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Abstract: Path planning is an important component for a mobile robot to be able to do its job in different types of 
environments. Furthermore, determining the safest and shortest path from the start location to a desired 
destination, intelligently and in quickly, is a major challenge, especially in a dynamic environment. 
Therefore, various optimisation methods are recommended to solve the problem, one of these being a 
genetic algorithm (GA). This paper investigates the capabilities of GA for solving the path planning 
problem for mobile robots in static and dynamic environments. First, it studies the different GA approaches. 
Then, it carefully designs a new GA with intelligent crossover to optimise the search process in static and 
dynamic environments. It also conducts a comprehensive statistical evaluation of the proposed GA approach 
in terms of solution quality and execution time, comparing it against the well-known A* algorithm and 
MGA in a static scenario, and against the Improved GA in a dynamic scenario. The simulation results show 
that the proposed GA is able to find an optimal or near optimal solution with fast execution time compared 
to the three other algorithms, especially in large problems. 

1 INTRODUCTION 

The robotics field has received a great deal of 
attention from many people beside those in research 
and industrial communities (Elshamli et al., 2004). 
The wide variety of robotics applications is a natural 
motivator for people to study this area and 
contribute to it. Building sophisticated and 
intelligent robots that can change the world is the 
aim of everyone working in the field. The building 
of intelligent robots began with basic intelligence, 
models which could only move around and perform 
a small set of tasks. Today, these robots outperform 
humans in various kinds of tasks in terms of 
efficiency and accuracy (Tiwari et al., 2012). 
However, there remain several challenges to 
building a complete intelligent robot. One of these 
challenges is intelligently determining its fastest and 
safest route to its destination. This is what is known 
as the path planning problem (Elshamli et al., 2004). 
The path planning problem addresses two types of 
environment, static and dynamic (Miao, 2009). The 
environment is called static when its information 
cannot change during the robot planning and 
navigation. On other hand, if the environment does 
change while the robot is deliberating, then it is 

called dynamic environment (Russell and Norvig, 
2002). The changes may occur at the goal position, 
obstacle location, or entering a new obstacle (Tiwari 
et al., 2012). Path planning is an important 
component for a mobile robot to be able to perform 
assigned tasks in different types of environments. 
The robot path planning problem is not an easy task 
to solve because it has a number of issues that may 
affect the efficiency of the path planning algorithm 
(Tiwari et al., 2012; Chaari et al., 2012): 
completeness, computational time, optimality of the 
path, the path smoothness and energy consumption. 

In this paper, we would like to deal with the 
issue of how these robots might intelligently plan 
their path in a static and dynamic environment by 
using genetic algorithm. We chose to study this 
problem because the current solutions suffer from 
several drawbacks, among them high computation 
expense, inflexibility in responding to changes in the 
environment or to different optimisation goals. 
Genetic algorithm was chosen because its efficiency 
has been proven in many optimisation and static 
path planning problems. In this paper, we study the 
use of genetic algorithm in that problem. 
Furthermore, we suggest a new algorithm that not 
only focus on the optimality of the path but also 
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reduce the real-time execution for large problems, as 
this is a critical criterion in mobile robots path 
planning. The new algorithm is enhanced by 
designing a new intelligent crossover and a set of 
mutations. In addition, we test the new algorithm 
and conduct a comparison study between some of 
existing solutions. 

The remaining parts of this paper are organised 
as follows: section 2 reviews related works. Section 
3 introduces our algorithm and explains its 
components, while section 4 presents a comparative 
study between the algorithms, evaluates 
performance, reports results and discusses them. 
Finally, section 5 concludes with a summary of 
contributions and makes suggestions for future 
research work. 

2 RELATED WORK 

Genetic algorithm (GA) is one of the heuristic 
search algorithms. The heuristic search algorithms 
do not guarantee to find a solution, but when they 
do, they do it so much faster than classic search 
algorithms (Masehian and Sedighizadeh, 2007). GA 
proposed in 1975 by John Holland at the University 
of Michigan. It is used to generate useful solutions 
to optimisation, search problems and machine 
learning (Hussein et al., 2012). GA belongs to the 
evolutionary algorithms, which generate solutions 
by using inspired techniques from natural evolution, 
such as inheritance, mutation, selection, and 
crossover (Reshamwala and Vinchurkar, 2013). Due 
to the robustness and effectiveness of GA in several 
optimisation problems, various studies have been 
done to use GA in robot path planning problems. 
(Elshamli et al., 2004) proposed a GA planner that 
can solve the robot path planning problem in a 
dynamic environment that may presents new 
obstacles. To model the search space, they used 
polygonal representation. The proposed algorithm 
uses a variable length of chromosome and generates 
random feasible initial population. For the crossover, 
the algorithm uses a random one-point crossover, 
whereas the mutation operation changes a node 
value randomly. To solve the dynamic aspect, the 
authors used four techniques, the best being Memory 
and Random Immigrants. In addition, this algorithm 
takes into consideration path smoothness. It has 
many operations besides the basic ones, such as 
Repair, Shortcut and Smooth operators. 
Consequently, it takes a long time to find an optimal 
or near optimal path. Therefore, (Koryakovskiy et 
al., 2009) suggested eliminating the use of Repair, 

Shortcut and Smooth operators, and using 3-point 
interpolation by Bezier curves instead to generate 
smooth paths in the initial population. The suggested 
method reduces the time in finding the target path. 
However, the proposed method works only in a 
well-known environment with static and new 
obstacles. 

On other hand, (Mahjoubi et al., 2006) also used 
polygonal representation for the obstacles as a 
search space to make the search faster. To evaluate 
the individual, the algorithm uses a fitness function 
that depends on the path’s total length and penalty 
factor for collision parts. This algorithm uses three 
types of mutation operators: delete, insert and 
change node mutation operators. This method 
supports well-known environment with moving 
obstacle only. (Zou et al., 2012) also suggested 
improving the environment modelling by using a 
grid size-adjustment technique, which can zoom-in 
and zoom-out from the grid map to provide an 
accurate and fast search map. Furthermore, the 
authors used a nonlinear fitness function to improve 
the convergence and operational efficiency of the 
algorithm. In addition, (Shi and Cui, 2010) have 
used a new modelling method to speed up the 
execution of searching. The new method projects the 
two dimensional data to one dimensional data, 
which helps to reduce the size of the search space 
and the size of the chromosomes. Their fitness 
function depends on the path length, path security 
and path smoothness. The suggested method can be 
used to solve the problem in an unknown dynamic 
environment. 

(Zhao and Gu, 2013) devised a different idea to 
solve the problem. They suggested using a two-layer 
GA mechanism. In this method, each layer has 
different fitness functions. The first layer is 
responsible for static obstacles avoidance, while the 
second layer is responsible for dynamic obstacles 
avoidance. Beside of that, a new operation known as 
Delete operation is used to delete the redundant bits 
in the individual and the bits between them. (Yun et 
al., 2011) provide an algorithm that avoids acute 
obstacles in the dynamic environment. The provided 
solution prevents the robot from being trapped in an 
acute ‘U’ or ‘V’ shaped obstacle. In addition, this 
solution handles static, dynamic and new obstacles. 
When new obstacles are detected, the algorithm re-
plans the path from the current position. 
Furthermore, (Zhu et al., 2015) invented a helpful 
new idea for global path planning and well-known 
environment. In their solution, the path is 
represented as a sequence of straight-line segments, 
which connect the obstacles’ vertices that are 
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bypassed by the path. The method limits the search 
space in the space of obstacles. Furthermore, after 
each crossover and mutation, the path refinement 
function is applied to the child chromosomes to 
correct the collide parts and enhance the quality of 
the paths. 

This paper in addition to proposing a new GA 
and using a new environment representation method, 
it is different from these works in that it evaluates 
the performance of the GA on semi-large-size maps 
starting from 100*100 up to 500*500. 

3 DYNAMIC GENETIC 
ALGORITHM 

The aim of our paper is to find a practical approach 
to solve a path planning problem in a dynamic 
environment by using GA. To achieve that, we have 
designed a new GA planner that depends on a grid-
based map to represent the environment with 
polygonal representation for the obstacles. The 
following subsections describes the environment 
representation and the new planner. 

3.1 Environment Representation 

In our work, we have selected a grid-based map to 
represent the environment with polygonal 
representation for the obstacles. By this means, we 
could cover the environment completely and update 
it easily. Beside of that, polygonal representation 
helps to reduce the use of the memory, to produce 
smoother paths, and we can use efficient and simple 
geometric algorithms (O'Rourke, 1998) (Sunday, 
2012) to check the feasibility of the paths and reduce 
the computational complexity. 

3.1.1 Grid Representation 

The used grid map represents the environment in a 
2D way by dividing it into equal square cells, as 
shown in figure 1. Each cell has a coordinate 
number. We assume the environment is rectangular 
and its boundary is static.  In addition, the mobile 
robot can move from one cell to another free cell in 
a straight line if the line between them does not 
collide with any obstacle. 

3.1.2 Obstacles Representation 

We assume the obstacles are polygons, and they are 
represented by the ordered list of its vertices. Each 
vertex represents cell coordination on the grid map. 

Obstacle segments are constructed by connecting 
these vertices, starting with the first vertex and 
ending with connecting the last vertex to the first 
one. For example, the first obstacle in figure 1 is 
represented as [(1,4), (4,4), (4,6), (2,6)]. 

3.1.3 Solution Encoding 

The paths encoding is one of the most important 
issues for GA, because the encoding may affect GA 
performance and memory performance. Since the 
paths may have variable lengths and line segments, 
we have chose to use a variable size solution 
encoding. The solution is represented by a 
chromosome. The chromosome consists of a 
sequence of ordered positions that represent the line 
segments, starting from the initial point and ending 
at the goal point. Euclidean distance is used to count 
the path cost. This method has been used to reduce 
the size of the memory and to help making smooth 
paths. Figure 1 shows an example of a feasible path. 
The path is encoded as [(2,1), (9,1), (11,3)], the 
initial cell is (2,1), the goal cell is (11,3) and the cost 
of the path is= 2 9 1 1  + 

9 11 1 3  = 9.83. 

 

Figure 1: Grid representation. 

3.2 Genetic Algorithm Designing 

To design efficient GA, we need to take care in 
designing all of its parameters and operators, 
because they affect the performance of a GA and 
they are interrelated. In the following subsections, 
we will describe how we designed these important 
parameters and operators. 

3.2.1 Initial Population 

Generating an initial population is the first step in 
the functioning of a GA. Each member of this 
population encodes a possible solution to the 
problem or may lead to finding the solution. In our 
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algorithm, part of initial population is generated 
completely randomly. The number of cells in any 
random given path is assigned randomly. In 
addition, the cells’ coordinates are generated 
randomly, but they must be feasible cells (outside 
occupied space). The generated paths may contain 
feasible and infeasible segments (intersect with 
obstacles). The second part of the initial population 
is generated by one-point crossover. We have used 
these approaches in generating the initial population 
to get a diverse population with paths of various 
quality in fast time and ensure that some paths 
intersected with others to help performing the 
intelligent crossover in later stage. 

3.2.2 Fitness Function 

The value of the fitness function determines the path 
cost of a chromosome. Therefore, all problem 
objectives must be considered. In this paper, our 
objective is to generate the shortest possible path in 
acceptable time. Therefore, the same objective has 
been used in the definition of the fitness function as 
with the method used by (Mahjoubi et al., 2006). 
This fitness function calculates the Euclidean 
distance between successive points of each 
chromosome and adds the results to each other. This 
represents the length of each feasible chromosome. 
However, the fitness of a chromosome with 
collisions should be higher than the worst feasible 
chromosome. The cost for path p with n cells is 
defined by: 

, ∗  (1) 

where C(p) is the calculated cost for path p, D(A, B) 
is the Euclidean distance between point A and point 
B, L( p) is the total length of the collided parts in 
path p, Pi is the ith point in the corresponding 
sequence of path p (i=1, 2…, n), and M is the 
penalty factor. 

3.2.3 Selection Operators 

The selection operator selects the best individuals 
from the population to spawn a new generation of 
the population. In this paper, we used two selection 
operators. Elitist selection is used to move the best 
individuals in the current generation to the next 
generation without any change. The elitist selection 
is used to avoid losing the best paths because of the 
genetic operator’s randomness (Al-Ajlan et al., 
2013). In addition, the tournament selection is used 
to select a group of individuals from the population 

randomly. These individuals are ranked according to 
their relative fitness, and the fittest individuals is 
selected to produce the next generation. The 
tournament selection is used because it gives each 
individual a chance to be selected even the infeasible 
paths, as a result, the diversity of the population 
increases (Elshamli et al., 2004). 

3.2.4 Crossover Operators 

The crossover operator is primarily responsible for 
improving the generations to obtain the best paths. 
The improvement is achieved by recombining two or 
more individuals called parents to generate better 
solutions called offspring. In this paper, we proposed 
a new crossover operator called intelligent 
crossover. Figure 2 illustrates the intelligent 
crossover. As shown in the figure, the intelligent 
crossover is performed at the beginning by taking 
the same start node to the offspring and then 
comparing the next nodes from the two parents. The 
comparison depends on two conditions: 

a. Whether the line segment between the 
selected node and the next node is feasible or 
infeasible. The feasible line is preferred. 

b. If the two lines have the same status, then the 
Euclidean distance between those nodes and 
the goal node will be calculated. The node that 
has shorter distance will be selected as the 
next node for the offspring. 

After that, intelligent crossover looks for the 
selected node value in the two parents; if it exists in 
the two parents, then the operator performs the 
comparison between the next two nodes to the 
selected node to select the best one. Otherwise, 
when the selected node is located in one parent only; 
the next node is selected directly from that parent. 
The operation continues in this way until it finds the 
goal node. There are two issues with this method: 
the first occurs when we compare two nodes that 
have the same status and Euclidean distance. To 
handle this issue, intelligent crossover will choose 
the next node from the first parent. The second issue 
occurs when we have two parents that do not share 
any nodes; thus, the result will be exactly same as 
one of the parents. To overcome the second issue, 
we performed one-point crossover during the 
generation of the initial population as described in 
section 3.2.1, in addition to trying to select two 
parents that have at least one common node, other 
than start and goal nodes. Algorithm 1 presents the 
intelligent crossover operator. 
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Figure 2: Intelligent crossover operator. 

3.2.5 Mutation Operators 

The mutation operator is primarily responsible for 
giving GA the required diversity to explore the 
entire solution space and prevent the population 
from being stuck in a local optimum. In this paper, 
we use five types of mutation operators: 

a. Add Node: selects a random feasible cell 
from the environment and adds it to the path 
in a random index. 

b. Delete Node: selects a random node from the 
path and deletes it. 

c. Change Node: selects a random node from 
the path and exchanges its value with a 
random feasible cell from the environment. 

d. Shorten the Path: reduces unreasonable 
curves in the path by deleting the intermediate 
nodes between the nodes that have feasible 
line segments. 

e. Correct the Path: enhances the infeasible 
path by correcting all infeasible parts, in 
addition, it removes any duplicate nodes in the 

path. To correct infeasible parts, the operator 
uses the best first search algorithm (BFS) 
based on Euclidean distance heuristic. BFS is 
a simple heuristic search algorithm (Dudek 
and Jenkin, 2010). We use it to help building 
suboptimal path in fast time. 

The mutation chooses one of these operators 
randomly each time to generate new offspring. 
Figure 3 shows an example for each operator, add 
node, delete node, change node and shorten 
operators are applied on parent 1, while correct 
operator are applied on parent 2. The examples has 
been taken from the represented map in figure 2. 

3.2.6 Control Parameters 

GA requires the various values of algorithm’s 
parameters to be set, namely, population size, 
crossover probability, mutation probability, and 
stopping condition. These parameters have a great 
impact on the performance and efficiency of the 
algorithm;  they affect the quality of the solution and 
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the search time. 
a. Population Size: Research has indicated that 

if the population size is too small, GA might 
fail to reach a high-quality solution. On the 
other hand, a large population size increases 
the computational time of the GA (Al-Ajlan et 
al., 2013). After performing some experiments 
on the population size starting from 15 to 80, 
the population size is set to 40, which can be 
consider large enough to cover the 
environment in which we work without 
adding too much computational overhead. 

b. Stopping Condition: After performing some 
experiments on the stopping condition starting 
from 50 to 200 iterations, the stopping criteria 
of our GA are defined by 100 generations. We 
chose this method to reduce the computational 
time of the algorithm and give it enough time 
to find the optimal solution. 

c. Crossover and Mutation Probabilities: A 
high crossover probability leads to the 
generation of new individuals faster and 
explores more solutions, but also it may leads 
to disrupt the good solutions. Whereas, a high 
mutation probability increases the diversity of 
the population but risks the individuals 
jumping over a solution to which they were 
close and transforms the GA into a random 
search. However, having excessively low 
probabilities lead to solutions that become 
stuck in local optima. Typically, the crossover 
probability should range from 0.7 to 0.9, 
whereas the mutation probability should range 
from 0.01 to 0.1 (Al-Ajlan et al., 2013), 
(Asteroth and Hagg, 2015). We will conduct 
experiments to test different probability 
values. 

 

Figure 3: Examples on mutation operators. 

3.3 Handling Dynamic Aspect 

At the beginning, our GA tries to find the best path 
based on the available static information. Then, 
when change is detected, the GA seeks to manage 
the dynamicity of the environment by using Memory 
with Random Immigrants technique (MRI). This 
technique has been selected because of its ability to 
maintain population diversity, which is the key to 
successful GA implementation for dynamic 
problems and exploits useful information from 

Algorithm 1: Intelligent Crossover Operator. 

INPUT: chromosomes: parent1 and parent2, and node: goal 
OUTPUT: new chromosome: child 

BEGIN 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
 
21 
 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

child [1] = parent1[1] 
n = 1 
while (goal not reached) 
    x1 = find child [n] in parent1 and return the next node 
    x2 = find child [n] in parent2 and return the next node 
    if (x1 == null) 
        child [n+1] = x2 
    else 
        if (x2 == null) 
            child [n+1] = x1 
        else 
            f1= is(child [n], x1) line intersects with obstacles? 
            f2= is(child [n], x2) line intersects with obstacles? 
            if (f1 == false and f2 == true) 
                child [n+1] = x2 
            else 
                if (f1 == true and f2 == false) 
                    child [n+1] = x1 
                else 
                   d1=calculate Euclidean distance(child [n], x1) 
                       + calculate Euclidean distance(x1, goal) 
                   d2=calculate Euclidean distance(child [n], x2) 
                       + calculate Euclidean distance(x2, goal) 
                    if (d1 <= d2) 
                        child [n+1] = x1 
                    else 
                        child [n+1] = x2 
                    end if 
                end if 
            end if 
        end if 
    end if 
    n = n+1 
end loop 

END 

ECTA 2016 - 8th International Conference on Evolutionary Computation Theory and Applications

126



previous phases (Elshamli et al., 2004). The memory 
part is responsible for storing useful information 
from the environment to be reused later in a new 
environment. For every generation, we select the 
best individuals from the population and add them to 
the memory rather than the worst ones. Then, we use 
all of its content to replace the worst individuals in 
the population when the environment changed. The 
random immigrant technique is a simple method to 
address the convergence issue (Yang, 2008). It 
maintains the diversity level of the population 
through substituting a percentage of individuals in 
the current population with new random ones when 
the environment changed. Algorithm 2 shows how 
the GA generates the new population based on the 
MRI. 

Algorithm 2: Memory with Random Immigrants. 

INPUT: population p[], memory m[], start, goal, 
               and the number of random immigrants r 
OUTPUT: new population g[] 

BEGIN 

1 
2 
3 
4 
5 

edit start and goal nodes in all the paths in m[] 
copy all the paths from m[] to g[] 
generate r new random paths and add them to g[] 
edit start and goal nodes in all the paths in p[] 
copy (p[].size – r – m[].size) paths from p[] to g[] 

END 

4 PERFORMANCE 
EVALUATION 

At the beginning, we will test the algorithm with 
different Crossover and Mutation probabilities to 
study the effect of these two parameters on our GA. 
Then, the static version of the algorithm will be 
compared to A* (Tiwari et al., 2012), because it is 
widely used in solving path planning problems due 
to its optimality and completeness. In addition, it 
will be compared to another efficient static GA 
(Alajlan et al., 2016), (MGA). For dynamic 
environments, we will compare the re-planning 
method and the MRI to see the effect of using the 
memory, as well as comparing the algorithm with 
(Zhao and Gu, 2013) algorithm, (improved GA). 

4.1 Experiment Setup 

To test and evaluate the performance of our GA path 
planner in different size environments, we designed 
an object-oriented simulation model. We 
implemented it by using C++ programming 

language, and compiled it under Linux OS; Ubuntu 
14.04 LTS. All the runs were conducted on a Dell 
Venue 11i Pro device, which has an Intel Core i5 
processor running at 1.6 GHz with 8 GB of RAM 
and 104 GB of Disk. 

In order to obtain a good analysis of the 
algorithm, a set of benchmarks must be defined. The 
benchmark set is composed of both simple and 
difficult ones. The set consists of four different size 
maps and different complexities (i.e. obstacle ratio). 
The benchmarks were selected from (Sturtevant, 
2012) and (Al-Ajlan et al., 2013). Figure 4 shows 
the selected benchmarks. The dynamic environments 
are simulated by introducing new obstacles during 
the search process. Since the GA is a stochastic 
technique, like all other metaheuristic techniques, 
conclusions cannot be drawn from a single run. All 
the results are based on the following: for each 
configuration, ten runs are performed for the same 
configuration. The best, average and worst cost, and 
the average CPU time are registered for these runs. 

4.2 Impact of GA Parameters 

The aim of this section is to explore the impact of 
mutation probability, crossover probability and the 
proposed intelligent crossover operation on the GA 
path planner. In order to do that, Map #2 was used. 

4.2.1 Crossover Operator Impact 

Table 1 demonstrates how Intelligent Crossover and 
One-Point Crossover have impacted path cost and 
CPU time. In order to calculate this, the generation 
number was set to 100, population size to 40, 
mutation probability to 0.01, and crossover 
probability to 0.9. As can be clearly seen the two 
types of crossover have different impacts on the 
measured outcomes, where the Intelligent crossover 
can find better path in much less time compared to 
One-Point crossover. 

Table 1: Crossover type impact. 

Crossover 
Type 

Best 
Path 

Worst 
Path 

Average 
Path 

Average 
Time 

Intelligent 
Crossover 

71.562 102.123 86.1851 8.6251 

One-Point 
Crossover 

72.198 164.201 110.126 14.4016 

4.2.2 Crossover Probability 

The impacts of the crossover probability (Intelligent 
Crossover) on path cost and CPU time are shown in 
Table 2.  In  order  to  calculate  this,  the  generation 
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Figure 4: Benchmarks. 

number was set to 100, population size to 40, 
mutation probability to 0.01, and crossover 
probability range from 0.5 to 1.0. 

We can see that in table 2 increasing crossover 
probability improves the average path cost but 
equally increases execution time. Based on these 
results, the most efficient crossover probability is 
within the range of 0.7-0.9. 

Table 2: Crossover probability impact. 

Crossover 
Probability 

Best 
Path 

Worst 
Path 

Average 
Path 

Average 
Time 

0.5 69.044 146.474 94.52451 6.306106
0.6 71.428 148.066 99.11437 6.854905
0.7 70.201 130.608 97.18876 7.013214
0.8 72.639 110.968 88.08952 7.04423 
0.9 71.562 121.339 86.18512 8.625075
1.0 74.062 180.799 125.0532 8.774862

4.2.3 Mutation Probability 

The impact of mutation probability on path cost and 

CPU time are shown in Table 3. In order to calculate 
this, the generation number was set to 100, 
population size to 40, crossover probability to 0.9 
using Intelligent Crossover and mutation probability 
range from 0.01 to 0.5. With an increase in mutation 
probability, the average path cost improved but the 
execution time increased alongside it. Therefore, the 
most efficient mutation probability in terms of costs 
and time is between 0.2-0.3. 

Table 3: Mutation probability impact. 

Mutation 
Probability 

Best 
Path 

Worst 
Path 

Average 
Path 

Average 
Time 

0.01 71.562 121.339 86.18512 8.625075
0.1 70.316 102.771 79.97139 7.377394
0.2 68.634 80.7936 73.47892 7.220681
0.3 69.170 73.2536 71.03801 7.987558
0.4 68.922 74.4373 70.88054 8.710724
0.5 68.719 70.7892 69.73331 8.77626 
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4.3 Performance Evaluation in Static 
Environments 

This section presents an evaluation of the 
performance of the GA path planner in a static 
environment focusing on path length as an indicator 
of solution quality and execution time as an 
indicator of the speed of the algorithm. This 
performance is compared to A* and MGA. The GA 
parameters, which produced the best results in the 
previous section, were selected for all four 
benchmarks: population size = 40, crossover 
probability = 0.75, mutation probability = 0.3 and 
number of iterations = 100. The start point is placed 
at the topmost point on the left side, while goal point 
is placed at the bottommost point on the right side in 
order to increase the distance between them. 

The results of all the four benchmarks for our 
GA, A* and MGA can be seen in Table 4. For our 
GA, we presented the best, worst and average path 
costs and CPU times. For A* and MGA, as they 
have similar results for all runs (best, worst and 
average costs are all equal); we present only the 
average path cost and the average CPU time. 

Table 4 shows that our GA is able to find an 
optimal or near optimal path, but as the complexity 
and size of benchmarks is increased the gap between 
the GA, A* and MGA also increases. In the last 
benchmark, A* is better than GA 1.46 times. A* 
finds the optimal path every time, but GA is an 
incomplete method so it is not possible to be sure 
that the GA and MGA paths are optimal. However, 
as Table 4 shows, our GA was able on occasion to 
find the shortest paths. This is because a grid-based 
map used to represent the environment with 
polygonal representation for the obstacles. This 
approach means that the robot can move in any 
direction with fewer detours than they are allowed in 
the regular grid representation used by A* and 
MGA, where robots can move in just eight 
directions. 

On other hand, the time gap between our GA and 
A* and MGA decreases when the size of the 
benchmarks increase. In large maps, GA 

outperformed A* and MGA in terms of execution 
time. For example, in the last benchmark, GA is 
faster than A* 3.9 times. This is because our GA 
uses random paths in the initial population and then 
fix them later with the crossover and mutation 
operators. This keeps the times low in most cases. 
A* is a greedy approach, while MGA uses the 
greedy approach to generate the initial population. 
Both expands nodes exponentially with the depth of 
the solution, which takes time during large 
problems. In fact, MGA failed to complete the final 
benchmark after 10 hours of trying, and overall it 
took longer time to solve large problems. 

4.4 Performance Evaluation in 
Dynamic Environments 

Here we tested the algorithms by using the first two 
benchmarks. Again, the start and goal points were 
chosen in the top left and bottom right cells. To 
create a dynamic environment, user-defined 
obstacles were introduced during each run in such a 
way that they affect the best path produced in the 
static mode. 

4.4.1 Re-planning Vs Memory with Random 
Immigrants 

Two techniques were used to manage the dynamic 
obstacles, MRI and re-planning. These were 
compared in order to study the effect of using the 
memory when the environment changes. The same 
GA parameters that produced the best average 
values were used for each technique: population size 
= 40, crossover probability = 0.75, mutation 
probability = 0.3, and number of iterations = 100. 

Table 5 demonstrates that the MRI technique is 
more efficient than re-planning from the start 
because the MRI uses promising potential solutions 
to improve the new path. The re-planning method 
also had a longer execution time because it 
generated more random paths that need to be fixed, 
and this consume much more time. 

Table 4: Results of GA, A* and MGA for four static benchmarks. 

Benchmark 
GA A* MGA 

Best Path Worst Path Average Path Average Time Average Path Average Time Average Path Average Time

1 130.265 135.246 133.0312 7.903324 131.865 1.72329 131.865 0.95037 

2 264.734 294.393 275.2191 9.216908 269.061 77.59117 269.061 11.07575 

3 263.331 297.479 281.0732 13.40991 270.819 62.12198 290 23.12085 

4 857.16 1178.8 1035.997 918.0374 805.919 3579.913 Failed 
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Table 5: Results of MRI and re-planning techniques in dynamic environments. 

Benchmark 
GA (MRI) GA (Re-planning) 

Best Path Worst Path Average Path Average Time Best Path Worst Path Average Path Average Time

1 142.107 148.899 144.6106 17.59538 143.069 186.14 148.8587 17.68738 

2 267.143 311.728 288.8071 29.18556 272.45 309.196 296.01564 34.66139 

Table 6: Results of MRI and Improved GA in dynamic environments. 

Benchmark 
GA (MRI) Improved GA 

Best Path Worst Path Average Path Average Time Best Path Worst Path Average Path Average Time

1 142.107 148.899 144.6106 17.59538 150.409 171.498 158.6494 26.7439 

2 267.143 311.728 288.8071 29.18556 271.647 300.694 281.0783 139.4874 

 
4.4.2 Comparison in Dynamic Environment 

This section presents a comparative study between 
our GA and the improved GA (Zhao and Gu, 2013) 
in dynamic environments. They are assessed in 
terms of solution quality, measured as path length, 
and algorithm speed, measured as execution time.  

The results of the evaluation are shown in Table 
6. Both GAs were able to find optimal or near 
optimal paths, although it is not guaranteed that 
these are optimal because GA is not a complete 
method. In our GA, the path cost was on average 
slightly better than in the improved GA as a result of 
the various mutation and crossover operations, and 
as Table 6 shows, our GA found slightly shorter 
paths. Again, this is a result of using the grid-based 
map representation with polygonal obstacle 
representation. For the same reason, our GA also 
had consistently much better execution times than 
the improved GA. Our representation is better since 
the sizes of individuals are much smaller than the 
size of individuals of the classical grid 
representation. Therefore, the GA operations could 
be performed efficiently. 

5 CONCLUSIONS 

Path planning is the process of deciding how to 
move from one point to another one with respect to 
the objectives of the problem. It is a fundamental 
problem to mobile robots. In this paper, we 
addressed the problem of path planning for mobile 
robots in static and dynamic environment. Our 
motivation was the need of finding the best path 
within acceptable time, and studying the impact of 
using a genetic algorithm in solving the problem. 

This paper introduced a GA approach for solving 
mobile robot path planning problems in static and 

dynamic environments. The planner uses a grid-
based map with polygonal representation for the 
environment as the knowledge base.  The developed 
GA planner uses variable-length chromosomes for 
the path encoding to reduce the memory usage. Part 
of the initial population is generated completely 
randomly, while the second part is generated by one-
point crossover to get a diverse population with 
paths of various quality in fast time and ensure that 
some paths intersected with others to help 
performing the intelligent crossover in later stage. 
The fitness function is used to integrate the 
objectives of the problem. Our GA uses two 
selection operators: Elitist Selection and Tournament 
Selection. In addition, the algorithm uses a new 
crossover operator called Intelligent Crossover, 
whereas, for mutation operation, five types of 
mutation operators have been used. Furthermore, our 
GA manages the dynamicity of the environment by 
using Memory with Random Immigrants technique. 

The GA was implemented by using C++ 
programming language and tested with four 
benchmarks. We studied the impact of the crossover 
operator, mutation and crossover probabilities, in 
addition to MRI and re-planning techniques. We 
also compared its performance in a static 
environment against the A* algorithm and MGA 
(Alajlan et al., 2016), as well as compared the 
performance in a dynamic environment against 
Improved GA (Zhao and Gu, 2013). It has been 
shown that our algorithm is able to generate an 
optimal or near optimal solution with fast execution 
time compared to the three algorithms, especially in 
large problems. In fact, we can accept some gaps to 
optimality for enhancing the computational 
expenses, since in real robotics applications; it does 
not disadvantage to find paths with slightly taller 
lengths, if they can be found much faster. 

For future work, we intend to enhance the GA to 
manage more dynamicity aspects, such as avoiding 
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moving obstacles and tracking moving goals. In 
addition to improve the GA parameters. 
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