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Abstract: Motor-Imagery offers a solid foundation for the development of Brain-Computer Interfaces (BCIs), capable 
of direct brain-to-computer communication but also effective in alleviating neurological impairments. The 
fusion of BCIs with Virtual Reality (VR) allowed the enhancement of the field of virtual rehabilitation by 
including patients with low-level of motor control with limited access to treatment. BCI-VR technology has 
pushed research towards finding new solutions for better and reliable BCI control. Based on our previous 
work, we have developed NeuRow, a novel multiplatform prototype that makes use of multimodal feedback 
in an immersive VR environment delivered through a state-of-the-art Head Mounted Display (HMD). In this 
article we present the system design and development, including important features for creating a closed 
neurofeedback loop in an implicit manner, and preliminary data on user performance and user acceptance of 
the system.

1 INTRODUCTION 

Motor Imagery (MI) is the mental rehearsal of 
movement -without any muscle activation- and is a 
mental ability strongly related to the body or 
‘embodied’ cognition (Hanakawa, 2015). MI appears 
to largely share the control mechanisms and neural 
substrates of actual movement both in action 
execution and action observation (Eaves et al., 2014), 
providing a unique opportunity to study neural 
control of movement in either healthy people or 
patients (Mulder, 2007; Neuper et al., 2009). Since 
MI leads to the activation of overlapping brain areas 
with actual movement, and because sensory and 
motor cortices can dynamically reorganize (Lledo et 
al., 2006; Rossini et al., 2003), MI constitutes an 
important component for motor learning and 
recovery. Hence, MI has important benefits and is 
currently utilized as a technique in 
neurorehabilitation for people with neurological 
impairments (Dickstein et al., 2013).  

MI offers an important basis for the development 
of brain-to-computer communication systems called 

Brain–Computer Interfaces (BCIs). BCIs are capable 
of establishing an alternative pathway between the 
brain and a computer or prosthetic devices (Wolpaw 
et al., 2002) that could assist (assistive BCI) or 
rehabilitate physically (restorative BCI) disabled 
people and stroke survivors (Dobkin, 2007).  

More recently, Virtual Reality (VR) feedback has 
also been used in MI BCI training, offering a more 
compelling experience to the user through 3D virtual 
environments (Lotte et al., 2013a). The fusion of BCI 
and VR (BCI-VR) allows a wide range of experiences 
where participants can control various aspects of their 
environment -either in an explicit or implicit manner-
, by using mental imagery alone (Friedman, 2015). 
This direct brain-to-VR communication can induce 
illusions mostly relying on the sensorimotor 
contingencies between perception and action (Slater, 
2009).  

The idea of utilising BCIs in virtual rehabilitation 
(virtual reality and tele-medicine for 
neurorehabilitation), was fostered in order to 
complement current VR rehabilitation strategies 
(Bermudez i Badia and Cameirao, 2012; Lange et al., 
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2012) where patients with low level of motor control 
–such as those suffering of flaccidity or increased 
levels of spasticity (Trompetto et al., 2014)- could not 
benefit due to low range of motion, pain, fatique, etc. 

The main challenge in the use of BCIs, regardless 
of the BCI cost, lies in the lack of reliability and good 
performance at the system level that inexperienced 
users have (Vourvopoulos and Bermúdez i Badia, 
2016) due to BCI “illiteracy” of users (inability of the 
user to produce vivid mental images of movement 
resulting in poor BCI performance) (Allison and 
Neuper, 2010; Vidaurre and Blankertz, 2009). 
Although previous studies have shown mixed results, 
the combination of haptic and visual feedback seems 
to increase the performance (Gomez-Rodriguez et al., 
2011; Hinterberger et al., 2004). It has been shown 
that replacing the standard visual BCI feedback with 
vibrotactile feedback does not interfere with the EEG 
signal acquisition (Leeb et al., 2013) and also does not 
impact negatively the classification performance 
(Cincotti et al., 2007; Leeb et al., 2013). On the other 
hand, it has been shown to have a positive effect on 
visual workload measured in a multiple object 
tracking task (MOT) where the data revealed 
significant differences between visual or tactile 
feedback (Gwak et al., 2014). It has also been shown 
that with the use of haptic feedback, the user cam pay 
more attention to the task instead of to the feedback 
(Cincotti et al., 2007), and in (Jeunet et al., 2015) 
users achieved higher scores in the vibrotactile 
feedback setting. Vibrotactile feedback has also been 
used in a hybrid BCI system (Yao et al., 2014), where 
MI with selective sensation (SS) were used in order 
to increase performance. On this system, equal 
vibration is applied to both wrists of the user and 
he/she has to imagine that the vibration to one of the 
sides is stronger than the other (SS). SS combined 
with MI increased the overall performance of the 
system. In (Jeunet et al., 2015), it is also reported that 
the vibrotactile feedback applied on the user's hand 
significantly increases MI performance. In 
(Leonardis et al., 2012) the use of vibrotactile 
feedback directly applied to certain tendons is used to 
convey the illusion of movement to the user, and in 
conjunction with a virtual representation of the arm, 
significantly increased the accuracy of a BCI system. 
Further, recent findings with the use of virtual arms 
have shown that the combination of motor priming 
(physical rehearsal of a movement) preceding BCI-
VR MI training can improve performance as well as 
the capacity to modulate and enhance sensorimotor 
brain activity rhythms, important in rehabilitation 
research (Vourvopoulos et al., 2015). 

In addition, there is an increased need for  

alternative motivational mechanisms and feedback 
approaches for BCI systems (Lotte, 2012; Lotte et al., 
2013b). Previous research in learning, states that a 
poorly designed feedback can actually deteriorate 
motivation and impede successful learning (Shute, 
2008) while providing extensive feedback to the user 
can lead to efficient and high quality learning (Hattie 
and Timperley, 2007). Lotte et al. recommended a set 
of guidelines for a good instructional design in BCI 
training, in which (1) the user should only be 
presented with the correct classified action for 
enhancing the feeling of competence; (2) provide a 
simplified and intuitive task; (3) meaningful and self-
explanatory task; (4) challenging but achievable, with 
feedback on progress of achievement; and finally (5) 
in an engaging 3D virtual environment (Lotte et al., 
2013b). 

To date, and to the best of our knowledge, there is 
not a holistic approach in BCI MI training that 
combines the advantages of different feedback 
modalities (immersive VR environment, vibrotactile 
feedback), training aproaches (motor priming 
preceding motor observation) and motivational 
mechanisms (game-like tasks). Further, in order to be 
able to harness the benefits of BCI in 
neurorehabilitation, two questions need to be 
addressed: (a) how can we increase user performance 
in BCI MI training, and (b) how can we maximize the 
activation of the brain areas responsible for actual 
movement. Answering these questions will enable the 
appearance of novel BCI paradigms that will allow us 
to promote more efficiently reorganization of 
sensorimotor cortices of motor impaired patients 
(such as for instance stroke), which ultimately can 
lead to higher levels of recovery. 

In this paper we describe the development and 
pilot assessment of NeuRow, a novel BCI-VR 
environment for MI training. NeuRow makes use of 
multimodal feedback (auditory, haptic and visual) in 
a VR environment delivered through an immersive 
Head Mounted Display (HMD), integrated in a BCI 
MI training task (left | right hand motor imagery). 

Finally, NeuRow is available for different 
platforms and is accessible for free at 
http://neurorehabilitation.m-iti.org/bci/. 

2 METHODOLOGY 

2.1 Experimental Setup 

The experimental setup was composed by a desktop 
computer (OS: Windows 8.1, CPU: Intel® Core™ i5-
2400 at 3.10 GHz, RAM: 4GB DDR3 1600MHZ, 
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Graphics: AMD Radeon HD 6700), running the 
acquisition software, the BCI-VR task, HMD, EEG 
system, and a vibrotactile module.  

 EEG Acquisition 

The BCI system consisted of 8 active electrodes 
equipped with a low-noise biosignal amplifier and a 
16-bit A/D converter at 256 Hz (g.MOBIlab+ 
biosignal amplifier, g.tec, Graz, Austria). The spatial 
distribution of the electrodes followed the 10-20 
system configuration (Klem et al., 1999) with the 
following electrodes over the somatosensory and 
motor areas: Frontal-Central (FC5, FC6), Central 
(C1, C2, C3, C4), and Central-Parietal (CP5, CP6) 
(Figure 1 a). The signal amplifier was connected via 
bluetooth to the desktop computer for the EEG signal 
acquisition. EEG data acquisition and processing was 
performed through the OpenVibe platform (Renard et 
al., 2010). Finally, the data from OpenVibe was 
transmitted to the RehabNet Control Panel 
(Reh@Panel) (Vourvopoulos et al., 2013) via the 
VRPN protocol (Taylor et al., 2001) to control the 
virtual environment. The RehabNet Control Panel is 
a free tool that acts as a middleware between multiple 
interfaces and virtual environments.  

 Feedback Presentation 

For delivering feedback to the user, the Oculus Rift 
DK1 HMD was used (Oculus VR, Irvine, California, 
USA). The HMD is made of one 7" 1280x800 60 Hz 
LCD display (640x800 resolution per eye), one 
aspheric acrylic lens per eye, 110° Field of View 
(FOV), internal tracking through a gyroscope, 
accelerometer, and magnetometer, with a tracking 
frequency of 1000Hz (Figure 1 b). 

 Vibrotactile Feedback 

A custom vibrotactile feedback module was 
developed with out-of-the-box components including 
an Arduino Mega 2560 board and vibrating motors. 
The vibrating motors (10mm diameter, 2.7mm thick) 
performed at 11000 RPM at 5V and were mounted on 
cylindrical tubes that acted as grasping objects for 
inducing the illusion of movement during the BCI 
task (Figure 1 c). In our setup, a pair of carton-based 
tubes with 12cm of length and 3cm diameter were 
used. Finally, 3D printed cases were produced to 
accommodate the vibrating motors inside the tubes. 
All hardware and software blueprints are made 
available for free online.  

2.2 BCI Task Design  

 BCI-VR Training Protocol 

The training protocol was designed and adapted based 
on the Graz-BCI paradigm (Pfurtscheller et al., 2003), 
substituting the standard feedback presented 
(directional arrows) by multimodal VR feedback. The 
first step of the training consist on the acquisition of 
the raw EEG data in order to train a linear 
discriminant classifier to distinguish Right and Left 
imagined hand movements. Throughout the training 
session, the user has to perform mental imagery of the 
corresponding hand (based on the presented stimuli). 
For each hand, the user is stimulated both visually 
(VR action observation) and haptically through the 
vibration on the corresponding hand (Figure 2 a). The 
training session was configured to acquire data in 20 
blocks (epochs) per class (Right or Left hand 
imagery) in a randomized order. Following the 
training, the data is used to compute a Common 
Spatial Patterns (CSP) filter, a spatial filter that 
maximizes the difference between the signals of the 
two classes. Finally, the raw EEG and the spatial filter 
are used to train a Linear Discriminant Analysis 
(LDA) classifier.  

 
Figure 1: Experimental setup (a) EEG cap with 8 active 
electrodes, (b) HMD, (c) vibrotactile modules, (d) BCI 
feedback. 
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Figure 2: Neurofeedback loop. (a) During the training session, the user is performing in a randomized order MI combined 
with motor observation of the virtual hands rowing while vibrotactile feedback is delivered to the corresponding hand. (b) 
The user relies on MI alone in order to control the virtual hands in a closed-loop system after training. 

 BCI-VR Task 

The BCI-VR task was designed based on literature 
and previous work, incorporating important features 
for a successful brain-to-computer interaction in 
terms of feedback, protocol design, and accessibility. 
The BCI-VR task involves boat rowing through 
mental imagery only with the goal of collecting as 
many flags as possible in a fixed amount of time. 
NeuRow is a self-paced BCI neurogame, meaning 
that is not event related, and the user controls the 
timing of rowing actions like he/she would do in real-
life (Figure 2 b). NeuRow is a multiplatform virtual 
environment developed in Unity game engine (Unity 
Technologies, San Francisco, California, USA). 
Finally, NeuRow is optimized for different platforms, 
however with different features (Table 1). Namely: 

- Desktop: The standalone version for PC, 
supports high quality graphics for an immersive VR 
experience with the support of the Oculus Rift DK1 
headset, the Leap Motion hand controller (Motion 
control, San Francisco, California, USA) available for 
optional motor-priming before the MI BCI session. 
Finally, vibrotactile feedback is supported through 
the use of custom made hardware for controlling 
through USB up to 6 vibration motors. Data logging 
is supported for boat trajectory, target location, score 
and time. 

- Mobile: The mobile version is built for 
Android OS devices, receiving data via the RehabNet 
UDP protocol through the Reh@panel. For phones, 
the VR feature is utilized for VR glasses (e.g. Google 
Cardboard) by applying lens correction for each eye, 
and using the phone gyroscope and magnetometer for 

head tracking, offering an immersive experience 
similar to the Oculus DK1 and DK2 HMDs. 

- Web browser: The web version uses the Unity 
web player (compatible through Internet Explorer, 
Firefox or Opera), does not support the networking, 
HMD and haptic components due to security 
restrictions. Instead, the web NeuRow acquires data 
through emulated keyboard events generated by the 
Reh@panel. 

The in-game interface is simple, with two high 
fidelity virtual arms to rotate the oars, time indication, 
score and navigational aids (Figure 3). NeuRow can 
be customized with different settings, depending on 
the experimental setup, BCI paradigm and running 
platform. Through the settings, one can chose if the 
session is part of MI training or self-paced online 
control session  for  navigation  of  the  boat.  During 

Table 1: NeuRow features for the different supported 
platforms. 

Features/ 
Platform 

Desktop Android Web 

Logging ✓ X X 
VR ✓  

(Oculus) 
✓  

(Google 
Cardboard) 

X 

Hand 
Tracking 

✓
(Leap 
Motion) 

X X 

Networking ✓ ✓ X 
Platform 
Independent 

X X ✓ 

Vibrotactile 
Feedback 

✓  
(Arduino) 

X X 
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Figure 3: In-game interface. An arrow indicates the direction of the target and also the distance by changing its colour (red 
for far blending up to green for close). Top Left: Remaining time for the end of the session. Middle: A flag with a ray acts as 
the game targets, Top Right: Game scoring, counting the amount of targets. 

training, the navigational arrow and the targets are 
removed to focus the user only on the multimodal MI 
BCI-VR task. During self-paced mode, the behaviour 
of the boat can be changed by setting the heading 
speed, turn speed and cut-off angle. The cut-off angle 
is the allowed angle that the boat can turn with respect 
to the target flag before stopping. This serves as a 
protection mechanism to help the player not to 
deviate in excess from the target.   

2.3 Participants 

A voluntary sample of 13 users (mean age of 28 ± 5 
years old) was recruited for the pilot study, based on 
their motivation to participate in the study. All 
participants were male and right handed with no 
previous known neurological disorder, nor previous 
experience in BCIs. Participants were either 
university students or academic staff. Finally, all 
participants provided their written informed consent 
before participating in the study. 

2.4 Questionnaires 

Before each BCI training session, demographics and 
user data were gathered through the following 
questionnaires: 

- The Vividness of Movement Imagery 
Questionnaire-2 (VMIQ2) was used to assess the 

capability of the participant to perform an 
imagined movement (Kinesthetic Imagery) 
(Roberts et al., 2008). Kinesthetic Imagery (KI) 
questions were combined with mental 
chronometry by measuring the response time in 
perceptual-motor tasks with the help of a timer. 

- For assessing gaming experience we used the 
Gamer Dedication (GD) questionnaire, a 15 factor 
classification questionnaire in which participants 
are asked whether they "strongly disagree," or 
"strongly agree" with a series of statements about 
their gaming habits (Adams and Ip, n.d.). 

After the BCI task, the following questionnaires 
were administered: 
- The NASA TLX questionnaire was used to 

measure task load considering Mental Demand, 
Physical Demand, Temporal Demand, 
Performance, Effort and Frustration (Hart and 
Staveland, 1988). 

- The core modules of the Game Experience 
Questionnaire (GEQ) were used at the end of the 
BCI session. GEQ assesses game experience 
using Immersion, Flow, Competence, Positive 
and Negative Affect, Tension, and Challenge 
(IJsselsteijn et al., 2008). 

- The System Usability Scale (SUS) is a ten-item 
scale giving a global view of subjective 
assessments of usability (Brooke, 1996). 
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Figure 4: Ranked accuracy of performance in pure MI based BCI studies using two-classes (left and right hand imagery) with 
respect to LDA classification (Boostani and Moradi, 2004; Garcia et al., 2003; Obermaier et al., 2001; Solhjoo and Moradi, 
2004). The asterisk (*) over 4,5,7,8,9,10 and 12 (Vourvopoulos et al., 2015; Vourvopoulos and Bermúdez i Badia, 2016) 
indicates studies which use the same feature extraction method (BP with CSP). The data of this study corresponds to the 4th 
best. 

2.5 Data Analysis 

 Power Spectral Density (PSD) 

EEG signals were processed in Matlab (MathWorks 
Inc., Massachusetts, US) with the EEGLAB toolbox 
(Delorme and Makeig, 2004) for extracting the Power 
Spectral Density (PSD). The power spectrum was 
extracted for the following frequency rhythms: Alpha 
(8 Hz - 12 Hz), Beta (12 Hz - 30 Hz), Theta (4 Hz - 7 
Hz), and Gamma (25 Hz - 90 Hz). Independent 
Component Analysis (ICA) was used for removing 
major artefacts related with power-line noise, eye 
blinking, ECG and EMG activity. For the current 
analysis, and because we were only measuring from 
sensory-motor areas, data were averaged for all the 
channels for each experimental condition. 

 Engagement Index 

The Engagement Index (EI) is a metric proposed at 
NASA Langley for evaluating operator engagement in 
automated tasks, was validated through a bio-cybernetic 
system for Adaptive Automation (Pope et al., 1995), and 
is widely used in EEG studies for assessing engagement 
(Berka et al., 2007). We therefore computed 
engagement index from the EEG power spectrum 
according to equation: EI = β/(α+θ), where α = Alpha 
band, β = Beta band and θ = Theta band. 

3 RESULTS 

In the following section we  analyse  NeuRow’s  BCI 

task performance in terms of classifier score during 
training, user acceptance as assessed by the SUS, 
GEX and TLX questionnaires, and finally the 
relationship between game behaviour and user 
experience through the questionnaires and also the 
EEG activity. 

3.1 Performance 

Comparing the performance score with previous 
studies which used LDA classifiers in two class (left, 
right hand) MI, we are able to gain insights 
concerning the effectiveness of our BCI-VR 
paradigm in terms of user control (Boostani and 
Moradi, 2004; Garcia et al., 2003; Obermaier et al., 
2001; Solhjoo and Moradi, 2004). As illustrated in 
Figure 4, the comparison places NeuRow as the 
fourth highest with a mean performance of 70.7% out 
of 12 studies. Moreover, of those studies that used 
exactly the same feature extraction technique of band 
power (BP) and CSP (Vourvopoulos et al., 2015; 
Vourvopoulos and Bermúdez i Badia, 2016), 
NeuRow scores the highest. Finally, of those studies 
that used VR as a training environment 
(Vourvopoulos et al., 2015), again NeuRow scores 
first. 

3.2 User Acceptance 

To assess different aspects of the user experience 
during online control of NeuRow, the mental 
workload, gaming experience and system usability 
were assessed after the task. 
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For workload, the NASA-TLX mean score was 
relatively high at 66.8/100 (SD = 14.5). As it is 
illustrated in Figure 5, the two lowest scores are those 
for physical (M = 4.4, SD = 3.4) and temporal (M = 
6.5, SD = 3) demand. The highest score is on effort 
(M = 16.4, SD = 5.2) followed closely by frustration 
(M = 13.3, SD = 5.2) and mental demand (M = 12.8, 
SD = 5). Performance lies in the middle (M = 11.4, 
SD = 6.2). 

From the GEQ, we extracted seven domains based 
on the sub-scale scoring. The highest score is in flow 
(M = 3.1, SD = 0.4) followed by immersion (M = 2.8, 
SD = 0.4) and positive affect (M = 2.8, SD = 0.7). A 
moderate score is achieved on tension/annoyance (M 
= 2.5, SD = 0.9) and challenge (M = 2.5, SD = 0.5). 
Finally, competence (M = 1.8, SD = 0.7) and negative 
affect scored the lowest (Figure 6). 

 
Figure 5: TLX scores between 1-20 for mental demand, 
physical demand, temporal demand, performance, effort 
and frustration. 

 
Figure 6: Scores for the GEQ core questionnaire domains. 

The system usability assessed by the SUS scored 
a mean of 74 (SD = 7.2). Based on the SUS rating 
scale (Figure 7), our system is classified as “Good” 
and it is within the acceptability range (Bangor et al., 
2009). 

3.3 User-Profile and in-Game 
Behaviour 

By assessing the relationship of the reported 
experience and the EEG activity with the in-game 
behaviour  (score,  distance,  speed,   trajectory)   we 

 
Figure 7: SUS results for all users. Acceptability scales are 
displayed on top (not acceptable, marginal and acceptable), 
followed by the grade scale (A to F) and the adjective rating 
(0-100). 

Table 2: Correlation table between reported experience, 
extracted EEG bands and in-game behaviour. 

 Distance Speed Score Smooth
ness 

TLX: 
Total 

-.695 -.699 -.697  

TLX: 
Perfor
mance 

-.595 -.599   

TLX: 
Frustr
ation 

-.728 -.737 -.686  

Mental 
Chron
ometry 

.618 .615 .728  

Alpha 
band 

-.611 -.607   

Theta 
band 

-.672 -.670   

Engage
ment 
Index 

-.770 -.768 -.649 -.595 

NeuRow: An Immersive VR Environment for Motor-Imagery Training with the Use of Brain-Computer Interfaces and Vibrotactile Feedback

49



identified a set of correlations. As illustrated in Table 
2, the total workload correlates with distance, speed 
and score. In addition, two TLX sub-domains have 
correlations. Performance is significantly correlated 
with distance and speed, as well as frustration is 
significantly correlated with distance, speed and 
score. Furthermore, mental chronometry (the 
response time in perceptual-motor tasks), 
significantly correlates with distance, speed and 
score. Finally, from the extracted EEG bands and the 
resulting Engagement Index, we can see that Alpha 
and Theta bands are reversely correlated with 
distance and speed. Finally, Engagement Index is 
interestingly correlated with all in-game metrics. In 
particular for distance, speed, score and trajectory 
smoothness. 

4 CONCLUSIONS 

In this paper we presented the design, development 
and pilot evaluation of NeuRow, a novel BCI-VR 
system for MI training. In terms of classification 
performance, the NeuRow BCI training paradigm 
showed a high performance, scoring the first amongst 
other studies with similar feature extraction and 
classification methodologies. These data supports a 
positive effect of the combination of immersive VR 
and vibrotactile feedback to help users to produce 
vivid MI (resulting in more distinct activation of 
sensorimotor areas of the brain), which in turn that 
can lead to increased performance and learning 
(Sigrist et al., 2013). Furthermore, from the user 
experience point of view, we can see high mental 
effort as given by the TLX scales and low physical 
and temporal demands. Previous research in 
distinguishing difficulty levels with brain activity 
measurements indicated an average mental workload 
index of 26 (SD = 12.9) for the easy level, and 69 (SD 
= 7.9) for the hard level (Girouard et al., 2009). The 
combination of low physical demand (useful in low 
mobility patients), increased effort (a conscious 
exertion of power) and good classification 
performance (better control that can lean in goal 
achievement), constitutes a very promising finding 
for the incorporation of this technology in stroke 
rehabilitation, providing new possibilities for 
rehabilitation programs. Moreover, increased flow 
and immersion to the task, in combination with 
increased positive affect, are good elements for 
enjoyment of NeuRow that can be capitalized on to 
further motivate and engage users in their BCI 
training. From the correlation analysis between user 
experience -subjectively measured through 

questionnaires but also objectively measured through 
EEG activity- and in-game behaviour, we can see that 
people with increased workload will perform worse. 
Interestingly, we can see that users with fast response 
time in MI ability (as extracted from the mental 
chronometry assessment) performed better in the 
game, being it then an indicator of increased 
capability of MI. Having a fast and vivid sensation of 
kinesthetic imagery can be related to an increased 
modulation of sensorimotor rhythms (Neuper et al., 
2005), resulting in better BCI calibration and hence  
higher in-game performance. In addition, the reverse 
correlation of the Engagement index with all the in-
game variables shows an important connection 
between user engagement and in-game behaviour. 
This relationship can help in developing a 
neurofeedback closed loop were the engagement of 
the user is used to adjust parameters of the game. This 
would allow a dynamic adjustment of the game based 
on user performance and cognitive state. This could 
provide (1) a major assistance for new users and/or 
neurologically impaired people and (2) reduced levels 
of frustration and workload. 

Overall, we showed that NeuRow, combining the 
use of immersive VR environment, sensory 
stimulation and motor-priming features, can provide 
a holistic approach towards MI driven BCIs.  In this 
study we showcased user performance, user 
acceptance and important features for closing the loop 
in an implicit manner. Finally, NeuRow’s features 
show promise and potential to be used for MI training 
in stroke motor rehabilitation. Future work will 
include a study with stroke patients with the ultimate 
goal to clinically validate NeuRow in a longitudinal 
MI-BCI study with functional brain imaging. 
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