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Abstract: The L2-gain computation of a linear time-invariant system with state and input delay is discussed. The input
and the state delay are handled separately by using dissipation inequality involving a Lyapunov-Krasovskii
functional and integral quadratic constraints. A conic combination of IQCs is proposed for characterizing
the input delay, where the coefficients are linear time-invariant systems. The numerical example (a vehicle
platoon) confirm that using this dissipativity approach a more effective method for L2-gain computation is
obtained.

1 INTRODUCTION

Dynamic systems with both state and input delay
emerge for example in distributed systems and in
large scale systems. The problem of induced L2-gain
computation of systems with input delay can be re-
solved in many special cases.

If only delayed input acts on the system, then it
can be handled as considering this as another input
without delay. Delay on the control input transforms
to state delay when closing the loop (Fridman and
Shaked, 2004). The problem arise when the delayed
and actual disturbance input acts simultaneously on
the system.

In (Cheng et al., 2012), the actual input and the
delayed input were considered as two independent in-
puts, which results in an overestimation of the L2-
gain, due to disregarding the relation between them.
The other paper, which examined the effects of the
input delay, is (Rödönyi and Varga, 2015). Four dif-
ferent methods were considered to compute the L2-
gain for state and input delay system. The best of
these methods according to the numerical results in
time-invariant and also in time-varying delay cases is
the augmentation of the system with additional dy-
namics. With this method the input delay is trans-
formed to state delay that can be handled for example
by Lyapunov-Krasovskii functionals (LKFs).

Another method was examined in (Rödönyi and
Varga, 2015), where integral quadratic constrains
(IQCs) was used to describe the input delay in the sys-
tem. A conic combination of two IQCs was used with
constant coefficients.

It is shown in this paper that the upper bound of
the L2-gain can be improved further as compared to
the method of additional dynamics by applying dy-
namic coefficients in the IQC approach.

The structure of the paper is the following: First
the system in consideration is described in Section
2 together with the emerging problem. In Section 3
some preliminary tools are presented together with a
lower bound computation method and additional dy-
namics approach. In Section 4 the new method is
presented to compute the L2-gain in case of input
and state delay using Lyapunov-Krasovskii functional
and integral quadratic constraints in the time-domain.
This method is compared with the other two methods
in Section 5 on an example of vehicle platoon. In Sec-
tion 6 a few conclusion are drawn.

Notations. Matrix inequality M > 0 (M ≥ 0) de-
notes that M is symmetric and positive (semi-) defi-
nite, i.e. all of its eigenvalues are positive (or zero).
Negative (semi-) definiteness is denoted by M < 0
(M ≤ 0). The transpose and conjugate transpose of
a matrix M is denoted by MT and M∗, respectively.
σ̄(M) denotes the maximum singular value of matrix
M. The upper linear fractional transformation is de-
fined by FU (M,∆) = M22 +M21∆(I−M11∆)−1M12,

where M =

[
M11 M12
M21 M22

]
. Ln

2 denotes the space

of square integrable signals with norm defined by
‖x‖2 =

(∫ ∞
0 ‖x(t)‖2dt

)1/2, where ‖x(t)‖ denotes the
Euclidean norm on Rn.
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2 PROBLEM FORMULATION
AND SKETCH OF THE
SOLUTION

A linear input and state delayed system denoted by Ω
is described in this paper by the following form

ẋ(t) = Ax(t)+Ahx(t−h)+Bd(t)+Bhd(t−h) (1a)
y(t) =Cx(t), (1b)

where x∈Rnx , d ∈Rnd and y∈Rny is the state, distur-
bance and output of the system, respectively. A, Ah,
B, Bh and C are constant matrices with appropriate
dimensions. Here only time-invariant delay is consid-
ered, therefore h is constant. For the sake of simpli-
fying the discussion a single delay is considered, but
the method can be generalized to handle multiple de-
lays and different state and input delays. The initial
condition for the Ω system is the following

x(t) = φ(t), t ∈ [−h,0], (2)

where φ : [−h,0]→ Rnx is a given continuous func-
tion. Let xt(ξ) denote x(t +ξ) for ξ ∈ [−h,0].

The goal of the paper is to compute the L2-gain of
system Ω defined as

‖Ω‖∞ = sup06=d∈L
nd
2 ,φ=0

‖y‖2

‖d‖2
. (3)

2.1 Sketch of the Solution

To analyse delayed systems different methods exist
like Lyapunov-Krasovskii functionals, Razumikhin
theorem, integral quadratic constraints approach and
frequency-domain methods. The advantage of using
the complete Lyapunov-Krasovskii functional is that
it gives sufficient and necessary condition of stability
in case of constant delays.

The combination of Lyapunov-Krasovskii func-
tional and integral quadratic constraint approach is
used: LKF for the state delay and IQC for the input
delay.

Let Sh(d) := d(t − h)− d(t) denote the differ-
ence between the delayed input and the input. Then
d(t−h) is replaced in (1) by Sh(d)+d(t) and the sys-
tem is reformulated by the linear fractional transfor-
mation (LFT) form FU (G,Sh), where system G is the
following

ẋ(t) = Ax(t)+Ahx(t−h)+(B+Bh)d(t)+Bhw(t),
(4a)[

v(t)
y(t)

]
=

[
0
C

]
x(t)+

[
1 0
0 0

][
d(t)
w(t)

]
(4b)

and w = Sh(v). The Sh perturbation term is described
by integral quadratic constraint. The G plant contains

state delay, the L2-gain of such a system can be com-
puted using complete Lyapunov-Krasovskii function-
als. Adding the time-domain IQC to the derivative of
the LKF and the L2-gain condition the L2-gain of the
Ω system can be computed. The exact formulation
of this L2-gain bound computation technique will be
discussed in the following sections.

3 PRELIMINARIES

In this section the complete Lyapunov-Krasovskii
functional is presented for establishing stability of a
time-delay system. Then two L2-gain computation
methods are described for input delayed systems. One
of them is a frequency-domain formula and the other
one is a time-domain method described in (Rödönyi
and Varga, 2015).

The focus of this paper is to give an efficient time-
domain method for L2-gain computation of system Ω
using integral quadratic constraints. An introduction
to IQCs is given in Section 3.4.

3.1 Lyapunov-Krasovskii Functional

One method to establish stability of a time-delay sys-
tem is to use Lyapunov-Krasovskii functionals. In
the literature different LKFs are proposed for time-
invariant delay. Here the so called complete LKF will
be used presented in (Gu et al., 2003):

V (xt) = xT (t)Px(t)+2xT (t)
∫ 0

−h
Q(ξ)x(t +ξ)dξ

+
∫ 0

−h

∫ 0

−h
xT (t +ξ)R(ξ,η)x(t +η)dηdξ

+
∫ 0

−h
xT (t +ξ)S(ξ)x(t +ξ)dξ. (5)

The sufficient and necessary conditions for asymp-
totic stability of system Ω are that P = PT ∈ Rnx×nx ,
for all −h ≤ ξ,η ≤ 0, Q(ξ) ∈ Rnx×nx , R(ξ,η) =
RT (ξ,η) ∈ Rnx×nx ,S(ξ) = ST (ξ) ∈ Rnx×nx and

V (xt)≥ ε‖x(t)‖2 (6)

V̇ (xt)≤−ε‖x(t)‖2, (7)

for some ε > 0. In this LKF the variables Q,R and
S are matrix functions, which are approximated by
piece-wise linear functions in the analysis.

The domain of this matrix functions [−h,0] (or
[−h,0]× [−h,0]) are divided into N (or N by N) seg-
ments. Each segment indexed by p or (p,q) can be
described with the help of matrix parameters Qp, Sp,
Rpq = RT

qp, p,q = 0,1,2, . . . ,N so that for 0 ≤ α ≤ 1
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and 0≤ β≤ 1

Q(−pl +αl) = (1−α)Qp +αQp−1

S(−pl +αl) = (1−α)Sp +αSp−1

and

R(−pl +αl,−ql +βl) =
{

(1−α)Rpq +βRp−1,q−1 +(α−β)Rp−1,q α≥ β
(1−β)Rpq +αRp−1,q−1 +(β−α)Rp,q−1 α < β

Using this technique the stability conditions can be
described in a linear matrix inequality (LMI) form.
This method is known as discretized complete LKF
and is described in (Gu, 1997).

3.2 A Lower Bound Computation

In case of time-invariant delay the L2-gain of system
Ω can be computed exactly in the frequency-domain:

‖Ω‖∞ = max
ω

σ̄
(

C( jωI−A−Ahe− jωh)−1×

(B+Bhe− jωh)
)
. (8)

However numerically this maximum can not be calcu-
lated in case of lightly damped modes. The L2-gain
was computed on a grid of the frequency interval ac-
cording to (8), which gives a lower bound of the gain.

The other methods will give an upper bound on
the L2-gain of the Ω system. Those will be compared
with this method.

3.3 Additional Dynamics

This method was proposed in (Rödönyi and Varga,
2015), where the input delay was transformed to state
delay using a low-pass filter. Assume, that the input
d(t) is band limited. Let Wd be the low-pass filter with
‖Wd‖∞ = 1 and

ẋd(t) = Adxd(t)+Bdd(t),
dd(t) = Cdxd(t). (9)

Using this filter the Ω system can be augmented with
the following

ẋ(t) = Ax(t)+Ahx(t−h)+Bd(t)+Bhdd(t−h)
y(t) =Cx(t). (10)

Then the L2-gain of the Ω system can be computed
using LKFs on system (9) and (10).

Using a low-pass filter the high-frequency compo-
nents of d are filtered out, therefore the filter need to
be chosen carefully.

3.4 Integral Quadratic Constraint

In system analysis a very powerful tool to describe the
robustness in the system is to use integral quadratic
constraints.

Definition 1 ((Megretski and Rantzer, 1997)). Let Π :
jR→ C(nv+nw)×(nv+nw) be a Hermitian-valued func-
tion. Two signals v ∈ Lnv

2 [0,∞) and w ∈ Lnw
2 [0,∞)

satisfy the IQC defined by Π if
∫ ∞

−∞

[
v̂( jω)
ŵ( jω)

]∗
Π( jω)

[
v̂( jω)
ŵ( jω)

]
dω≥ 0, (11)

where v̂( jω) and ŵ( jω) are Fourier transforms of v
and w, respectively. A bounded, causal operator ∆ :
Lnv

2e [0,∞)→Lnw
2e [0,∞) satisfies the IQC defined by Π,

if (11) holds for all v ∈ Lnv
2 [0,∞) and w = ∆(v).

The input delay of the system can be described via
IQCs. To this end, the system has to be given by the
interconnection of a plant and a perturbation term, Sh
the deviation between the delayed and the undelayed
signal as Sh(v) := v(t−h)− v(t).

To describe the constant time-delay term Sh three
IQCs were proposed in (Pfifer and Seiler, 2015)

Π1 =

[
0 −1
−1 −1

]
, (12)

Π2( jω) =
∣∣∣ jω+1
10 jω+1

∣∣∣
2
[
|ζ2( jω)|2 0

0 −1

]
, (13)

Π3( jω) =
[

0 ζ∗3( jω)
ζ3( jω) −1

]
, (14)

where

ζ2( jω) := 2
( jωh)2 +3.5 jωh+10−6

( jωh)2 +4.5 jωh+7.1
, (15)

ζ3( jω) :=
−2.19( jωh)2 +9.02 jωh+0.089

( jωh)2−5.64 jωh−17
. (16)

A combination of IQCs still an IQC, if an operator
∆ satisfies the IQCs Πi, i= 1,2, . . . ,M, then it also sat-
isfies the IQC Πd( jω) = ∑M

i=1 λi( jω)Πi( jω), where
λi > 0. Usually combined IQC is used in numerical
examples, therefore here these IQCs are studied. The
goal is to preserve the dynamics of the combination
coefficients λi in the time-domain.

For time-domain system analysis an equivalent
representation of the general IQC (11) is required.
The multiplier Π in IQC (11) is factorized as Π( jω)=
Ψ∗( jω)MΨ( jω), where M = MT ∈ Rnz×nz and Ψ ∈
RHnz×(nv+nw)

∞ . (The factorization method is described
according to (Pfifer and Seiler, 2015), where also a
detailed description can be found.) Let z be the out-

put of the system Ψ, namely z := Ψ
[

v
w

]
. Using
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the Parseval’s theorem the frequency-domain IQC is
equivalent with the following expression in the time-
domain: ∫ ∞

0
z(t)T Mz(t)dt ≥ 0. (17)

For general IQCs the constraint (17) holds only
over infinite time, for hard IQCs a restrictive con-
straint of this holds.

Definition 2 ((Megretski et al., 2010)). Let Π factor-
ized as Ψ∗MΨ with Ψ stable. Then (Ψ,M) is a hard
IQC factorization of Π if for any bounded, causal op-
erator ∆ satisfying the IQC defined by Π the following
inequality holds

∫ T

0
z(t)T Mz(t)dt ≥ 0 (18)

for all T ≥ 0, v ∈ Lnv
2 [0,∞), w = ∆(v) and z =

Ψ
[

v
w

]
.

Let Π = Π∗ and partition as
[

Π11 Π∗21
Π21 Π22

]
. Ac-

cording to (Seiler, 2015, Theorem 4) if Π11( jω) > 0
and Π22( jω) < 0 then Π has J-spectral factoriza-
tion (Ψ,M), which is a hard factorization. A fac-
torization (Ψ,M) is a J-spectral factorization if M =[

I 0
0 −I

]
and Ψ,Ψ−1 ∈ RHnz×(nv+nw)

∞ . Here the J-

spectral factorization from (Pfifer and Seiler, 2015)
is used, which provide a square, stable and minimum
phase Ψ.

Appending this Ψ to Sh the plant of the intercon-
nected system reveals the following:

˙̂x = Âx̂(t)+ Âhx̂(t−h)+ B̂
[

w(t)
d(t)

]
, (19)

[
z
y

]
= Ĉx̂(t)+ D̂

[
w(t)
d(t)

]
, (20)

where x̂ :=
[

x
xΨ

]
are the extended state, xΨ is the

state vector of the Ψ system. The exact formula about
the computation of the constant state matrices is omit-
ted, however it can be derived easily from the descrip-
tion of plant G (4).

Using a slightly modified version of Theorem 3
from (Pfifer and Seiler, 2015) the L2-gain for system
FU (G,Sh) can be computed.

Theorem 1. Assume FU (G,Sh) is well-posed and
Sh satisfies the hard IQC defined by (Ψ,M). Then
‖FU (G,Sh)‖∞ ≤ γ if there exists a λ > 0 and a
bounded quadratic Lyapunov-Krasovskii functional
V (x̂t) such that for some ε > 0

• V (x̂t)≥ ε‖x̂(t)‖2,

• the following inequality holds

λzT Mz+V̇ (x̂t)−γ2dT d + yT y≤
− ε‖x̂(t)‖2− ε‖d(t)‖2. (21)

Proof 1. Integrate the inequality (21) from t = 0 to
t = T with the initial condition φ(t) = 0 t ∈ [−h,0]

λ
∫ T

0
z(τ)T Mz(τ)dτ+V (x̂T )− γ2

∫ T

0
d(τ)T d(τ)dτ

+
∫ T

0
yT (τ)y(τ)dτ≤

− ε
∫ T

0
(‖x̂(τ)‖2 +‖d(τ)‖2)dτ≤ 0.

Using that the IQC and the LKF V are non-negative
this inequality is equivalent to ‖FU (G,Sh)‖ ≤ γ.

The inequality (21) gives a linear matrix inequal-
ity (LMI), if the LKF condition for stability can be
formulated as an LMI.

In case of combined IQCs using Theorem 1 the
different factorized IQCs are adding to inequality
(21) with different λi coefficient. However in the
frequency-domain these coefficients were frequency-
dependent. This dynamics in the time-domain now is
omitted.

Arise the question, that why not factorize the λi
coefficients together with IQC Πi using J-spectral fac-
torization. For J-spectral factorization the exact dy-
namics of the IQC is necessary, which is not the case
with λiΠi. Therefore a different factorization is nec-
essary for the λi coefficients. In the next section a
method will be shown to preserve the dynamics of the
λi coefficients in the time-domain.

4 MAIN RESULTS

4.1 IQC Factorization Preserving the λ
Dynamics

The combined IQC in Section 3.4 omit the dynamics
of the λ coefficient in time-domain, therefore a new
factorization method is presented to preserve this dy-
namics.

A factorization of the dynamical λ is necessary in
similar forms as the IQCs are factorized:

λi( jω) = Θi( jω)∗ΛiΘi( jω) (22)

where i = 1,2, . . . ,M. One possible factorization pro-
posed in (Veenman and Scherer, 2014) is the follow-
ing

Θi( jω) =
[

1
1

jω−ρi
. . .

1
( jω−ρi)νi

]T

, (23)
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ρi < 0,νi ∈ N fixed parameters and 0 < Λi ∈
R(νi+1)×(νi+1) constant real symmetric matrix. This
Θi is a basis function, using a fixed pole location (ρi
constant), then by increasing the dimension of the ba-
sis function (νi) a better approximation of the λi coef-
ficient can be established.

Assume that the dimension of v is 1. Using J-

spectral factorization of the IQC (Ψi,

[
1 0
0 −1

]
)

and the factorization of λi as Equation (22) the fac-
torized combined IQC reveals

Πd( jω) =
N

∑
i=1

([
Θi( jω) 0

0 Θi( jω)

]
Ψi( jω)

)∗
×

[
Λi 0
0 −Λi

][
Θi( jω) 0

0 Θi( jω)

]
Ψi( jω).

(24)

In case of a frequency independent IQC only the λ
coefficient is factorized

Πi( jω) = [∗]∗
[

Π11Λi Π∗21Λi
Π21Λi Π22Λi

]
×

[
Θi( jω) 0

0 Θi( jω)

]
. (25)

4.2 LMI Formulation of L2-gain
Computation

Using this new factorized IQC and the discretized
complete LKF the inequality (21) in Theorem 1 can
be formulated as an LMI. For brevity in this section
only one IQC multiplier is considered in form λΠ as
it would be in case of combined multipliers. The LMI
formulation of the problem can be easily extended for
more IQCs.

Let the state-space form of the connected system

Γ :=
[

Θ 0
0 Θ

]
Ψ be given as

ẋΓ(t) = AΓxΓ(t)+BΓ1d(t)+BΓ2w(t)
z(t) =CΓxΓ(t)+DΓ1d(t)+DΓ2w(t),

and the dimension of the xΓ denoted by nΓ. The con-
stant state-space matrices can be computed using the
J-spectral factorization of the Π multiplier and the λ
factorization as in (23).

The state-space form of the connected system of

Γ and G (4) is the following

[
ẋ(t)
ẋΓ(t)

]
= Ac

[
x(t)
xΓ(t)

]
+Ach

[
x(t−h)
xΓ(t−h)

]
+

+
[

Bc1 Bc2
][ w(t)

d(t)

]
,

(26)
[

z(t)
y(t)

]
=

[
CΓ
Cc

][
x(t)
xΓ(t)

]
+

[
DΓ
Dc

][
w(t)
d(t)

]
,

(27)

where

Ac =

[
A 0
0 AΓ

]
, Ach =

[
Ah 0
0 0

]
,

Bc1 =

[
Bh
BΓ2

]
, Bc2 =

[
B+Bh

BΓ1

]
,

CΓ =
[

0 CΓ
]
, Cc =

[
C 0

]
,

DΓ =
[

DΓ2 DΓ1
]
, Dc =

[
0 0

]
.

Before presenting the LMI formulation of the L2-
gain computation some notations must be introduced.

Q̄ =
[

Q0 Q1 . . . QN
]

S̄ =
1
l

diag(S0 S1 . . . SN)

R̄ =




R00 RT
10 . . . RT

N0
R10 R11 . . . RT

N1
...

...
. . .

...
RN0 RN1 . . . RNN




∆ =




∆11 ∗ ∗
QT

N−AT
chP SN ∗

−BT
c P 0 γ2

[
0 0
0 1

]


−

−




Cc
0

Dc


 [∗]T −




CΓ
0

DΓ



[

Λ 0
0 −Λ

]
[∗]T

∆11 = −PAc−AT
c P−Q0−QT

0 −S0−CT
c Cc

Sd = diag{S0−S1,S1−S2, . . . ,SN−1−SN}

Rd =




Rd11 Rd12 . . . Rd1N
Rd21 Rd22 . . . Rd2N

...
...

. . .
...

RdN1 RdN2 . . . RdNN




Rd pq = l(Rp−1,q−1−Rpq)
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Ds =




Ds
01 Ds

02 . . . Ds
0N

Ds
11 Ds

12 . . . Ds
1N

Ds
w1 Ds

w2 . . . Ds
wN




Ds
0p =

l
2

AT
c (Qp−1 +Qp)+

l
2
(R0,p−1 +R0p)

−(Qp−1−Qp)

Ds
1p =

l
2

AT
ch(Qp−1 +Qp)−

l
2
(RN,p−1 +RN p)

Ds
wp =

l
2

BT
c (Qp−1 +Qp)

Da =




Da
01 Da

02 . . . Da
0N

Da
11 Da

12 . . . Da
1N

Da
w1 Da

w2 . . . Da
wN




Da
0p = − l

2
AT

c (Qp−1−Qp)−
l
2
(R0,p−1−R0p)

Da
1p = − l

2
AT

ch(Qp−1−Qp)+
l
2
(RN,p−1−RN p)

Da
wp = − l

2
BT

c (Qp−1−Qp)

Theorem 2. Assume FU (G,Sh) is well-posed and
Sh satisfies the hard IQC defined by (Ψ,M).
Then ‖FU (G,Sh)‖∞ ≤ γ if there exists 0 < Λ ∈
R(ν+1)×(ν+1) and {P = PT ,Qp,Sp,Rpq = RT

qp} ∈
R(nx+nΓ)×(nx+nΓ), p = 0,1, . . . ,N,q = 0,1, . . . ,N such
that the following holds:[

P Q̄
Q̄T R̄+ S̄

]
> 0 (28a)




∆ ∗ ∗
−DsT Rd +Sd ∗
−DaT 0 3Sd


> 0. (28b)

The LMI formulation of the L2-gain computation
in case of state delay system using the discretized
complete LKF is described in (Gu et al., 2003, Prop.
8.5). Only the ∆ matrix has to be modified to get the
LMI formulation of (21).

5 NUMERICAL EXAMPLE:
VEHICLE PLATOON

A vehicle platoon model is used as a numerical exam-
ple. Due to imperfect inter-vehicle communication
the system contains input and state delays. Comput-
ing the L2-gain of this system not only stability can
established, but also the effects of the communication
caused delays are illustrated.

5.1 Vehicle Platoon Model

The first vehicle in the platoon is driven by a human
driver (indexed by 0), and the followers motion deter-

mined by on-board controller (indexed by 1,2 . . . ,n).
The longitudinal dynamics of the ith vehicle is the fol-
lowing:

ṗi(t) = vi(t), (29a)
v̇i(t) = qi(t)+di(t), (29b)

q̇i(t) =−
1
τi

qi(t)+
gi

τi
ui(t), (29c)

where pi,vi denote position and velocity, di is a
disturbance representing both outer effects and mod-
elling error, qi is an internal state such that the ac-
celeration of the vehicle is ai(t) = qi(t)+ di(t). L2-
gain calculations will be carried out on a homoge-
neous platoon (the vehicles parameter are the same)
with parameters τi = 0.7 and gi = 1 i = 0,1, . . . ,n. u0
is the signal generated by the pedal signal of the first
vehicle driver, ui, i = 1,2, . . . ,n is the acceleration de-
mand generated by the controllers.

A leader and predecessor follower control archi-
tecture is used with constant spacing policy proposed
in (Swaroop and Hedrick, 1999). This means that
the controller uses information about the predeces-
sor and also about the leader vehicle, therefore inter-
vehicle communication is necessary. This communi-
cation can be imperfect causing delays in the system
description. Taking this inter-vehicle communication
delays into account, the controllers can be described
by the following equations

u1(t) =−k1δ1(t)− k2e1(t)+a0(t−h)
ui(t) =−k1βδi(t)− k2βei(t)+ ka0a0(t−h)

+ ka1ai−1(t−h)− k1α(vi(t−h)− v0(t−h))
− k2α(pi(t−h)− p0(t−h)), i = 2, ...,n

where δi , vi − vi−1 and ei , pi − pi−1 + Li
are the relative speed and spacing error, respec-
tively. The prescribed spacing Li can be set
to zero in the analysis without loss of general-
ity. The k∗ are constant parameters of the con-
trollers. The aim of the paper is analysis, there-
fore the numerical values of these parameters, which
will be used from (Rödönyi et al., 2012) are k1 =
0.7,k2 = 0.1127,k1α = 0.4642,k2α = 0.0564,k1β =
0.2358,k2β = 0.0564,ka1 = 0.0449,ka0 = 0.9551.

In the analysis only SISO systems are considered,
namely d0 7→ e1 (the effect of the lead vehicle dis-
turbance on the first spacing error) and d1 7→ e2 (the
effect of the first vehicle disturbance on the second
spacing error).

The first system contains only input delay and the
state-space matrices as in Ω system with state vector
x = [e1,δ1,q1]

T are the following:

A =




0 1 0
0 0 1

−0.16 −1 −1.43


 , B =




0
−1
0


 ,
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Bh =




0
0

1.43


 , Ah = 0, C =

[
1 0 0

]
.

The system d1 7→ e2 has both state and input de-
lay, the state-space matrices using the state vector
x = [e1,δ1,q1,e2,δ2,q2]

T are the following:

A =



0 1 0 0 0 0
0 0 1 0 0 0

−0.16 −1 −1.43 0 0 0
0 0 0 0 1 0
0 0 −1 0 0 1
0 0 0 −0.08 −0.34 −1.43



,

Ah =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−0.08 −0.66 0.06 −0.08 −0.66 0



,

B = [0,1,0,0,−1,0]T , Bh = [0,0,0,0,0,0.06]T ,
C = [0,0,0,1,0,0].

5.2 L2-gain of a Vehicle Platoon

A linear combination of the multipliers will be used
as

Πd( jω) = λ1( jω)Π1 +λ2( jω)Πi( jω), (31)

where Πi can be Π2 or Π3, and λ1,λ2 : jR→ R that
satisfies λi( jω)> 0,∀ω.

Before the numerical results notations are neces-
sary for the different L2-gain computation method:

LB the lower bound computation method described in
Section 3.2.

AD the additional dynamics method described in Sec-
tion 3.3 with filter Wd = 1

τds+1 . The τd time-
constant of the filter has to be chosen carefully,
because higher time constant can cause increased
gain, smaller time-constant can cause numerical
problems by solving the LMI. Here τd = 0.05 is
used.

TD the time-domain IQC method with constant λi us-
ing IQCs Π2 or Π3 in the combined Πd .

TDλ the time-domain IQC method with dynamic λi us-
ing IQCs Π2 or Π3 in the combined Πd . At the
factorization of λi the ρi = −1 parameter is used
and the νi is increased from 0 until a tight bound
with the lower bound is established. In the tables
the results using νi = 2 are presented.

In Table 1 the numerical results are shown in case
of system d0 7→ e1 for the different L2-gain compu-
tation methods. This system does not contain state
delay, therefore a simple quadratic storage function
V = xT Px is used instead of an LKF. By the time-
domain IQC method with constant λ coefficient (TD-
2,3) a highly overestimated L2-gain is computed com-
pared to the lower bound (LB).

The suggestion is that preserving the dynamics of
the λ coefficient a lower upper bound of the L2-gain
can be calculated. Using the factorization method de-
scribed in Section 4 (TDλ-2,3), nearly the same re-
sults are received as the lower bound (LB), meanly
a good approximation of the L2-gain are computed.
Two different IQCs are considered Π2 and Π3. Better
numerical results were established using Π2 than Π3.

In an earlier paper (Rödönyi and Varga, 2015) dif-
ferent methods were suggested for L2-gain compu-
tation, and the additional dynamics method (Section
3.3) gave the best numerical results. However here
with time-domain IQC preserving the λ dynamics less
conservative norms are established.

Table 1: L2-gain of system (d0 7→ e1) with time-invariant
delay (only input delay).

h 0.05 0.1 0.25 0.5 0.8
LB 1.27 1.35 1.6 2.02 2.51
AD 1.35 1.44 1.69 2.1 2.6

TD-2 3.55 3.56 3.56 3.58 3.63
TDλ-2 1.27 1.35 1.6 2.02 2.51
TD-3 14.06 14.06 14.06 14.06 14.07

TDλ-3 1.28 1.36 1.63 2.07 2.6

In Table 2 the numerical results in case of system
d1 7→ e2 are shown. This system contains also state
delay, therefore the discretized complete LKF is used
from Section 3.1. The different methods gave similar
results as in Table 1: the time-domain IQC method
using constant λ coefficients (TD-2,3) overestimates
the L2-gain. However if the λ dynamics are preserved
(TDλ-2,3) nearly the same gain can be computed as
the lower bound (LB) by every delay value.

Table 2: L2-gain of system (d1 7→ e2) with time-invariant
delay (state and input delay).

h 0.05 0.1 0.25 0.5 0.8
LB 4.44 4.44 4.44 4.44 4.44
AD 4.44 4.44 4.44 4.44 4.44

TD-2 4.52 4.52 4.52 4.52 4.52
TDλ-2 4.44 4.44 4.44 4.44 4.44
TD-3 4.52 4.52 4.52 4.52 4.52

TDλ-3 4.44 4.44 4.44 4.44 4.44
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6 CONCLUSION

A time-domain method for computing upper bound
of the L2-gain of state and input delay systems is
presented using a dissipation inequality involving
Lyapunov-Krasovskii functionals and conic combina-
tion of integral quadratic constraints. The coefficients
of the combination of IQCs are proposed to be dy-
namic systems.

It was shown by a numerical example that the up-
per bound is very tight, and nearly coincides with the
lower bound. As a numerical example a vehicle pla-
toon was examined with leader and predecessor fol-
lowing control architecture and constant spacing pol-
icy.

Future works involves the construction of con-
troller synthesis based on this time-domain method.
Further extension of this time-domain method will be
to consider also uncertainties in the system.
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