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Abstract: RC4, the dominant stream cipher in e-commerce and communication protocols such as, WEP, TLS, is being
considered for replacement due to the series of vulnerabilities that have been pointed out in recent past. After
a thorough analysis of the possible weaknesses, Spritz, a new stream cipher is proposed to that effect by
the author of RC4. The design of Spritz is based on Cryptographic Sponge construction, which permits
Spritz to be used in different modes, and therefore, makes it an attractive design choice for security protocols.
Initial software performance analysis of Spritz shows that it fares poorly compared to the state-of-the-art hash
functions and stream ciphers. In this paper, we extend the analysis to the hardware performance. We propose
a fully customized accelerator design for Spritz and identify the highest achievable runtime performance for
ASIC and FPGA technology. Our results show that the Spritz accelerator is significantly faster in encryption
compared to the software implementation (32.38× speed-up for the SQUEEZE and 64.07× speed-up for the
ABSORB function), though fares weakly against hardware implementation of state-of-the-art hash functions
and stream ciphers in terms of area-efficiency.

1 INTRODUCTION

Spritz is a new RC4-like stream cipher, proposed by
Ron Rivest and Jacob Schuldt (Rivest and Schuldt,
2014). RC4 (Paul and Maitra, 2012) is one of the
most well-recognized stream ciphers being part of
communication standards like Wired Equivalent Pri-
vacy (WEP), Wi-Fi Protected Access (WPA), Secure
Sockets Layer (SSL) and Transport Layer Security
(TLS). Due to a series of vulnerabilities (Paul and
Maitra, 2007) pointed out in recent times, it was pro-
hibited from all the versions of TLS in 2015. In
parallel to RC4, there were numerous other propos-
als for stream ciphers, primarily driven by the eS-
TREAM project (est, 2015), which listed a total of
seven stream ciphers in its final portfolio - four in
software profile and three in hardware profile, respec-
tively. Intense scrutiny of these ciphers are currently
taking place, in terms of cryptographic weaknesses
and efficient implementations.

Given the successful stint of RC4, many re-
searchers have also attempted to address the weak-
nesses of the basic algorithm and proposed different
variants (Paul and Maitra, 2012). In a recent such ef-
fort, Spritz was proposed, which, however, is based
on the “sponge-like” construction. Sponge construc-
tion was proposed in (Bertoni et al., 2007) and then
gained stronghold with applications in different cryp-

tographic primitives (Bertoni et al., 2010; Bertoni
et al., 2011), including the standardization of SHA-
3 (sha, 2015). Spritz is based on this construction,
which offers significant flexibility for the stream ci-
pher to be used for encryption, pseudo-random num-
ber generation, hash function, message authentica-
tion codes and authenticated encryption. Naturally,
this flexibility brings in added advantage for Spritz
to be deployed in different communication and se-
curity protocols. However, the basic performance
analysis of Spritz shows that it falls short in perfor-
mance (Rivest and Schuldt, 2014). While the distin-
guisher proposed in (Banik and Isobe, 2016), poses a
real attack threat in the scenario of broadcast, it can
be easily avoided by dropping the first 2 bytes of the
pseudo-random bitstream, as also indicated by the au-
thors.

All the values in Spritz are modulo-N. By de-
fault, N is 256 which makes Spritz byte-oriented. The
state Qt of Spritz consists of six one byte registers
i, j, k, w, z and a along with array S of length N,
which stores a permutation of ZN = {0,1, ...,N− 1}.
The cryptographic key K is a byte-array of length L.
INITIALIZESTATE initializes the state of Spritz to a
standard state. ABSORB takes a variable length in-
put I and updates the state of Spritz based on the in-
put. For every bN

2 c nibbles absorbed, SHUFFLE is in-
voked which whips, crushes, whips, crushes and fi-
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nally whips again. ABSORBSTOP absorbs a special
stop symbol, is used to separate various inputs be-
ing absorbed. SQUEEZE, the main output function of
Spritz, produces r-output bytes, where r is an input
to the function. By using these top level functions,
Spritz can operate in one of the many operating modes
specified in (Rivest and Schuldt, 2014).

1.1 Motivation and Contribution

Although the cryptographic designs are often guarded
within premise of software-centric or hardware-
centric design (est, 2015), it reveals a limited per-
spective regarding the end usage. For example, effi-
cient hardware implementations for RC4, a primarily
software-oriented design have been extensively stud-
ied (Kitsos et al., 2003; Gupta et al., 2013). SOSE-
MANUK (Berbain et al., 2008), a software profile
stream cipher from eSTREAM, is touted to be suit-
able for hardware implementation as well. Indeed,
a custom instruction designed for a cipher requires
a dedicated hardware functional unit, although it is
being run on a software platform (Constantin et al.,
2012). Therefore, the most efficient implementation
of a cipher gives key design insights that can be under-
taken for software optimization as well. This factor,
besides Spritz being a promising candidate for RC4
replacement, forms the motivation of our work. The
major contributions of this paper are the following.
• An in-depth analysis of the constituent functions

for Spritz to derive the most efficient architecture.
• Performance evaluation with ASIC and FPGA

technology mapping.
• Benchmarking against state-of-the-art hash func-

tions and stream ciphers.
The main content of the paper is organized in four
sections. Section 2 presents the cycle-per-byte(cpb)
analysis assuming a naive implementation of con-
stituent functions. Section 3 explores various de-
sign choices, and presents the cpb analysis of the
cipher, corresponding to the design choices. Sec-
tion 4 presents the implementation of hardware accel-
erator for the cipher and compares the performance
with other existing stream cipher designs. Section 5
presents the summary of the paper.

2 THEORETICAL ANALYSIS
FOR IMPROVING
CYCLES-PER-BYTE

We kindly refer reader to (Rivest and Schuldt, 2014)
for a detailed specification of Spritz. The structure di-

agram of Spritz is presented in Figure 1. It is possible
to construct different cryptographic primitives using
the top level functions of Spritz, namely KEYSETUP,
ABSORB, ABSORBSTOP and SQUEEZE, which are
called from inside ENCRYPT or HASH, for example.

SPRITZ KEYSETUP

ABSORB SQUEEZEABSORBSTOP

ABSORBBYTE

ABSORBNIBBLE

SHUFFLE

WHIPCRUSH

DRIP

UPDATE

OUTPUT

INITIALIZESTATE

Figure 1: Structure diagram of Spritz.

To enable a clear analysis of the dependencies, we
begin with a study of each of the Spritz algorithmic
blocks and define a quantitative parameter R, which
approximates the upper bound on the number of op-
erations that each of the blocks execute, with the as-
sumption that each operation is executed in a single
clock cycle. Afterwards, we will attempt to model the
architecture in a way to satisfy the best-case assump-
tion for the number of cycles.

Spritz performs encryption by key setup using the
key K, followed by performing squeeze on the mes-
sage M to generate the cipher stream C.
• UPDATE(): In UPDATE, 4 operations are per-

formed. Thus R(UPDATE) = 4.

• WHIP(r): In WHIP(r), UPDATE gets called r times and
an operation is performed to update state register w.
R(WHIP(r))
= r×R(UPDATE)+1
= 4r+1

• CRUSH(): In CRUSH, at most N
2 swaps are per-

formed and assuming each swap is a single operation,
R(CRUSH) = N

2

• SHUFFLE(): There are three calls to WHIP with param-
eter 2N, two calls to CRUSH and a single operation to
set state register a to 0.
R(SHUFFLE)
= 3×R(WHIP(2N))+2×R(CRUSH)+1
= 3× (8N +1)+2× (N/2)+1
= 24N +5+N +1 = 25N +6

• ABSORBNIBBLE(x): The conditional Shuffle call in
ABSORBNIBBLE is accounted for during calcula-
tion of R(ABSORB). There are two operations in
ABSORBNIBBLE irrespective of the value of x and
hence R(ABSORBNIBBLE) = 2.

• ABSORBBYTE(b): There are two calls to
ABSORBNIBBLE irrespective of the value of b, hence
R(ABSORBBYTE) = 2×R(ABSORBNIBBLE) = 4.

• ABSORB(M): There are M.length calls to
ABSORBBYTE, which in turn makes two call to
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ABSORBNIBBLE. In each call of ABSORBNIBBLE, the
value of state register a is incremented by 1, thereby
after every N/2 calls to ABSORBNIBBLE, there will
be a call to SHUFFLE, with the assumption that a is
initially 0. Assuming N is greater than 10,
R(Absorb(M))
= M.length×R(AbsorbByte)+

(M.length/(N/2))×R(Shu f f le)
= M.length×4+2×M.length× (25N +6)/N
= M.length(54+12/N)

• OUTPUT() : There is nested access of memory, and
with the assumption that the results of memory request
is obtained in the next cycle, it will require 3 cycles for
the accesses, hence R(OUTPUT) = 3.

• DRIP() : Each call to DRIP requires a call to UPDATE
and OUTPUT, and hence R(Drip) = 4+3 = 7.

• SQUEEZE(r) : There are r calls to DRIP and at most one
call to SHUFFLE. Thus, R(SHUFFLE) = r×R(DRIP)+
R(SHUFFLE) = 7r+25N +5.

• INITIALIZESTATE() : Assuming each initialization of
each register or memory location is a single operation,
R(INITIALIZESTATE) = 6+N.

• KEYSETUP() : Assuming that the key is byte array K
and K.length < N

2 ,
R(KEYSETUP) = R(INITIALIZESTATE)+K.length×
R(ABSORBBYTE)
= 6+N +4K.length

The above discussion presents the number of cy-
cles required for execution for a naı̈ve implementation
of constituent functions of Spritz, with the assumption
that each operation requires a single cycle to complete
execution. In the following section, we analyze the
various design points of accelerator design of Spritz.
The key challenge in the design phases is first, to iden-
tify an optimized architecture for a given function and
second, to accommodate and adjust the same architec-
ture to include all the different functions.

3 DESIGN DECISIONS FOR
IMPLEMENTATION OF
ACCELERATOR

We begin designing the key constituent functions as
shown in structure diagram of Spritz, in Figure 1. The
design of each constituent function is presented in the
following subsections. We conclude this section by
presenting estimated cpb of Spritz with the chosen de-
sign decisions in subsection 3.9.

3.1 ABSORBBYTE(b)

The architecture for ABSORBBYTE(b), is shown
in Figure 2. LOW(b) and HIGH(b) repre-
sent the lower order 4 bits and higher order

4 bits of the byte b respectively. We im-
plement both the ABSORBNIBBLE(LOW(b)) and
ABSORBNIBBLE(HIGH(b)) simultaneously in a sin-
gle clock cycle. The target address for the swaps in
the corresponding ABSORBNIBBLE(x) is computed
along with incrementing the value of state register a.
We perform the two swaps simultaneously when no
call to SHUFFLE() is involved. We present three cases
related to the operation of ABSORBBYTE(b)-

1. If a == bN
2 c, we set a register shu f f leOn to True

and do not perform any other operation, for invok-
ing SHUFFLE() in the next cycle.

2. If a + 1 == bN
2 c, we set a register shu f f leOn

to True (for invoking SHUFFLE() in the next
cycle) and swap the contents of S[a] and
S[bN

2 +LOW(b)c]. Once SHUFFLE() has com-
pleted, we assert Resume signal to high for
performing swap the contents of S[a] and
S[bN

2 +HIGH(b)c]. In the next cycle, the Resume
signal is set to low to continue with ordinary op-
eration of ABSORBBYTE(b). During both these
operations, we increment a by 1.

3. Otherwise, we perform a double swap operation
taking into account the data dependencies that
might be present amongst the memory locations
and increment the value of a by 2. The data depen-
dencies are resolved using the register-to-register
transfer addresses shown in Table 1 and explained
below.

Case 1: a2 6= b1 & b2 6= a1 & b2 6= b1
Symbolically, the data transfers can be represented by
the following permutation on the state array S -

[
a1 b1
a2 b2

]
7→
[

b1 a1
b2 a2

]

It involves four simultaneous data transfers.
S[b1] ← S[a1],S[a1] ← S[b1],S[a2] ← S[b2] and
S[b2]← S[a2].
Case 2: a2 6= b1 & b2 6= a1 & b2 = b1
In this case, permutation of the state array is

[
a1 b2
a2 b2

]
7→
[

b2 a2
a1 a2

]

This involves three data transfers. S[a2] ← S[a1],
S[b1] = S[b2]← S[a2], and S[a1]← S[b2].
Case 3: a2 6= b1 & b2 = a1 & b2 6= b1
In this case, permutation of the state array is

[
a1 b1
a2 a1

]
7→
[

a2 a1
b1 a2

]

This involves three data transfers : S[b1] ← S[a1],
S[a1] = S[b2]← S[a2], and S[a2]← S[b1].
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Case 4: a2 6= b1 & b2 = a1 & b2 = b1
In this case, permutation of the state array is

[
a1 a1
a2 a1

]
7→
[

a2 a2
a1 a2

]

This involves two data transfers : S[a2]← S[a1], and
S[a1] = S[b1] = S[b2]← S[a2].
Case 5: a2 = b1 & b2 6= a1 & b2 6= b1
In this case, permutation of the state array is

[
a1 b1
b1 b2

]
7→
[

b1 a2
b2 a1

]

This involves three data transfers : S[b2] ← S[a1],
S[b1] = S[a2]← S[b2], and S[a1]← S[b1].
Case 6: a2 = b1 & b2 6= a1 & b2 = b1
In this case, permutation of the state array is

[
a1 b1
b1 b1

]
7→
[

b1 a1
a1 a1

]

This involves two data transfers : S[b1] = S[a2] =
S[b2]← S[a1], and S[a1]← S[b1].
Case 7: a2 = b1 & b2 = a1 & b2 6= b1
In this case, permutation of the state array is

[
a1 b1
b1 a1

]
7→
[

a1 b1
b1 a1

]

This is an identity permutation and hence it does not
involve data transfer.
Case 8: a2 = b1 & b2 = a1 & b2 = b1
This case cannot occur, since it implies a2 = a1 which
is not feasible, as a2 = a1 +1.

We do not implement higher number of
ABSORBNIBBLE(x) operations in a single clock
cycle, since the amount of control circuit needed for
resolving dependencies amongst the swaps would
be high and negatively impact the critical path of
the entire circuit. In addition, we would also require
a higher number of ports to read from and write
simultaneously to the register array S, which would
also contribute to the area of the circuit.

a 2 input 
adder 1

2 input 
adder 

2 input 
adder 

HIGH(b)

LOW (b)

Comparator
(0 if equal)  

Comparator
(0 if equal)  

Swap

Swap
En

En

Resume

1

0

2 input 
adder 

3
2
1
0

2

shuffleOn

Figure 2: Pipeline structure for ABSORBBYTE.

3.2 UPDATE()

We propose a three stage pipeline for the implemen-
tation of UPDATE, with the schedule shown in Figure
3. In Stage 1, we compute the new value of state reg-
ister i and a temporary variable t1 which is used in
next stage for computation of j. In Stage 2, we com-
pute the updated value of state register j and another
temporary variable t3 required for computation state
register k in the next stage. In Stage 3, we swap the
memory locations i and j respectively and also com-
pute the new value of state register k. Since Stage 1
of the pipeline uses the updated value of stage regis-
ter j that is available in Stage 3 and also has a data
dependency with stage 3 for the swap of the previ-
ous iteration of UPDATE, a single cycle delay in the
pipeline is introduced into the pipeline.

i1 = i0 + w
t11 = j0 + S[i0+w]

j1 = k0 + t11
t31 = k0 + i1
t41 = S[i1]
t51 = S[k0 + t11] 

S[j1] = t41
S[i1] = t51
k1 = t31 + t51

i2 = i1 + w
t12 = j1 + S[i1+w]

j2 = k1 + t12
t32 = k1 + i2
t42 = S[i1]
t52 = S[k1 + t12] 

S[j2] = t42
S[i2] = t52
k2 = t32 + t52

i3 = i2 + w
t13 = j2 + S[i2+w]

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Stage 1

Stage 2

Stage 3

Figure 3: Pipeline structure for UPDATE.

3.3 DRIP()

The pipeline schedule for DRIP is shown in Figure
4. The first three stages for DRIP are identical to
that for UPDATE operation and hence these two con-
stituent functions can run on the same physical hard-
ware pipeline. The last three stages of the pipeline
from stage 4 to 6 is used for accessing memory loca-
tions related to update of state register z and complet-
ing operation OUTPUT. Stage 4 of the pipeline has a
data dependency with Stage 6 of the pipeline, since
stage 4 of the next iteration uses the updated value of
z, that is available in Stage 6 of the previous iteration
of DRIP. Hence, we require at least two cycle stalls to
account for this data dependency. We should note that
we cannot access a memory location and use the data
at the memory in the same cycle for accessing another
memory location. Given this limitation, the current
pipeline schedule offers the best throughput possible
for hardware implementation of operation DRIP.

3.4 WHIP(x)

For the operation WHIP(x), we perform x iterations
of operation UPDATE following the pipeline schedule
presented in subsection 3.2. In the subsequent cycle,
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Table 1: Register-to-Register transfers issued to resolve Read-After-Write (RAW) dependencies.

Sl# Condition Register-to-Register transfers for Double Swap
1 a2 6= b1 & b2 6= a1 & b2 6= b1 S[b1]← S[a1],S[a1]← S[b1],S[a2]← S[b2],S[b2]← S[a2]
2 a2 6= b1 & b2 6= a1 & b2 = b1 S[a2]← S[a1],S[b1] = S[b2]← S[a2],S[a1]← S[b2]
3 a2 6= b1 & b2 = a1 & b2 6= b1 S[b1]← S[a1],S[a1] = S[b2]← S[a2],S[a2]← S[b1]
4 a2 6= b1 & b2 = a1 & b2 = b1 S[a2]← S[a1],S[a1] = S[b1] = S[b2]← S[a2]
5 a2 = b1 & b2 6= a1 & b2 6= b1 S[b2]← S[a1],S[b1] = S[a2]← S[b2],S[a1]← S[b1]
6 a2 = b1 & b2 6= a1 & b2 = b1 S[b1] = S[a2] = S[b2]← S[a1],S[a1]← S[b1]
7 a2 = b1 & b2 = a1 & b2 6= b1 Identity permutation, no data transfer
8 a2 = b1 & b2 = a1 & b2 = b1 Impossible, as it implies a1 = a2 = a1 +1

i1 = i0 + w
t11 = j0 + S[i0+w]

j1 = k0 + t11
t31 = k0 + i1
t41 = S[i1]
t51 = S[k0 + t11] 

S[j1] = t41
S[i1] = t51
k1 = t31 + t51

t61= i1 + S[z0+k1]

t71 = j1 + S[t61]

i2 = i1 + w
t12 = j1 + S[i1+w]

j2 = k1 + t12
t32 = k1 + i2
t42 = S[i1]
t52 = S[k1 + t12] 

S[j2] = t42
S[i2] = t52
k2 = t32 + t52

t62= i2+ S[z1+k2]

t72 = j2 + S[t62]

i3 = i2 + w
t13 = j2 + S[i2+w]

j3 = k2 + t13
t33 = k2 + i3
t43 = S[i3]
t53 = S[k2 + t13] 

S[j3] = t43
S[i3] = t53
k3 = t33 + t53

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6
z1 = S[t71]

Cycle 8 Cycle 9

z2 = S[t72]

Figure 4: Pipeline structure for UPDATE and DRIP.

we increment state register w by 2, since N is a power
of 2 to complete the operation WHIP(x).

3.5 CRUSH()

The data at location S[v] is swapped with data at loca-
tion S[N−1− v], where N is a parameter of Spritz if
the condition S[v] > S[N−1− v] is satisfied. We can
observe that CRUSH has follows a well defined pat-
tern in regard to the locations that might be swapped,
as shown in Figure 5. There are no data dependencies
between the iterations of the loop in the CRUSH func-
tion and hence theoretically, we can unroll the loop
up to bN

2 c to complete the loop operation in a single
clock cycle.

S[0] S[1] S[N-2] S[N-1]

Figure 5: Swap operation locations in CRUSH.

During hardware implementation, the unroll fac-
tor would be determined by the number of ports that
are available concurrently for reads and writes. In our
design, we limit ourselves to using four read ports and
four write ports for the register file. We propose the
following implementation of CRUSH as shown in Fig-
ure 6 for one swap operation. We use two such cir-
cuits to achieve an unroll factor of two - the first one

swaps locations v and N−1−v, while the second cir-
cuit swaps v+1 and N−2−v, subject to the condition
specified in operation CRUSH.

N
-v 3 input 

adder-1

Register bank S0

256 to 1 MUX

Register bank S0

256 to 1 MUXv

1 to 256 DeMUX 1 to 256 DeMUX

Comparator
(1 if D1 > D2 )

D1

D2

En En

Figure 6: Circuit for swap in operation CRUSH.

3.6 SHUFFLE()

SHUFFLE operation is performed by the following se-
quence of operations:-
1. Invoke UPDATE 2N times following the pipeline

schedule shown in Figure 3. Thereafter, incre-
ment w by 2.

2. Invoke CRUSH N
4 times, with parameter v ranging

from 0 to N
2 , incremented by two in each iteration.

3. Same as Step 1
4. Same as Step 2
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5. Same as Step 1

6. Set state register a to 0 in the cycle immediately
after the cycle in which w has been incremented
by 2 in Step 4.

3.7 SQUEEZE()

At the start of SQUEEZE, we set register shu f f leOn
to the result of the condition, a > 0. If shu f f leOn
is high, then we invoke SHUFFLE. Once SHUFFLE
has completed, pipeline for DRIP as per the schedule
specified in Figure 4 is executed. We should note that
if a > 0, SHUFFLE is invoked causing a to be set to
0, hence we do not need to check for a > 0 during
execution of the DRIP pipeline.

3.8 INITIALIZESTATE

Assuming 4 write ports, the state array S can be ini-
tialized in N

4 cycles. Simultaneously, the state reg-
isters i, j,k,z,a can be initialized to zero while state
register w is initialized to one.

3.9 Estimated cpb of Spritz with the
Chosen Design Decisions

In this subsection, we analyze the cpb of the com-
ponent functions of Spritz based on the chosen de-
sign decisions, presented in the immediately previ-
ous subsections. It should be noted that KEYSETUP,
ABSORB, ABSORBSTOP and SQUEEZE are the top
level functions of Spritz that are used required for
construction of different cryptographic primitives.

• WHIP(2N) : 2×2N +2 = 4N +2 cycles

• CRUSH : bN
4 c cycles

• SHUFFLE : 3×WHIP+ 2×CRUSH
= 12N +6+ bN

4 c
= 12.25N +6 cycles

• ABSORBBYTE(b) : 1 cpb

• ABSORB(k): We can absorb one byte per cycle.
However, after every N

2 bytes absorbed, SHUFFLE
has to be invoked. For absorbing k bytes, the num-
ber of cycles and cycles per byte for ABSORB is
shown in Equation 1 and Equation 2 respectively.

Abosrbcycles(k) =

{
k(25.5+ 12

N ) k ≥ N
2

k k < N
2

(1)

ABSORBcpb(k) =

{
25.5+ 12

N k ≥ N
2

1 k < N
2

(2)

• SQUEEZE(m) : Assuming SHUFFLE is invoked at
the start of operation SQUEEZE, the number of cy-
cles per byte for SQUEEZE for a message of length
m bytes is presented in the following equation 3.

SQUEEZEcpb(m) = 3+
12.25N +6

m
(3)

• INITIALIZESTATE : N
4 cycles

• KEYSETUP : N
4 + ABSORBcycles(K.length) cy-

cles, where K is the key used for encryption.

Compared to the naive implementation presented in
Section 2, it can be observed that the design deci-
sions made by us, help in gaining considerable im-
provements in terms of number of cycles for all the
constituent functions.

4 ACCELERATOR
IMPLEMENTATION

We have implemented the proposed design of Spritz
stream cipher using Verilog description. The array S,
of size 256 bytes, which forms part of the state Qt of
Spritz, has been implemented as an array of master-
slave flip-flops. The top level schematic of the imple-
mented design is shown in Figure 7. The input bus
f unc sel is used to choose the operation to be per-
formed while data in is used to supply required data
to the accelerator. The output port shu f f le on is set to
high when SHUFFLE has be invoked in the next cycle.
The input port resume is used to flag that operation
ABSORBBYTE has resumed after SHUFFLE.

Spritz 
Core

clock
reset
resume
func_sel
data_in

4
8

shuffle_on

data_out8

Figure 7: Block diagram of SPRITZ hardware accelerator.

4.1 Hardware Performance

The Verilog code for the accelerator has been synthe-
sized and evaluated with Synopsys Design Compiler
version J-2014.09, using 65nm Faraday library. De-
tailed performance results (pre-layout) are presented
in Table 2. Unless mentioned otherwise, a 16-byte
key is set up followed by encryption of a 10 kilo-
byte message to compute the throughput. We also
synthesized the code using Xilinx ISE 14.7 for a
FPGA-based implementation. The results of the Xil-
inx Virtex-7 (device: xc7vx330t-3ffg1157) FPGA im-
plementation is also shown in Table 2. The maximum
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Table 2: Performance Summary: Spritz Accelerator Core.
ASIC FPGA

Clock frequency(MHz) 1150 Frequency(MHz) 64.72
Throughput(Mbps) 2780.14 Throughput(Mbps) 156.46

Combinatorial Area(KGE) 119.52 #slice registers 2197
Non-combinatorial Area(KGE) 11.19 #slice LUTS 23103

Total Area (KGE) 130.71 #occupied slices 7146
Area Efficiency(Mbps/KGE) 21.27

Energy Efficiency(pJ/bits) 5.834

clock frequency was determined by the Xilinx static
timing analysis tool.

In Table 2, the reported throughput is for en-
cryption. For comparing with the software im-
plementation, we separately report the throughput
achieved by ABSORB and SQUEEZE functions. The
keystream generation rates for SQUEEZE, for the
ASIC and FPGA implementations, are 3066.67 Mbps
and 172.6 Mbps, respectively. The processing rates
for ABSORB when large amounts of data is passed,
are 360.122 Mbps and 20.24 Mbps for ASIC and
FPGA implementations respectively. In compar-
ison, the unoptimized software implementation of
SQUEEZE and ABSORB reported a throughput of
94.69 Mbps and 5.62 Mbps respectively [1]. Con-
sidering our best achieved implementations, we ob-
tain a 32.38× speed-up for the SQUEEZE and 64.07×
speed-up for the ABSORB function, in comparison
with the software implementation.

4.2 Area-Throughput Comparison with
Existing Designs

In (Rivest and Schuldt, 2014), authors have com-
pared the throughput of the SQUEEZE function with
the keystream generation speed of prominent stream
ciphers and the throughput of the ABSORB func-
tion with that of the hash functions. Following
the same approach, we provide a performance list-
ing of accelerators for prominent stream ciphers
and hash functions in Table 3, where the perfor-
mances are obtained from state-of-the-art implemen-
tations (Gurkaynak et al., 2006; Good and Benaissa,
2007; Gupta et al., 2013; Paul and Chattopadhyay,
2015; Henzen et al., 2010). For a different technol-
ogy node, the performance is scaled.

Table 3: Stream Cipher and Hash Function Accelerators.

Cipher Technology Area Throughput TpA
Node (nm) (KGE) (Gbps) (Gbps/KGE)

Sosemanuk (Berbain et al., 2008) 130 95.74 66.56 0.695
RC4 (Paul and Maitra, 2012) 130 59.93 10.0 1.667
Grain128 (Hell et al., 2008) 130 3.2 14.48 4.525
MICKEY (Babbage and Dodd, 2008) 130 5.0 0.41 0.082
Trivium (De Cannière, 2006) 130 4.9 22.3 4.551
Keccak256 (Bertoni et al., 2009) 130 50.0 43.01 0.860

Spritz fares rather poorly in comparison to the
lightweight stream ciphers as well as high-speed
stream cipher candidates (e.g., Sosemanuk). Al-

though Spritz is capable of operating in multiple
modes due to its Sponge construction, its large
area overhead due to the state array S and nested
memory accesses required for computation of UP-
DATE and OUTPUT, makes it implementation-wise a
weak candidate compared to block ciphers like AES,
PRESENT, which can also operate in different modes.

4.3 Throughput Comparison with
Existing Designs for Large Messages

It might be noted that the cpb of ABSORB reaches
25.5 for large N (refer equation 2), which is 2.3×
slower compared to the SHA-3 standard hash func-
tion Keccak and 16× faster compared to the software
implementation of Spritz (Rivest and Schuldt, 2014).
In the same manner, compared to the best reported
implementation of RC4 (Gupta et al., 2013), which
reports a cpb of 0.5, for arbitrarily long messages, the
cpb of SQUEEZE function reaches a value of 3 (refer
equation 3), which is 6× slowdown. This slowdown
is directly caused by the nested calls to the storage for
the output function of Spritz.

Table 4: cpb Performance Summary of Stream Ciphers.
Cipher/Machine Intel Core i5-6600 ARM Cortex-A9
Chacha8 0.56 3.06
AES-128 Counter Mode 0.67 21.85
Salsa20 1.34 8.14
HC-128 1.65 -
Trivium 1.92 -
Sosemanuk 2.57 -
Snow 2.0 2.57 -

A direct comparison of cpb across different archi-
tectures and technologies is biased, since the under-
lying clock frequency and number of cores may dif-
fer. For example, in (eba, 2015), performance bench-
marking of multiple stream ciphers are presented. For
a quad-core Intel Core i5-6600, running at 3.31 GHz,
cpb of prominent stream ciphers are listed in the fol-
lowing Table 4. The same table also lists the perfor-
mances reported by those stream ciphers for a single-
core Cortex-A9 processor with NEON extensions,
running at 1.2 GHz, which shows that cycles/byte for
Spritz is comparable to the fastest stream ciphers re-
ported. From this perspective, it is interesting to study
the parallelization options of Spritz for an optimized
software implementation.

5 CONCLUSION

Spritz is a new stream cipher proposed as a replace-
ment for RC4, which is part of several standards. So
far, no optimized hardware/software implementation
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of Spritz has been reported. We explored the de-
sign points of Spritz considering a high performance,
custom hardware architecture to minimize its cycles
per byte. The implementation results on ASIC and
FPGA technology reveal significant speed-up com-
pared to the basic, un-optimized software implemen-
tation. However, in terms of area-efficiency, Spritz
fares worse compared to the prominent stream ciphers
and hash functions.
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In Katsikas, S., López, J., Backes, M., Gritzalis, S.,
and Preneel, B., editors, Information Security, volume
4176 of Lecture Notes in Computer Science, pages
171–186. Springer Berlin Heidelberg.

Good, T. and Benaissa, M. (2007). Hardware results for
selected stream cipher candidates. Technical Re-
port 2007/023, eSTREAM, ECRYPT Stream Cipher
Project.

Gupta, S., Chattopadhyay, A., Sinha, K., Maitra, S., and
Sinha, B. (2013). High-performance hardware imple-
mentation for rc4 stream cipher. Computers, IEEE
Transactions on, 62(4):730–743.

Gurkaynak, F., Luethi, P., Bernold, N., Blattmann, R.,
Goode, V., Marghitola, M., Kaeslin, H., Felber,
N., and Fichtner, W. (2006). Hardware Evalua-
tion of eSTREAM Candidates: Achterbahn, Grain,
MICKEY, MOSQUITO, SFINKS, Trivium, VEST,
ZK-Crypt. From: eSTREAM: the ECRYPT Stream Ci-
pher Project, 15:2006.

Hell, M., Johansson, T., Maximov, A., and Meier, W.
(2008). The grain family of stream ciphers. In Rob-
shaw, M. and Billet, O., editors, New Stream Cipher
Designs, volume 4986 of Lecture Notes in Computer
Science, pages 179–190. Springer Berlin Heidelberg.

Henzen, L., Gendotti, P., Guillet, P., Pargaetzi, E., Zoller,
M., and Gürkaynak, F. K. (2010). Developing a hard-
ware evaluation method for sha-3 candidates. In Man-
gard, S. and Standaert, F.-X., editors, Cryptographic
Hardware and Embedded Systems, CHES 2010, vol-
ume 6225 of Lecture Notes in Computer Science,
pages 248–263. Springer Berlin Heidelberg.

Kitsos, P., Kostopoulos, G., Sklavos, N., and Koufopavlou,
O. (2003). Hardware implementation of the rc4 stream
cipher. In Circuits and Systems, 2003 IEEE 46th Mid-
west Symposium on, volume 3, pages 1363–1366 Vol.
3.

Paul, G. and Chattopadhyay, A. (2015). Three snakes in one
hole: The first systematic hardware accelerator design
for sosemanuk with optional serpent and snow 2.0
modes. Computers, IEEE Transactions on, PP(99).

Paul, G. and Maitra, S. (2007). Permutation after rc4 key
scheduling reveals the secret key. In Proceedings of
the 14th International Conference on Selected Areas
in Cryptography, SAC’07, pages 360–377.

Paul, G. and Maitra, S. (2012). RC4 Stream Cipher and Its
Variants. CRC Press.

Rivest, R. L. and Schuldt, J. C. N. (2014). Spritz—a spongy
RC4-like stream cipher and hash function. Presented
at Charles River Crypto Day (2014-10-24).

SECRYPT 2016 - International Conference on Security and Cryptography

222


