
Protecting Databases from Schema Disclosure
A CRUD-based Protection Model

Óscar Mortágua Pereira, Diogo Domingues Regateiro and Rui L. Aguiar
Instituto de Telecomunicações, DETI, University of Aveiro, Aveiro, Portugal

Keywords: Access Control, Information Security, Database Schema, CRUD, Software Architecture.

Abstract: Database schemas, in many organizations, are considered one of the critical assets to be protected. From
database schemas, it is not only possible to infer the information being collected but also the way organiza-
tions manage their businesses and/or activities. One of the ways to disclose database schemas is through the
Create, Read, Update and Delete (CRUD) expressions. In fact, their use can follow strict security rules or
be unregulated by malicious users. In the first case, users are required to master database schemas. This can
be critical when applications that access the database directly, which we call database interface applications
(DIA), are developed by third party organizations via outsourcing. In the second case, users can disclose par-
tially or totally database schemas following malicious algorithms based on CRUD expressions. To overcome
this vulnerability, we propose a new technique where CRUD expressions cannot be directly manipulated by
DIAs any more. Whenever a DIA starts-up, the associated database server generates a random codified token
for each CRUD expression and sends it to the DIA that the database servers can use to execute the correspon-
dent CRUD expression. In order to validate our proposal, we present a conceptual architectural model and a
proof of concept.

1 INTRODUCTION

As our society becomes more and more dependent
on information systems, there is an increased need
to protect more efficiently our data stores from ma-
licious users. Data stores keep all types and kinds of
data, such as from persons, from processes and from
businesses. Independently from the type and/or kind,
in many organizations, business process models and
data are their key assets. As an example, we can say
very often that business process models are the base
for designing the conceptual and logical models for
the database responsible for storing the data to be pro-
tected.

Therefore, beyond protecting data which is tradi-
tionally the main concern, it is also crucial to pro-
tect the database schema. To demonstrate the impor-
tance of this problem, we can think of an organiza-
tion that rates its quality control process according to
some novel parameters and/or algorithms. These en-
tities (parameters and/or algorithms) will be mapped
in the database schema in one or more tables that, if
disclosed, a competitor can benefit from. Thus, in
such situations, it is crucial for those organizations to
keep the knowledge about their database schemas as
contained as possible. Unfortunately, when following

traditional approaches, the knowledge about database
schemas is weakly protected. In the next paragraph
we briefly explain how it happens.

There are several ways to master and therefore to
disclose database schemas. They can be organized
into two main categories: trustworthy and malicious.
The trustworthy category is based on authorization
processes. They can occur when programmers are
authorized to write Create, Read, Update and Delete
(CRUD) expressions for business logic. In order to
accomplish this goal, programmers must have access
to database schemas, partially or totally, depending
on the required extent. This mastering process as-
sumes that programmers are reliable and, therefore,
can be trusted. Nevertheless, serious security viola-
tions can still take place when software is developed
by third party organizations, i.e. it is outsourced. The
malicious category is based on malicious processes.
There are several possibilities, but at this moment
we emphasize situations where programmers inten-
tionally use CRUD expressions to disclose sensitive
and/or unauthorized parts of database schemas. For
example, by trying CRUD expressions iteratively and
successively until disclosing the required part of the
database schema. While for the first category, there
is no other possibility than mastering programmers,

292
Pereira, Ó., Regateiro, D. and Aguiar, R.
Protecting Databases from Schema Disclosure - A CRUD-Based Protection Model.
DOI: 10.5220/0005967402920301
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 4: SECRYPT, pages 292-301
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

for the second category malicious users can resort to
several techniques to achieve the same result. These
aspects will be addressed in more detail in chapter 2
(Motivation).

A solution to avoid giving the programmers de-
tails about the server-side involves using a multi-
tier architecture, also called n-tier architecture. In a
multi-tier architecture, the presentation, application
processing and data management are physically sep-
arated. In this architecture, a programmer does not
need to know anything about the server-side expect
for the set of interfaces that are provided. A re-
lated architecture is the Service-Oriented Architecture
(SOA), where every feature that is implemented must
be made available as a service. Other services that use
them know nothing about their implementation, only
their interface and functionality.

This, however, does not solve our problem which
lies with the database applications, specifically what
we call a database interface applications (DIA). These
applications are applications that provide access to
the database and may be a service provided in a
SOA approach, for example, and not necessarily the
client that uses it. If the DIA that provides ac-
cess to the database is outsourced, the same prob-
lem with disclosing the database schema through the
CRUD expressions remains. On the other hand, if
the service is developed by the corporation that owns
the database, the developers still need to master the
database schema to write the required CRUD expres-
sions without using any other tools.

The conclusion is that security violations can oc-
cur when CRUD expressions can be used by DIAs.
In order to prevent their use, we propose a concep-
tual model where CRUD expressions are stored on
the server-side. CRUD expressions are pushed, kept
and managed by security servers and, from now on,
DIAs use secure tokens instead. Basically, DIAs are
provided with secure tokens and when they want to
execute a CRUD expression, they send a token to the
database server which, after a validation process, de-
cides if the token is valid. If so, it evaluates if the
correspondent CRUD expression can or cannot be ex-
ecuted. Details are provided in chapter 4. A proof of
concept based on Java, JDBC and SQL Server is also
presented to prove the feasibility of our architectural
model. It is expected that the outcome of this research
can contribute positively to the scientific community
effort towards more security in database applications.

The remaining of this paper is organized as fol-
lows. Chapter 2 presents the motivation for the work
detailed in this paper, chapter 3 presents the related
work, chapter 4 presents the architectural model of
the concept, chapter 5 presents a proof a concept of

Figure 1: Select on a non-existent table.

the architectural model and chapter 7 concludes this
paper and details the future work.

2 MOTIVATION

The motivation for protecting the database schema
comes from: the observed practice of providing an
anonymized version of the database schema, along
with the data, when some business was required to
share it with consultants; and the fact that most
DBMS expose the database schema when carefully
crafted queries are issued at the DIA level. DIAs can
be organized into two layers: business layers and ap-
plication layers. Business layers are responsible for
interacting with databases (eventually through CRUD
expressions) and application layers sit on top of busi-
ness layers. We resort to these layers to organize this
chapter in two main sections: one for business layers
and another for application layers. There is an ad-
ditional section which slightly unveils the proposed
solution. The presented examples are based on SQL
Server and Java Database Connectivity (JDBC) for
SQL Server.

2.1 Business Logic Layer

During the development of the business layer, the
developers need to master the database schema in
order to write the CRUD expressions required by
the application. This can pose security problems if
the database schema cannot be disclosed, particularly
when the development of the business layer is out-
sourced. Furthermore, even if the developers do not
have access to the whole schema, they are able to
get information about it by trying to execute other
CRUD expressions. Notwithstanding the possibility
that the access control rejects the execution of said
CRUD expressions, the error messages generated by
the Database Management System (DBMS) can dis-
close information about database schema. To exem-
plify this problem, fig. 1 shows a Select statement
that is trying to select all the information of the table
Users. Even if not allowed to execute Select state-
ments (due to access control constraints) SQL Server
returns the error message presented in Fig. 2. This
error message states that the table Users does not ex-
ist, this way disclosing information about the database
schema.

Protecting Databases from Schema Disclosure - A CRUD-Based Protection Model

293

Figure 2: Raised error message for Select of Fig. 1.

Figure 3: Select on an existing table.

The same user can continue to issue other Select
statements as the one shown in Fig. 3. In this case,
the table exists but due to access control constraints,
an error message is raised, as shown in Fig. 4.

This error message also discloses information
about the database schema. Basically, the user be-
came aware that the database contains a table named
as Customers.

If the database is not effectively protected by ac-
cess control policies, the same user can try to disclose
sensitive schemas and data. In the example shown in
Fig. 5, the user (after becoming aware that table Cus-
tomers exists) is trying to find out if table Customers
has columns ContactName, Address and City. Simi-
larly to previous examples, if some error message is
raised, the user can modify the query and retry its exe-
cution. Iteratively, the user will end up disclosing the
table schema.

Finally, if an API such as JDBC is being used, then
users can have access to schemas through metadata
after issuing a Select statement. The metadata allows
users to obtain information such as table names, col-
umn names, column data types and other critical in-
formation, see Fig. 6. In this case we can disclose:
database schemas at line 41 and the database tables at
line 47, among others.

2.2 Application Layer

We can think that by decoupling the development pro-
cess of business and application layers and assign-
ing them to programmers playing different roles, it is
possible to hide (by encapsulation, wrapping or some
other technique) the CRUD expressions being used
by business layers from programmers of application
layers. Unfortunately, this is not possible. We em-
phasize the usage of reflection mechanisms of pro-
gramming languages, which can be used to expose
the CRUD expressions when the business layer is col-
located with the application layer in the same appli-
cation and, therefore, expose the database schema.
Moreover, resorting to reflection it is also possible to
implement additional security violations, such as re-
placing and modifying the underlying CRUD expres-
sions. One of the most well-known technique is SQL
Injection(Anley, 2002; Halfond et al., 2006).

Figure 4: Raised error massage for the select in Fig. 3.

Figure 5: CRUD to disclose a table schema.

2.3 Solution Proposal

As previously explained, if CRUD expressions are
allowed to be used on DIAs, there is no possibility
to prevent database schemas from being disclosed.
Therefore, to prevent attackers from accessing the
used CRUD expressions on the database, we propose
a technique that prevents their use by pushing them
to the server-side, i.e. the database server. From now
on, at the DIAs, CRUD expressions are replaced by
secure tokens. These secure tokens are randomly and
dynamically generated at runtime to avoid any se-
curity violation using other security breaching tech-
niques, such as replay attacks. Replay attacks are at-
tacks where a malicious user obtains valid token pairs
by capturing the communication between a legitimate
DIA and the server-side application, then using the
same token pairs to request the execution of the asso-
ciated CRUD expressions. To generate and manage
the required tokens at runtime we have a supervisor
application.

3 RELATED WORK

This section presents the different approaches used
to secure the database schema. Regarding database
schema, a lot of effort has been put into mapping the
schema (the relational model) to the object oriented
paradigm usually present in applications(Erhieyovwe
et al., 2013; Pereira et al., 2011; Russell, 2008). For
this, we have solutions such as Hibernate(Bauer and
King, 2005) and Eclipse Link(Eclipselink, 2013), and
even object-oriented databases(Bagui, 2003). They
aim at freeing developers from the need to master the
database schema, but they do not directly protect the
schema used in the database. Basically, programmers
can still write CRUD expressions and evaluate the re-
sults of their execution.

One possible reason for the lack of effort put
into protecting the database schemas is because there
is already a commonplace solution present in most
DBMS, which are the stored procedures (Garcia-
Molina, 2008; Sumathi and Esakkirajan, 2007; Ro-
hilla and Mittal, 2013). Stored procedures do protect

SECRYPT 2016 - International Conference on Security and Cryptography

294

Figure 6: Metadata provided by JDBC.

the database schema by encapsulating the CRUD ex-
pressions in the server-side. However they also have
some problems. Among them, we emphasize that
the use of stored procedures does not scale well be-
cause in complex database applications, the number
of stored procedures would increase (in some degree)
with the number of CRUD expressions. Another is-
sue, eventually the most relevant, is that their names
are static, meaning that they cannot be randomized.
Due to this, users can try to execute them once they
know their names.

There is also the possibility of using views to ac-
cess the data on a database (Roichman and Gudes,
2007; Chaudhuri et al., 2007; Wilson, 1988). Views
are defined with a select expression and users access
the data provided by that expression, instead of ac-
cessing the tables directly. Nevertheless, the use of
views does not scale well. Basically, their number
also increases as the number of CRUD expressions
increases.

As we have mentioned, using the multi-tier ar-
chitecture allows the application processing and data
management to be physically separated. Thus not al-
lowing a client to connect directly to the database.
However, this solution is not aimed to be used at the
user level, but instead at the web server level that the
users connect to. In many cases, these web servers do
connect to the database directly, and all the assump-
tions we have made still hold. In fact, we can see that
they are the definition of a DIA, not the user applica-
tion/browser/etc.

Finally, in (Pereira et al., 2014; Pereira et al.,
2012) is presented an architecture where business
logic is dynamically built at runtime and in accor-
dance with the established access control policies.
Thus, CRUD expressions are deployed in each DIA
but only at runtime. Nevertheless, malicious users
can resort to reflection mechanisms to disclose the
database schema.

4 ARCHITECTURAL MODEL

Our main objective with this work is to avoid the de-

ployment of CRUD expressions in DIAs to prevent
database schemas from being disclosed. We start by
presenting a general conceptual model. Next, we
present a possible implementation for the conceptual
model.

4.1 Conceptual Model

As previously shown, to protect database schemas
from being disclosed by CRUD expressions, CRUD
expressions cannot be deployed in DIAs. However,
the use of CRUD expressions cannot be avoided.
CRUD expressions are unavoidable key entities to in-
teract with database servers (those based on the SQL
standard). This means that they need to be deployed
somewhere and also that, to be executed, database
servers need to know them. The first obvious attempt
is to deploy them on database servers. However, this
solution can only be feasible if the next two questions
are positively answered. How can DIAs identify the
CRUD expressions to be executed? 2) Is this solution
effectively secure?

To answer the first question we need a way to pro-
vide DIAs with a substitute for each CRUD expres-
sion. We call this substitute a token. Basically, a
unique token is associated with each CRUD expres-
sion. From now on, DIAs send tokens to database
servers instead of CRUD expressions. However, this
solution is not secure. For example, if each CRUD
expression is assigned a fixed token, then malicious
users can resort to reflection mechanisms to disclose
tokens. Thereafter, being in possession of the to-
kens, the users can execute unauthorized CRUD ex-
pressions. As previously stated, even if the execu-
tion of some CRUD expression is not authorized by
any established access control policy, the returned er-
ror message always discloses some information about
the database schema. This security problem is inde-
pendent from the policy to deploy tokens (statically
or dynamically in DIAs).

To overcome this security gap, tokens need to be
generated such way that their values cannot be reused
outside the context in which they were generated. By
context we mean the running instances of the DIAs
and not the particular application deployed on a par-
ticular device. Thus, tokens need to be generated at
runtime and under the request of DIAs. No system
can be 100% secure, nevertheless, we can now ensure
that tokens are more secure, and the level of security
that can be reached with this approach depends on the
implementation process only. The level of security, as
we will see in the proof of concept, can be very high.
Finally, to close the argument, tokens being sent by
DIAs need to be validated before the execution of any

Protecting Databases from Schema Disclosure - A CRUD-Based Protection Model

295

Figure 7: Conceptual model’s block diagram.

CRUD expression. This task can also be done in the
database server.

Fig. 7 shows a block diagram of the conceptual
model, where the client application is a DIA. The gen-
eral functionality is as follows:

1. The conceptual model starts with the application
(an instance of a DIA) connecting to the Token
Generator and Manager.

2. The Token Generator and Manager generates and
provides the necessary set of unique tokens to the
DIA.

3. The DIA uses the tokens to request the execution
of CRUD expressions.

4. Each token pair is verified and validated by the
Supervisor.

5. If the tokens are considered as valid, the corre-
spondent CRUD expression is executed by the
Query Executor and returns its output back to the
DIA.

If an invalid token is detected by the Supervisor,
that particular DIA should be prevented from sending
further tokens to avoid brute force attacks.

4.2 Conceptual Model Implementation

In this section we propose basic lines for an imple-
mentation of the conceptual model. This is only one
possibility among many others. With this example,
we expect to provide a better understanding of some
details that were not clear enough through the concep-
tual model.

Before presenting the general operation, we have
to provide some additional information. As previ-
ously mentioned, tokens need to be randomly gener-
ated every time a DIA is instantiated. In practice, this
means that the generated set of tokens needs to be ag-
gregated in a higher level entity. This higher level
entity uniquely identifies the running instance. The
concept of Session can be used and we identify it as

SessionID. Basically, every time a DIA establishes a
valid connection, a SessionID is created. Then, the
set of tokens is randomly generated for the authorized
CRUD expressions for that SessionID. Each CRUD
expression is identified by a CrudSRID (CRUD Ses-
sion Remote ID).

This approach using two tokens decreases the
probability of a malicious user executing a CRUD ex-
pression that he was not meant to execute. Let S be
the number of active sessions, Ni the number of Crud-
SRID tokens associated to session i, B the number of
random bits in the SessionID token and b the number
of random bits in the CrudSRID token. The prob-
ability γ, at any given moment, of a user randomly
guessing a valid pair of tokens is given by formula 1.

γ =
S

∑
n=1

Ni

2B+b (1)

The universe of possible tokens that can be used in
the system is given by 2B+b, i.e. each bit has two pos-
sible values and there are a total of B+b bits in each
token pair. The guessing probability γ is the number
of valid token pairs, i.e. the sum of the number of
CrudSRID tokens in each active session, divided by
the universe of possible token pairs.

The formula shows that the guessing probability
increases with the number of valid tokens (i.e. S and
Ni), but it decreases with the increase in the number
of random bits in the tokens. Hence, a security expert
can accommodate the system to any number of ac-
tive sessions and CRUD expressions by manipulating
the number of bits used in each token. Additionally,
if N is the total number of CRUD expressions in the
system, then each session cannot have more than N
associated CrudSRID tokens. This implies that the
probability of randomly selecting a valid token pair is
majored by formula 2, so it is possible to measure the
maximum guessing probability Γ and lower it to be
within acceptable limits.

Γ =
S∗N
2B+b (2)

Consider then a system where the number of ac-
tive DIAs peaks at 1000 and the number of CRUD ex-
pressions configured in the system is 100. In this sce-
nario we can say that the maximum number of valid
token pairs will not exceed 100 000. Thus, following
formula 2, we can calculate the chance of a malicious
user guessing a valid token pair by chance given the
number of random bits in the tokens.

Fig. 8 shows the number of attempts required to
find one of the 100000 valid token pairs given the to-
tal number of random bits in the tokens. Note that
the Y axis uses a logarithmic scale, so we can see that

SECRYPT 2016 - International Conference on Security and Cryptography

296

Figure 8: Number of attempts required to guarantee to find
one of the 100.000 valid token pairs given the total number
of random bits in the tokens.

the number of attempts required to guarantee that a
malicious user is able to find a valid token pair grows
exponentially with the number of random bits used
on the tokens. This shows that a security expert can
decrease significantly the risk of a malicious user ex-
ecuting a CRUD expression that he was not meant to
execute, with small increases in the token’s number of
random bits.

Other techniques can be used in tandem with the
randomized tokens to decrease this risk, such as pre-
venting a user from requesting the execution of a
CRUD expression after invalid tokens are used, but
there are ways to go around them, potentially only
increasing the time between execution requests. We
will now detail the proposed implementation of our
solution.

A block diagram of our proposed implementation
of the conceptual model is shown in Fig. 9. The gen-
eral operation is as follows:

1. The DIA starts up and connects to the server-side
application.

2. The server-side application assigns a SessionID to
the DIA.

3. A random CrudSRID token is assigned to each
CRUD expression the DIA is authorized to use.
All CrudSRID are also assigned to the SessionID.

4. The SessionID and all the associated CrudSRIDs
are delivered to the DIA.

5. The DIA uses the SessionID and a CrudSRID to-
kens to request the execution of CRUD expres-
sions, passing also the parameters to the server-
side, if any.

6. The server validates the tokens, executes the cor-
respondent CRUD expression and outputs its re-
sults.

7. If any token is invalid, the DIA will not be allowed
to continue on using its tokens and: i) the Ses-

Figure 9: Proposed conceptual model implementation.

sionID and all CrudSRID tokens are revoked; ii)
an error is sent to the application; iii) the applica-
tion terminates.

8. The application requests the execution of more
CRUD as needed.

9. When the DIA has no more CRUDs to execute, it
terminates. The server, upon receiving the DIA’s
request to terminate, revokes its tokens.

4.3 Other Security Concerns

While this solution is aimed to solve a very specific
security problem, in practice its implementation may
introduce other security concerns and, thus, should
not be disregarded.

When the DIA connects to the server-side appli-
cation, it will need to authenticate not only to safely
associate a SessionID token to the session, but also to
determine which CRUD expressions can be used by
the DIA. Any authentication mechanism can be used,
as our solution is not dependent on any in particular,
but to provide a secure solution to this problem the
SSL/TLS protocol[17] can be used to not only pro-
vide a secure communication channel on which the

Protecting Databases from Schema Disclosure - A CRUD-Based Protection Model

297

DIA’s credentials can be sent safely, but also to pre-
vent attacks such as a man-in-the-middle.

Another security concern that should be consid-
ered when implementing this solution are replay at-
tacks. In a replay attack scenario, a malicious user
obtains valid token pairs by capturing the communi-
cation between a legitimate DIA and the server-side
application and then using the same token pairs to re-
quest the execution of the associated CRUD expres-
sions. Other attack that could use the SessionID token
is a denial of service attack, where a malicious user
could purposely use another client’s SessionID with
invalid CrudSRID tokens to revoke its tokens. These
problems can be avoided by, once again, using the
SSL/TLS protocol between the DIA and the server-
side application, since it encrypts the communication,
preventing the tokens’ disclosure at the network level.

5 PROOF OF CONCEPT

In this proof of concept, to identify the outcome
of the CRUD expression associated to each Crud-
SRID token that a DIA receives, we opted to send
a generic name with the CrudSRID token, e.g.
’GET ALL CLIENTS’ would mean that the asso-
ciated CrudSRID refers to a query that selects all
clients. This way, programmers know which infor-
mation they are requesting the database for. There
are, however, other methods for doing so. A more so-
phisticated method that can handle this transparently
for the programmer could be an extension of the work
presented in (Pereira et al., 2014).

Note that we also raise error messages when the
execution is aborted for some reason, e.g. because
invalid tokens were used. However, we now have
complete control over the message generated, so we
make sure that it does not disclose any information
about the underlying database schema when returned
to the user. With this technique, we effectively push
the queries from the DIA to the server-side, i.e. the
database server, protecting the database schema from
being disclosed unintentionally.

We will now present our proof of concept. It
is composed of the tables we had to create in the
database to contain the tokens and the CRUD expres-
sions, as well as the method used by the DIA to exe-
cute them, a stored procedure we called RemoteCall.
The RemoteCall stored procedure can be seen as a
mix of the supervisor and the query executor modules
shown in Fig. 7, since it first validates the tokens it re-
ceives and then executes the relevant CRUD expres-
sion. The token generator and manager is a simple
server-side application that creates and revokes tokens

as needed when sessions are created and terminated,
so we will not detail it.

5.1 Database Tables

For our implementation to support the tokens and
store the CRUD expressions required by the DIAs,
we required two main tables: the Queries table and
the SessionQueries table. We also appended the Ses-
sionID parameter to an existing table that already
stored the connected DIAs, so that it can be validated.
The Queries table stores the actual CRUD expressions
to be used. The SessionQueries table maps a gener-
ated SessionID and the generated CrudSRID’s to the
fixed database identifier, i.e. the primary key of each
CRUD expression which is an incrementing CrudRID
value that remains constant for each CRUD.

We also wanted to support parameters for the
CRUD expressions, so we added an Operands table,
which stores metadata on the list of operands required
by each CRUD expression, such as the parameter’s
names and their data types, information that is re-
quired by the RemoteCall stored procedure. The us-
age of parametrized CRUD expression is explained
further in section 5.2 where we detail the RemoteCall
stored procedure.

To demonstrate how these tables are used to
achieve the desired functionality, consider the two
CRUD expressions A as SELECT * FROM Cus-
tomers and B as SELECT * FROM Orders WHERE
CustomerId = @CustomerId and ShipCountry =
@ShipCountry that exist in the Queries table and the
operands in the Operands table, shown on Table. 1
and Table. 2, respectively.

Table 1: Example of two CRUD expressions in the Queries
table.

CrudID CRUD Reference CRUD Expression
1 S Customers all A
2 S Orders byShipCountry B

Table. 1 shows an example of the Queries table
with two CRUD expressions. The ’CrudRID’ column
is the primary key, which is independent from the ses-
sions and is always the same for each CRUD expres-
sion. The ’CRUD Reference’ column is a generic
name related to the operation associated with the
CRUD expression and the ’CRUD Expression’ col-
umn is the associated SQL statement to be executed.

The CRUD expression has its parameters defined
in the format ’@<parameter name>’, which facilitates
its execution by the RemoteCall stored procedure and
will be explained in section 5.2.

Table. 2 shows an example of the Operands ta-
ble. The ’CrudRID’ column references a query in

SECRYPT 2016 - International Conference on Security and Cryptography

298

Table 2: Example of information in the Operands table for
the queries in Table. 1.

CrudID Position Name Type
2 1 @CustomerId nchar(5)
2 2 @ShipCountry nvarchar(15)

the Queries table and the ’Position’ column denotes
the parameter position in the CRUD Expression that
the operand refers to and is used for performance op-
timization purposes. The ’Name’ column indicates
the name of the parameter used in the CRUD ex-
pression and the ’Type’ column indicates the operand
type, which follows the database management sys-
tem’s supported data types.

When a DIA initiates a new session with permis-
sion to use both CRUD expressions shown in Table.
1, it is assigned a random SessionID (12345678 in the
example) and the following information is appended
to the SessionQueries table:

Table 3: Example of the generated identifiers for a DIA ses-
sion in the SessionQueries table.

SessionID CrudSRID CrudRID
12345678 13572468 1
12345678 24681357 2

The information in Table. 3 shows us that the ses-
sion with the SessionID 12345678 can execute two
queries (i.e. the CRUD expressions with the CrudRID
1 and 2). Additionally, the DIA using that session has
to use the CrudSRIDs 13572468 and 24681357 to-
gether with its SessionID to execute each respective
query successfully.

5.2 RemoteCall Stored Procedure

Having the database tables created, we now require a
way to execute the queries using the SessionID and
the CrudSRID tokens. To achieve this we chose to
use a stored procedure, which we called RemoteCall.
Stored procedures are able to take parameters as in-
puts and output the result of queries back to the DIA,
which is precisely the functionality we require. Since
we have the queries stored in a table, we can eas-
ily obtain the CRUD expression too, but the question
is how to get the DBMS to execute it. The process
varies from DBMS to DBMS and it must be done
carefully. Since the CRUD expression is a simple
string, appending the parameters received and execut-
ing it without any parameter validation is dangerous
because of attacks such as SQL Injection.

The DBMS used, i.e. SQL Server 2010, offered
two options to execute queries defined in strings:
the EXEC and the sp executesql commands(IETF,
2008). The EXEC command allows executing CRUD

expressions stored in strings, but does not support
parametrization, which leaves it vulnerable to SQL
Injection attacks if used with parametrized queries.
On the other hand, the sp executesql command takes a
CRUD expression and a list of parameters. Not only
it is resilient against SQL Injection attacks by treat-
ing the parameters differently from the CRUD expres-
sion, even if they are strings themselves, but it also
enables the DBMS to perform optimizations.

The sp executesql command always receives a
statement, which is the CRUD expression to execute.
It also received two optional arguments, of which the
first contains some metadata about the parameters of
the statement to execute, i.e. their names and data
types, and the other contains the parameters’ values.
A query that selects data from a table where a column
value is less than 10 would be executed as follows:

EXEC sp executesql N’SELECT * FROM table
WHERE col > @Param’, N’@Param int’, N’@Param
= 10’;

In the example above, the query retrieved from the
Queries table remains untouched, but the other pa-
rameters still need to be created by the RemoteCall
stored procedure prior to the execution of the query
per se. The result of the RemoteCall stored procedure
is exactly the same as if the CRUD expression had
been executed, therefore no changes are required in
DIA’s source code that handles it. Hence, the Remote-
Call stored procedure requires three arguments: the
SessionID, the CrudSRID, and a string called Params,
which by default is empty and contains the values of
the parameters needed to execute the CRUD expres-
sion.

Fig. 10 shows a block diagram of the RemoteCall
stored procedure implementation. The RemoteCall
stored procedure, upon being executed, retrieves the
CrudRID associated to the SessionID and the Crud-
SRID from the SessionQueries table. This is part
of the validation process of the tokens. If the Ses-
sionID or CrudSRID are not valid, i.e. if there is no
CrudRID associated with the token pair received, the
execution ends at this point, an error raised and the
session terminated. Then it retrieves the CRUD ex-
pression to execute from the Queries table, using the
CrudRID obtained initially. Next, the parameter defi-
nition string is built from the information stored in the
Operands table. Finally, it executes the sp executesql
command with the CRUD expression retrieved, pass-
ing the parameter definition string and the parameter’s
values received from the DIA. Instead of the usual
CRUD expressions, for the DIA to pass the tokens
and the parameter values it executes the RemoteCall
stored procedure as follows:

EXEC PolicyServer2. remote.RemoteCall @Ses-

Protecting Databases from Schema Disclosure - A CRUD-Based Protection Model

299

Figure 10: RemoteCall stored procedure block diagram.

sionID = ?, @CrudSRID = ?, [@Params = ’@Param1
= <value>, @Param2 = <value>’];

The first parameter would be the SessionID of the
DIA and the second parameter the CrudSRID of the
query to execute. The @Params is only needed if ad-
ditional parameters are required by the CRUD expres-
sion. It can be seen that these SQL expressions do
not disclose any information about the CRUD expres-
sion that will be executed, nor does it directly disclose
any information about the database schema, assuming
that the parameters and the columns’ names obtained
from executing them are aliases and they do not use
the same name as defined in the database schema.

After the RemoteCall stored procedure was cre-
ated, we only had to ensure that it was not possible
for the DIAs to use any other method of executing
CRUD expressions. Hence, we revoked all the user’s
permissions on the database except the ability to ex-
ecute the RemoteCall stored procedure. This, how-
ever, limited its ability to execute the queries defined
in the database due to the caller’s lack of permissions.
The solution found was to use the “execute as owner”
modifier on the RemoteCall, effectively granting it
the permissions it required regardless of which user
called it. This also addresses the schema disclosure
problem created by the SQL Server’s JDBC driver
metadata, which returns empty result sets when in-
voking the methods.

5.3 Performance Assessment

In order to evaluate the overhead induced by our solu-
tion, a performance assessment was carried out. Ba-
sically, we compared the response time between the
traditional solution and the solution proposed in this
paper. Since we want to assess the overhead that our
solution imposes in a system, we aimed to maximize
its contribution in the results obtained. To achieve it
we used an environment where the execution time of a
Select statement is as low as possible: we created a ta-
ble with a single attribute of type Integer and only one
row was inserted into the table. Then, a Select state-
ment was written to select the inserted row. The two
solutions were implemented and tested in a PC with
Windows 7 Enterprise. All unnecessary processes and
networking were shut down.

We tested both solutions by performing 100.000
requests to the database executing the select statement
directly and using the RemoteCall stored procedure.
The tool used to perform the tests was Apache JMeter,
which provided the results are shown in Table. 4. The
results include the average time per request, the 90th,
95th and 99th percentile and includes the throughput
achieved with each solution, which is the number of
requests served per second.

Table 4: Performance test results over 100.000 requests.

Average 90% 95% 99% Throughput
Select 2 1 1 48 392,6 req/s

RemoteCall 2 1 1 48 351,9 req/s

From these results we can see that the overhead in-
troduced by the proposed solution slightly reduces the
throughput by about 41 requests per second, from 392
to 351, in this particular test suit. It is worth pointing
out that this test suit was aimed to maximize the con-
tribution of the overhead by using a very simple query
with a minimal result set. In a more realistic scenario,
the database computation time will be greater with
more complex queries and bigger data sets, making
the overhead contribution of the database processing
delay more significant and close the gap between the
response time and throughput on both solutions.

Note that this overhead is constant. Having one
CRUD expression configured or thousands of them
does not impact the RemoteCall stored procedure ex-
ecution plan in any way. The only aspect that can
impact these results is if the CRUD expression, when
it is being fetched using the tokens, does not reside
in memory. This would require a disk access and a
much larger delay time, but it can be easily solved
by adapting the conceptual implementation. For ex-
ample, the supervisor application that resides close to
the database can store the CRUD expressions in mem-

SECRYPT 2016 - International Conference on Security and Cryptography

300

ory and implement the RemoteCall stored procedure
itself. The only downside to this approach is that the
client would not be able to use JDBC, relying instead
on a library that could provide a similar interface.

ACKNOWLEDGEMENTS

This work is funded by National Funds through FCT
- Fundação para a Ciência e a Tecnologia under the
project UID/EEA/50008/2013.

6 CONCLUSION AND FUTURE
WORK

In this paper we have proposed a technique to prevent
database schemas from being disclosed in the DIAs
through the CRUD expressions being used. With this
technique, the CRUD expressions are stored in the
server-side instead of on the DIAs and are executed
using a set of tokens given to the DIAs. Since these to-
kens are randomly generated, the DIAs are not able to
disclose any information about the database schema
used, and the potential attacks against this technique
were discussed.

This technique requires every CRUD expression
to be stored on the server-side, which can be inconve-
nient while developing a DIA and might require a se-
curity expert to manually insert them. The existence
of an application that is capable of registering these
CRUD expressions in the server-side, and a library
that allows the programmer to retrieve the token of a
query using its generic name, would facilitate the us-
age of this technique. Furthermore, the RemoteCall
stored procedure can be simplified by removing the
definition string generation entirely, having it stored
directly in the Operands table instead of each param-
eter individually. However, this technique is more
prone to errors due to the strict syntax required, which
a CRUD registering application could address.

REFERENCES

Anley, C. (2002). Advanced SQL injection in SQL server
applications. White paper, Next Generation Security
Software

Bagui, S. (2003). Achievements and weaknesses of object-
oriented databases. Journal of Object Technology,
2(4):29–41.

Bauer, C. and King, G. (2005). Hibernate in action. Man-
ning Publications.

Chaudhuri, S., Dutta, T., and Sudarshan, S. (2007). Fine
grained authorization through predicated grants. In
Proceedings - International Conference on Data En-
gineering, pages 1174–1183, Istanbul.

Eclipselink, U. (2013). Understanding EclipseLink 2.4.
Eclipse.

Erhieyovwe, E., Oghenekaro, P., and Oluwole, N. (2013).
An Object Relational Mapping Technique for Java
Framework. International Journal of Engineering Sci-
ence Invention, 2(6):1–9.

Garcia-Molina, H. (2008). Stored Procedures. In Database
systems: the complete book, chapter 9.4, pages 391–
404. Pearson, 2nd e. edition.

Halfond, W., Viegas, J., and Orso, A. (2006). A classifi-
cation of SQL-injection attacks and countermeasures.
Proceedings of the IEEE

IETF (2008). RFC 5246: The Transport Layer Security
(TLS) Protocol - Version 1.2.

Pereira, Ó. M., Aguiar, R. L., and Santos, M. Y. (2011).
CRUD-DOM: a model for bridging the gap between
the object-oriented and the relational paradigms: an
enhanced performance assessment based on a case
study. International Journal On Advances in Soft-
ware, 4(1):158–180.

Pereira, Ó. M., Regateiro, D. D., and Aguiar, R. L. (2014).
Role-Based Access Control Mechanisms. . . . (ISCC),
2014 IEEE

Pereira, Ó. Ó. M., Aguiar, R. R. L., and Santos, M. Y. M.
(2012). ACADA: access control-driven architecture
with dynamic adaptation. SEKE’12 - 24th Intl. Conf.
on Software Engineering and Knowledge Engineer-
ing, pages 387–393.

Rohilla, S. and Mittal, P. K. (2013). Database Security
by Preventing SQL Injection Attacks in Stored Proce-
dures. Software Engineering Conference, 2006. Aus-
tralian, 3(11):915–919.

Roichman, A. and Gudes, E. (2007). Fine-grained access
control to web databases. Proceedings of the 12th
ACM symposium on Access control models and tech-
nologies - SACMAT ’07, page 31.

Russell, C. (2008). Bridging the Object-Relational Divide.
Queue, 6(June):18.

Sumathi, S. and Esakkirajan, S. (2007). Fundamentals of
relational database management systems. Springer.

Wilson, J. (1988). Views as the security objects in a mul-
tilevel secure relational database management system.
Proceedings. 1988 IEEE Symposium on Security and
Privacy.

Protecting Databases from Schema Disclosure - A CRUD-Based Protection Model

301

