both of these 
get requests. If I is not violated in neither, it means 

that either keys have been stolen or some old version 
of the block (with old hash) has been returned – this 
has to be checked and a special warning has to be 
sent to the Client if keys are stolen. If I is violated in 
either of the two get requests, this might be due to a 
system error (e.g., failure of a disk where database 
resides between the two requests). Regardless, it is 
better to go with a stricter remediation action 
(replacing Main server and Main DB). 

When such a pair of get requests (for the same 
block that received the same version but different 
block content) does not exist, this means that some 
put request was not executed correctly and this 
represents a violation of the WS. In this case, the 
further process depends on whether the Client 
detected integrity violation. 

If the Client triggered the auditing process after 
detecting a violation of integrity (which the Auditor 
now confirms), both the Main Server and the Main 
DB have to be replaced. On the contrary, if the 
Client did not detect any issues, the Auditor checks 
whether the block meta-data (e.g., version number, 
block number) has been changed in a way that 
indicates a deliberate attack. 

If some element of the block metadata has been 
changed, e.g., the returned chain hash contains the 
previous version number and previous block hash, 
this might indicate a rollback attack. In this case, a 
new Main Server and Main DB have to be set up. 
On the contrary, if no metadata has been changed, 
then there are no indications for an attack. And since 
the assumption is that all issues are due to a system 
error, the Main Server should be switched to the 
Backup DB, which would then take the role of the 
Main DB, and a new DB should be set up which 
would take the role of the Backup DB. 

Whenever the Auditor detects or confirms a 
violation of any of the properties I, WS, and RF, 
both CSP and affected CSCs are notified about the 
violated property and the required remediation 
action. It is up to the CSP’s Remediation System 
component to execute remediation actions and it is 
up to the affected CSCs to claim compensations for 
the violation of the SLA. Of course, not all detected 
violations affect all CSCs. For example, a violation 
of WS only affects CSCs that have this property 
guaranteed in their SLA. 

In the next section we focus on the remediation. 

6 SLA REMEDIATION 

As described in Section 3, each SLA specifies CSC's 
security requirements in the form of SLOs that are 
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built on top of security metrics that the CSP can 
enforce and monitor. In this paper our focus is on 
secure storage metrics C, I, WS, and RF. 

In the SLA negotiation phase, CSCs have the 
opportunity to choose which of these properties 
should be enforced and monitored by the CSP. Once 
the SLA is signed, and all components are deployed 
and configured, the CSC can start using the acquired 
service. In order to fulfil all commitments in the 
undertaken SLAs, the CSP not only considers and 
manages notifications from the Auditor, but also 
uses its own Monitoring System component, which 
oversees availability of servers and databases. 

In case when the Monitoring System detects that 
one of the servers or databases is unresponsive or 
unavailable, it has to react since this may not only 
cause delays in the service but also errors that can 
affect I, WS, or RF. 

Monitoring system continuously checks 
responsiveness of both servers and databases. If at 
any moment any of them is unresponsive, the 
occurrence is notified to the Remediation System 
component which first tries to restart it. If that solves 
the issue, monitoring continues. If restarting the 
unresponsive component does not help, the 
Remediation System tries to deploy another instance 
of the unresponsive component. When there is a 
need to deploy a new database, the Remediation 
System also triggers backup or restoration of data. If 
any of these steps fail to recover the system to a 
normal state, this may threaten the success of future 
put and get requests (i.e., validity of SLOs related 
to I, WS, and RF metrics), thus the CSCs should be 
notified about the event. 

CSP’s Remediation System component has to 
manage notifications of incidents and failures that 
are sent not only from the Monitoring System, but 
also the ones sent from the Auditor. As seen 
previous section, the Auditor not only detects vio-
lation of secure storage metrics, but also performs 
root cause analysis and identifies the proper 
remediation action. When a notification of a viola-
tion is sent to the Remediation System, the Auditor 
reports about which metrics are violated (so that the 
CSP can determine the damage with respect to the 
affected SLAs), what the remediation plan is (to 
execute it), and which version of the data is the last 
correct one (to restore the data to the right version). 

Remediation actions considered by the Auditor 
consist of either switching the Main DB to the 
Backup DB and setting up a new DB to take the role 
of the new Backup (case 1), or setting up a new pair 
of Main Server and Main DB components and 
restoring the data to a certain state (case 2).  

In the first case, the Main Server is connected to 
the Backup DB which takes the role of the new 
Main DB. A new database is set up which takes the 
role of the Backup DB. Backup of the entire 
database is executed immediately. 

When there is a need to set up a new Main 
Server and a new Main DB, all data also have to be 
restored from the backup DB to a certain version as 
suggested by the Auditor.  

7 IMPLEMENTATION 

As seen from the remediation plans discussed above, 
all activities orchestrated by the Remediation 
System component (and also those managed by the 
Monitoring System component) can be easily 
automatized with one of the existing management 
and orchestration tools like Chef (Chef, 2008).  

In SPECS, remediation process is handled by 
two components, namely Remediation Decision 
System which identifies remediation actions needed 
to recover from SLA violations and Implementation 
component integrated with Chef which executes 
remediation plans. Code and further details are 
provided at (SPECS Team, 2015)). 

Other components of the framework described in 
Section 3 have also been implemented and are 
available on Bitbucket (SPECS Team, 2015). 

8 CONCLUSIONS 

The main concerns in today’s cloud environment for 
CSCs and CSPs are security and trustworthiness, 
respectively. To this end, we have presented a 
solution that assures security to CSCs in a 
transparent way and consequently increases trust in 
cloud providers. We have introduced an SLA 
management framework that supports a proof-
system for security properties particularly related to 
cloud storage providers, namely confidentiality, 
integrity, write-serializability, and read-freshness.  

The proposed framework is based on the existing 
CloudProof solution which is able to detect 
violations of the above mentioned security proper-
ties, but has been extended to enable root cause 
analysis and remediation of detected violations. 

In our future work, we aim to extend our root 
cause analysis approach to include more 
information. Currently, the root cause analysis is 
conducted on the basis of the information provided 
for one single event, whereas in our future research 
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we intend to include historical monitoring and 
remediation data to perform broader threat analysis. 
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