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Abstract: Airborne images have long been used to support environmental monitoring due to their synoptic capability 

to cover wide areas with high spatial and temporal resolution. The potential for bathymetric mapping by 

airborne remote sensing has been addressed and demonstrated in several studies by means of imaging and 

non-imaging techniques. In this paper we evaluate the potential to retrieve water depth of shallow river from 

high resolution hyperspectral images using an empirical model, applicable under a range of specific field 

conditions and in a definite interval of wavelengths. 

1 INTRODUCTION 

The necessity to preserve water resources and 

ecosystems has led to an increasing interest in 

monitoring the morphological status of water bodies. 

Through a constant data collection on the long term, 

it is possible to determine trends in monitored 

parameters and to decide suitable strategies in order 

to prevent river channel degradation or to restore its 

original status.  

Remote Sensing (RS) has long been used to 

support environmental monitoring of fluvial 

environments due to its synoptic capability to cover 

wide areas with high spatial and temporal resolution 

and to detect features that are not rapidly and easily 

evaluable with in situ measurements. Remote 

sensing techniques have been also widely applied to 

assess bathymetry of water body (Carbonneau, Lane 

and Bergeron, 2006, Fonstad and Marcus, 2005, 

Lane, Westaway and Murray Hicks, 2003), being the 

only effective alternative to measurements collected 

by echo sounder mounted on boat, in very shallow 

and braided rivers, impossible to be entirely 

navigated. Furthermore ground surveys are 

extremely time-consuming, require a consistent 

deployment of manpower and provide a low spatial 

sampling of acquired data despite to their accuracy. 

As reviewed by Feurer, Bailly, Puech, Le Coarer 

and Viau (2008), besides echo sounder and GPR 

(Ground Penetrating Radar), both requiring ground 

surveys, three remote sensing approaches exist for 

mapping water depth through imaging and non 

imaging techniques (Gao, 2009). These are spectral 

methods, photogrammetry and bathymetric LIDAR 

(Light Detection and Ranging). Spectral methods 

exploit the attenuation of electromagnetic wave 

through the water interface in order to derive water 

depth. Their capability for mapping bathymetry has 

been addressed in several studies, using data 

acquired in the visible spectrum from UAV 

platforms (Lejot et al., 2007, Feurer et al., 2008) or 

Airborne Thematic Mapper data simulated from 

ground based measurements collected through 

spectroradiometer (Gilvear, Hunter ad Higgings 

2007) or AISA (Airborne Imaging Spectrometer for 

Applications) data (Legleiter, Roberts and 

Lawrence, 2009).  
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In our study we evaluate the potential to retrieve 

water depth of shallow river from very high 

resolution hyperspectral images, using a simple 

empirical model, applicable under a range of 

specific field conditions. In doing so, we take 

advantages first from the capability of UAV 

platforms to acquire very high resolution images, 

combined with the possibility given by hyperspectral 

sensors to investigate the model behaviour over a 

wide range of wavelengths in addition to the visible 

spectrum.  

In our paper we provide a detailed description of 

the study site in section 2. In section 3 is explained 

the overall process to obtain the final results: the 

acquisition campaign with used sensors and platform 

is described in subsection 3.1, in subsection 3.2 the 

entire processing chain to derive the final 

orthomosaics from raw hyperspectral data cubes is 

illustrated, in subsection 3.3 the physical model 

adopted to derive the relation between the 

radiometric pixel value and the water depth is 

explained. In subsection 3.4 processing applied to 

the final orthomosaics to establish the goodness of 

the relation previously described is explained. 

Results and conclusion follow in sections 4 and 5 

respectively. 

2 STUDY SITE 

The acquisition campaign was carried out along a 

channel reach of the Ain River in the south-east part 

of France. The Ain River drains a watershed surface 

of about 3700 km² along 200 km. It rises in the Jura 

Mountains, then it flows through a steep 

mountainous relief, before reaching its Lower Valley 

(Liébault and Piégay, 2002). The river in its Lower 

Valley flows through 50 km, in alluvial deposits 

(Bravard, 1986) where it is free to laterally and 

vertically adjust. Its depth ranges between 0 to 5 m 

(Lejot et al., 2007). Its hydrology is dominated by 

snowmelt mixed with rainfall. The mean annual 

discharge is 120 m3s-1, ranging between 17 m3s-1 to 

1600 m3s-1 (1-in-50 year flood) at Pont d’Ain and 

Chazey-sur-Ain gauging stations according to the 

banque HYDRO (http://www.hydro.eaufrance.fr/). A 

chain of 5 main hydroelectric dams were built until 

the 70's in its middle V-shape valley section. These 

dams have undergone important changes in the 

Lower Valley, e.g. reduction of peak flows and 

channel narrowing or degradation (Liébault and 

Piégay, 2002). 

The study site (Figure 1), approximately 700 m 

long, between Pont d’Ain and Priay, is located in the 

Ain Lower Valley, northeast of the city of Lyon. It 

was chosen because of its fairly morphological and 

channel stability (paved riverbed and low lateral 

mobility). Due to the lack of in situ water depth data 

synchronous with imagery data, we used the 

simulated hydrological parameters from the 

numerical model developed by Paquier, Camenen, 

Le Coz and Béraud (2014). This model runs over 

ADCP and GPS cross-sectional surveys performed 

in 2013 and 2014 (Naudet, Le Coz, Camenen and 

Paquier, 2015). Riverbed changes were assumed to 

be negligible on the study reach since the last 3 

years (the mean absolute error for the modelled 2013 

water level elevation is 15 cm). 

Figure 1: Orthomosaic at the central wavelength λ=776nm 

and geographical location of the study site; in yellow 

sampling points of 2D hydraulic model. 

3 METHODS 

3.1 Data Collection 

The study area was imaged twice on 28th September 

2015 in the interval 12h00-12h54 (CEST) using two 

coupled cameras mounted on the UAV md4-1000 

quadrocopter (table 1): 

 digital RGB OLYMPUS EP-2 camera 
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 Rikola 2D spectral sensor (Makelainen, Saari, 

Hippi, Sarkeala and Soukkamaki, 2013). 

 

The Rikola 2D imaging system is a VNIR sensor 

based on the Piezo-Actuated Fabry-Perot 

Interferometer (FPI), working in the spectral range 

500 nm - 900 nm. This allows the user to select the 

central wavelengths of the bands to be recorded by 

setting up the appropriate “air gaps” in the 

interferometer. The CCD/CMOS matrix consists of 

1024x1024 detectors. Each sensing element has the 

size of 5.5x5.5 μm. The camera is characterized by 

FOV=37°, focal length f=9mm and F-number=2.8. 

The ADC (analog-to-digital converter) is operating 

in 12 bit mode. The system is equipped with GPS 

receiver and hemispherical irradiance sensor. The 

described camera model and software version permit 

to acquire 16 bands in full-frame mode or 24 bands 

in the half-frame mode (1024x648 pixels) for one 

“hypercube” (single frame). The user can also 

choose one of the two FWHMs (full width at half 

maximum): narrow or wide. The precise values of 

the FWHM for each band are determined by the 

interferometer itself. 

Table 1: Set of spectral bands recorded in the experiment. 

First flight – Full frame 

mode 

Second flight – half frame 

mode 
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1 500 15 1 500 13 

2 523 20 2 516 13 

3 546 19 3 532 11 

4 569 18 4 548 10 

5 591 18 5 564 11 

6 614 19 6 580 13 

7 643 13 7 596 15 

8 661 19 8 612 14 

9 684 17 9 628 18 

10 707 18 10 644 13 

11 730 18 12 676 13 

12 753 17 13 692 11 

13 776 18 14 708 11 

14 799 17 15 724 12 

15 822 19 16 740 12 

16 845 18 - - - 

 

The pictures were taken at the altitude 

MHOG=100 m (mean height over ground) forming 

regular blocks of strips with the end lap of 70% and 

side lap of 30% for hyperspectral images. The mean 

ground resolution of Rikola images was about 6 cm. 

The Rikola camera takes the hypercubes with a 

constant time interval Δt which was set in our 

experiment at 5 s.  

For each block of RGB images the overlapping 

was bigger (80% and 40% respectively) and the 

ground sampling distance (GSD) was about 2 cm. 

The number of acquired hypercubes was bigger than 

100 for each of two flights, and about 66 of RGB 

pictures. 

3.2 Data Pre-processing 

Acquired RGB images underwent orthorectification 

process with Agisoft Photoscan Professional 

software. The process consisted of digital 

aerotriangulation, image matching, 3D cloud point 

and Digital Surface Model generation and the final 

ortho-correction. The final RGB orthophotomap had 

pixel size 5x5 cm and it was considered as a 

background supporting the geometric processing of 

acquired hyperspectral data. 

The exposition time for Rikola camera is usually 

set between 10 and 25 ms depending on sunlight 

intensity. In our experiment the exposition was set at 

15 ms. Such a value is suitable for taking non-

blurred pictures from moving platform but the 

technology of image formation and recording on the 

memory card leads to the situation where every band 

of the given hypercube has a slightly different 

position and external orientation. In these 

circumstances there are two alternative ways for 

further geometric processing: 

 to adjust all bands of the hypercube to a 

common frame first and to produce in the next 

step all spectral orthomosaics in one 

photogrammetric run; 

 to split all bands of each hypercube and to 

process all frames taken at the same 

wavelength in separated photogrammetric 

runs forming a set of independent spectral 

mosaics. 

 

We adopted the second way because the 

automatic geometric adjustment/matching of the 

bands taken in visible and infrared spectrum is very 

problematic for the scenes without structural points. 

Therefore hyperspectral frames were processed 

similarly like RGB photos giving as a result a set of 

monochromatic orthophotomaps at the resolution of 

10 cm with, unfortunately, slightly different 

georeferencing. The last step in geometric 

processing was the adjustment of all spectral 

orthophotomaps to the common frame by affine 

transformation based on RGB orthophotomap. 
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Prior to the orthorectification at each spectral 

band, the radiometric processing needed to be 

performed. The first step was the radiometric 

calibration of each hypercube to remove the 

influence of the black current from measured 

signals. The second step was the radiometric 

normalization i.e. comparison of the recorded 

spectral luminance for each band with the luminance 

of the white standardized target. In our case the 

Zenith LiteTM panel 50x50 cm covered by BaSO4-

based white paint was used. No other atmospheric or 

radiometric corrections were applied. Some spectral 

bands from second Rikola dataset taken in half-

frame mode were eliminated due to the encountered 

errors in pictures recording. 

3.3 Bathymetric Model 

The spectral radiance observed at the remote sensor 

detector LT(λ) for any wavelength λ is expressed as 

the sum of four components (Legleiter et al., 2009):  

 

LT(λ) = LB(λ) + LC(λ) + LS(λ) + LP(λ) (1) 

 

where LB(λ) is the radiance reflected from bottom, 

LC(λ) is the radiance from water column, LS(λ) is the 

radiance reflected from water surface and LP(λ) is 

the path radiance from the atmosphere. Under the 

conditions of homogeneous water properties, 

shallow river, opportune viewing geometry, low 

acquisition altitude, favourable atmospheric 

conditions, highly reflective and homogeneous 

streambed and relatively clear water, we can 

consider negligible the radiance components LC(λ), 

LS(λ), LP(λ) (Legleiter et al., 2009): 

 

LT(λ) ≈ LB(λ) (2) 

 

where LB(λ) is (Philpot, 1989, Legleiter et al., 2009): 

 

LB(λ)=Ed(λ)C(λ)T(λ)(Rb(λ)-Rc(λ))exp(-k(λ)d) (3) 

 

Ed(λ) is the downwelling solar irradiance, C(λ) is 

a constant for transmission across air water 

interface, T(λ) is the transmittance of atmosphere, 

Rb(λ) is the reflectance of river bottom, Rc(λ) is the 

volume reflectance of water column, k(λ) is an 

attenuation coefficient that accounts for absorption 

and scattering of light within the water column 

(Maritorena, Morel, Gentili, 1994, Legleiter et Al., 

2009), d is the water depth. Solving with respect to 

water depth, we obtain: 

 

ln(LB)=ln(EdCT(Rb-Rc))-kd (4) 

 

where we have not considered the dependence on λ 

to simplify the notation. The relation (4) suggests 

that under the above-mentioned acquisition 

conditions and for certain wavelengths, a relation 

between the remotely sensed variable LB and the 

water depth can be derived and used for mapping 

river bathymetry. Replacing LB with the 

corresponding value of digital number registered by 

the sensor and opportunely calibrated, after several 

adjustments we can rewrite (4) as a linear relation 

between the natural logarithm of pixel values in the 

image and the corresponding values of water depth: 

 

di,j= a0,k+a1,klnPi,j,k (5) 

 

where di,j is the water depth in correspondence of 

pixel i,j in the image, a0,k and a1,k are the coefficients 

of linear relation related to k-th spectral band and 

Pi,j,k is the value of pixel i,j at k-th spectral band. 

3.4 Data Processing 

Before deriving coefficients a0,k and a1,k of linear 

relation (5) for each orthomosaic, through a linear 

regression, a median filter with a window of 5x5 

was applied to remove residual noise after images 

pre-processing. 

For each spectral band, the pixel values were 

extrapolated from orthomosaics, in correspondence 

of the geographical coordinates of bathymetric 

values given by the numerical model of Paquier et 

al. (2014) applied to the Ain River (Naudet, 

Camenen, Le Coz, Paquier and Piégay, 2014). This 

2D hydraulic model provides the riverbed elevation, 

the water level elevation and the water depth, based 

on topographic cross-sections surveyed every 50 m, 

increased to every 25 m where the riverbed 

geometry rapidly changes.  

The coefficients of the linear regression of the 

empirical model were calculated with 70% of the 

samples randomly extracted from the set of samples 

derived in the previous step. The remaining 30% of 

samples were used to assess the validity of the 

model.  

This method was repeated for each orthomosaic 

at each spectral band. The goodness of fitting was 

assessed by means of the coefficient of 

determination calculated on the 70% of samples and 

mean absolute error computed on the remaining 30% 

of samples. 
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4 RESULTS 

In Figures 2, 3, 4 and 5 a subset of results from the 

first survey is shown. The sign of linear regression 

slope changes from positive to negative values, as 

wavelength increases. This behaviour is due to the 

weak correlation between water depth values and 

pixel values in the relation (5) at shorter 

wavelengths, that increases at longer wavelengths 

(Red and Near Infrared), when the absorption due to 

water column becomes stronger compared to 

reflectance. The increasing trend of correlation 

versus wavelength is more evident in Figure 6 where 

the coefficient of determination R2 and the mean 

absolute error with respect to spectral band are 

shown. 

 

Figure 2: Linear regression at λ = 614 nm. 

 

 

Figure 3: Linear regression at λ = 642 nm. 

Figure 4: Linear regression at λ = 730 nm. 

Figure 5: Linear regression at λ = 776 nm. 

The best correlations are obtained in the spectral 

range from 700 nm to 800 nm. 

Figure 6: Trend of coefficient of determination and mean 

absolute error versus wavelength. 

In Figures 7, 8, 9 and 10, a subset of results from 

the second survey is shown. In Figure 11 trends of 

coefficient of determination and mean absolute error 

with respect to spectral band are shown, confirming 
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both the best values of correlation in the spectral 

range from 700 nm to 750 nm and the increase of 

correlation versus wavelength, obtained in the first 

survey. 
 

Figure 7: Linear regression at λ = 628 nm. 

Figure 8: Linear regression at λ = 644 nm. 

Figure 9: Linear regression at λ = 708 nm. 

Figure 10: Linear regression at λ = 724 nm. 

 

Figure 11: Trend of coefficient of determination and mean 

absolute error versus wavelength. 

5 CONCLUSIONS 

The results show the potential of UAV hyperspectral 

data for bathymetric mapping at centimetre 

resolution. The empirical model fits well the water 

depth values derived from the hydraulic model in the 

spectral range from 700 nm to 800 nm with an 

average error less than 0.13 m in the best case when 

the water depth ranges from 0.09 m to 1.01 m. 

In further studies we intend to apply the 

proposed methodology over imagery acquired on 

other longer reaches of the Ain River with a wider 

range of water depth in order to confirm the model 

behaviour with respect to wavelength, to investigate 

its applicability over a range of wider environmental 

conditions, such as changes in river bottom 

morphology and composition, concentration in 

suspended sediment, water deepness and finally to 

examine obtained results on the basis of sensor 
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configuration and acquisition mode as pixel ground 

resolution and bandwidth. 
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