
Towards Performance Prediction in Massive Scale Datastores

Francisco Cruz, Fábio Coelho and Rui Oliveira
INESC TEC & Universidade do Minho, Braga, Portugal

Keywords: Performance, Cloud Computing, NoSQL Databases.

Abstract: Buffer caching mechanisms are paramount to improve the performance of today’s massive scale NoSQL
databases. In this work, we show that in fact there is a direct and univocal relationship between the resource
usage and the cache hit ratio in NoSQL databases. In addition, this relationship can be leveraged to build a
mechanism that is able to estimate resource usage of the nodes composing the NoSQL cluster.

1 INTRODUCTION

Massive scale distributed key-value datastores (pop-
ularly referred to as NoSQL databases) are becom-
ing pivotal systems in nowadays infrastructures. They
support some of the most popular Internet services
and have to cope with huge amounts of data while of-
fering stellar performance. In fact, their highly desir-
able performance, scalability and availability proper-
ties cannot be achieved without carefully choosing its
underlying infrastructure and without adequate data
allocation. All requiring real scenario testing and per-
formance prediction.

Similar to traditional relational databases, NoSQL
databases make heavy use of buffer caching mecha-
nisms, in order to improve the performance of read
requests. Moreover, the effectiveness of such mech-
anisms is directly related to the performance and,
as a consequence, to the resource utilization of the
database. This effectiveness can be measured in terms
of the hit ratio that the caching mechanism exhibits.
The higher the cache hit ratio the more effective the
cache mechanism is, and thus more performant is the
database.

In this position paper, we set up some experiments
to demonstrate that there is a direct relationship and
univocal relationship between the cache hit ratio and
the resource utilization. Stemming from this relation-
ship, we envision that it is possible to take advantage
of this relationship in order to estimate the resource
usage of NoSQL databases simply by knowing its
cache hit ratio, as it is a reflection of the data size and
the request distribution, and the incoming throughput.

2 BACKGROUND

Caching mechanisms are crucial to improve the
performance of computing systems. In particular,
databases make use of buffer caching to improve their
read performance. When using caching one of the
main goals is to try to keep the cache hit rate as high
as possible. The cache hit rate measures the percent-
age of requests that result in a cache hit. A high hit
cache rate means that a good number of requests are
being served exclusively by the cache, and thus op-
timizing resource consumption. In other words, this
means using less CPU and less I/O operations. As
a result, the cache hit ratio is directly related to re-
source consumption. When the data size exceeds the
cache size, eventually, some data in the cache needs to
be removed to give room to more frequently accessed
data. One of the most widely used cache replacement
algorithms (Puzak, 1985). is the Least Recently Used
(LRU) algorithm (Sleator and Tarjan, 1985), and it is
used by NoSQL databases in their implemented buffer
caches (George, 2011) (L. and M., 2009).

NoSQL databases focus on high throughput, high
scalability and high availability, in addtiion they run
in a distributed setting with tenths to hundreds of
nodes, usually composed of commodity hardware.
The application data is partitioned and these parti-
tions are assigned to the available nodes according to
a data placement strategy. In HBase, nodes are called
RegionSevers and data partitions are referred as re-
gions. Contrasting with relational database manage-
ment systems (RDBMS), these databases only pro-
vide a simple key-value interface to manipulate data
by means of put, get, delete, and scan operations and
they do not offer strong consistency criteria. Based on
Bigtable (Chang et al., 2006), HBase’s data model im-

Cruz, F., Coelho, F. and Oliveira, R.
Towards Performance Prediction in Massive Scale Datastores.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 371-373
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

371



plements a variant of the entity-attribute-value (EAV)
model and can be thought of as a multi-dimensional
sorted map. This map is called HTable and is indexed
by the row key, the column name and a timestamp.
HBase has a block cache implementing the LRU re-
placement algorithm. Several key-values are grouped
into block of configurable size and these blocks are
the ones used in the cache mechanism. The block size
within the block cache is a parameter but defaults to
64KB.

3 INTERDEPENDENCE OF
RESOURCE USAGE AND
CACHE HIT RATIO

The cache hit ratio has a great impact on how a sys-
tem performs and is thus directly related to its re-
source consumption. By resource consumption we
mean the amount of main memory used, the number
of I/O operations to distinct storage mediums and the
amount of memory/disk swapping needed. The server
usage encompasses the CPU time waiting for I/O op-
erations to complete (I/O wait), the time spent on user
space (CPUuser) and the time spent on kernel space
(CPUsystem).

Serverusage = I/Owait +CPUuser +CPUsystem

With this measure it is possible to have an accurate
picture of how the machine is using its resources. Al-
though the I/O wait corresponds to a period when the
CPU is free for other computational tasks, we are ad-
dressing a specific scenario that focus on a NoSQL
database where we cannot achieve a perfect paral-
lelism between I/O wait and CPU usage. In fact,
as most operations require network and/or disk re-
sources we must consider I/O wait to accurately rep-
resent the cost of such operations in the metric. Thus,
if the combined I/O wait and CPU usage reaches
100%, the throughput does not increase by adding
more clients.

In order to demonstrate that effectively the cache
hit ratio is related to server usage, we set up two dif-
ferent experiments using a HBase deployment and
YCSB (Cooper et al., 2010) as the workload gener-
ator. These experiments, while not necessarily repre-
sentative of real-world workloads, cover a wide spec-
trum of possible behaviors. With these we are able to
show a clear and direct relationship between the cache
hit ratio and server usage in NoSQL databases.

In both experiments, one node acts as master for
both HBase, and it also holds a Zookeeper (Hunt
et al., 2010) instance running in standalone mode,
which is required by HBase. Our HBase cluster was

composed of 1 RegionServer, configured with a heap
of 4 GB, and 1 DataNode. HBase’s LRU block cache
was configured to use 55% of the heap size, which
HBase translates into roughly 2.15 GB. We used one
other node to run the YCSB workload generator. The
YCSB client was configured with a readProportion
of 100% i.e. only issue get operations, and with a
fixed throughput of 2000 operations per second with
75 client threads so we solely analyze the impact of
cache hit ratio in server usage. All experiments were
set to run for 30 minutes with 150 seconds of ramp
up time and the results are the computed average of
5 individual runs. The server usage was logged ev-
ery second in the RegionServer node using the UNIX
top command. All nodes used for these experiments
have an Intel i3 CPU at 3.1GHz, with 8GB of main
memory and a local 7200 RPM SATA disk, and are
interconnected by a switched Gigabit local area net-
work.

In the first experiment, a single region was pop-
ulated using the YCSB generator with 4,000,000
records (4.3 GB). This means that the region cannot
be fitted entirely into the block cache: about 1.1 mil-
lions records (1.21 GB) remain on secondary mem-
ory and must be brought into main memory when re-
quested. There were two different scenarios each with
a different configured request popularity:
1. A uniform popularity distribution, that is all

records have equal probability of being requested
(the is the case where the cache hit ratio is mini-
mum (Sleator and Tarjan, 1985));

2. A zipfian popularity distribution, highly skewed,
and clustered, meaning that the most popular keys
are contiguous, which makes them fall in the same
cache block.

The results for this experiment are depicted in Ta-
ble 1. As expected, the uniform request popularity is
the one that achieves the lower cache hit ratio (49%)
and thus consumes more server resources (58.35%).
On the contrary, the zipfian request popularity attains
the higher cache hit ratio (93%), because the most
popular records are clustered and as a result fall in
the same block served by HBase’s block cache. And
because of that it consumes the least Server resources
(only 19.28 %) for the same 2000 ops/s.

Table 1: Average Serverusage and cache hit ratio results un-
der 2 different distributions, for a region not fitting in block
cache.

Distribution phit Average Serverusage #Records
Uniform 49% 58.35% 4,000,000
Zipfian 93% 19.28% 4,000,000

In the following experiment we show that two dif-

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

372



ferent distributions, with different data sizes but with
the same cache hit ratio, will have the same server
resources consumption if subject to the same fixed
throughput. Consequently, in this experiment we used
the same setting as the first experiment for the zipfian,
again populated with 4,000,000 records (4.3GB), but
we changed the number of records of the uniform dis-
tribution to 2,141,881(2.3 GB) so its cache hit ratio
could also be 93%. The throughput is again fixed at
2000 operations per second. From Table 2 it is possi-
ble to see that the amount of resources used by both
distinct distributions is identical. Despite the fact that
they have been populated with different data sizes.
Therefore, for some throughput all it takes to have an
identical server usage is an identical cache hit ratio,
regardless of the data size and the distribution.

Table 2: Average Serverusage and cache hit ratio results for
2 distributions with different sizes, but with same cache hit
ratio.

Distribution phit Average Serverusage #Records
Uniform 93% 19.76% 2,141,881
Zipfian 93% 19.28% 4,000,000

From both experiments we can infer that the cache
hit ratio is related to database resource usage: for a
given throughput, the higher the cache hit ratio, the
lower the server usage. In addition, the cache hit rate
reflects not only the data size, but also the underlying
distribution of requests which, in combination with an
incoming throughput, corresponds to a given server
usage.

As a result, we envision that the server usage of
any workload can be estimated simply by knowing
its cache hit ratio and incoming throughput, regard-
less of the distribution of requests and data size. In
that regard, it should be possible to to build a tridi-
mensional model, that models the server usage for
a NoSQL database, when the cache hit ratio and the
throughput vary. It is worth noting that by collapsing
the data size and the request distribution into a single
metric, the cache hit ratio, the construction of such
model should be simplified. Nonetheless, that model
will be hardware dependent and has to be rebuilt when
the hardware changes or when there are changes in
core configuration parameters of the database.

4 CONCLUSION

In this paper, we demonstrated that there is a direct
and univocal relationship between the server usage
and the cache hit ratio of NoSQL databases. Fur-
thermore. we propose that instead of a specific work-

load is characterized by the three common parame-
ters, namely: i) data size; ii) distribution of requests
and iii) incoming throughput; a workload can be char-
acterized by the incoming throughput and by its cache
hit ratio, as the latter is a reflection of the i) data size
and of the ii) distribution of requests. This simplifica-
tion can simplify the construction of a resource usage
server model that could then be used to estimate the
server usage for any combination of cache hit ratio
and incoming throughput.

ACKNOWLEDGEMENTS

This work was part-funded by project CoherentPaaS:
A Coherent and Rich PaaS with a Common Program-
ming Model (FP7-611068).

REFERENCES

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gru-
ber, R. E. (2006). Bigtable: a distributed storage sys-
tem for structured data. In OSDI.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R.,
and Sears, R. (2010). Benchmarking cloud serving
systems with YCSB. In SoCC.

George, L. (2011). HBase: The Definitive Guide. O’Reilly.
Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. (2010).

Zookeeper: Wait-free coordination for internet-scale
systems. In Proceedings of USENIX Conference
on USENIX Annual Technical Conference, USENIX-
ATC’10, pages 11–11.

L., A. and M., P. (2009). Cassandra - a decentralized struc-
tured storage system. In LADIS.

Puzak, T. R. (1985). Analysis of Cache Replacement-
algorithms. PhD thesis. AAI8509594.

Sleator, D. D. and Tarjan, R. E. (1985). Amortized effi-
ciency of list update and paging rules. Commun. ACM,
pages 202–208.

Towards Performance Prediction in Massive Scale Datastores

373


