

Prevent Collaboration Conflicts with Fine Grained Pessimistic
Locking

Martin Eyl1, Clemens Reichmann1 and Klaus D. Müller-Glaser2
1Vector Informatik GmbH, Ingersheimer Straße 24, 70499 Stuttgart, Germany

2Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

Keywords: Fine Grained Software Configuration Management System, Abstract Syntax Tree, Pessimistic Locking.

Abstract: There are two main strategies to support the collaboration of software team members working concurrently
on the same source code: pessimistic locking and optimistic locking. Optimistic locking is used far more
often because a pessimistic lock on the smallest unit stored in the Software Configuration Management
(SCM), which is a usually a file, often causes conflict situations, where a developer wants to change the
already locked code. Optimistic locking can cause direct and indirect merge conflicts which are costly to
resolve and affect productivity. The novelty of our approach is to define a meta-model for the source code
(Abstract Syntax Tree) and use pessimistic locking on model artefacts and therefore allow parallel editing of
the same class or even method but still preventing direct and indirect merge conflicts. Thereby the developer
keeps an isolated workspace and the developer decides when to commit the finished source code. This paper
introduces a concept for this solution and a prototype based on Eclipse.

1 INTRODUCTION

In many software development projects the
increasing number of requested features and their
complexity makes it necessary to have an increasing
number of software developers working in parallel
on the same source code (Perry, 2001; Estublier,
2005). Therefore a solution is needed for parallel
editing of source code. Different Software
Configuration Management Systems (SCM) address
the problem of conflicting source code changes and
provide appropriate solutions which comes with
benefits and weaknesses (Conradi, 1998; Grinter,
1995).

1.1 Pessimistic and Optimistic Locking

There are two main approaches: pessimistic and
optimistic locking (Sarma, 2003; Levin, 2013). In
the optimistic approach parallel changes of the same
source code lines are allowed. Any conflicts must be
solved before the source code can be committed into
SCM repository. In some cases these conflicts are
trivial to resolve. However in other cases it is very
complicated and error-prone to merge the source
code (Sarma, 2007; Dewan, 2008).

In the pessimistic approach the software
developer needs a lock for the source code before it
can be modified. The lock is exclusive which means
that other developers cannot retrieve the lock for the
source code until it is released. No concurrent
changes of the same source code are possible. The
smallest unit stored in an SCM repository is
typically a file (Broschy, 2009). Pessimistic locking
on a file is too restrictive and causes too often
conflict situations, where a developer wants to
change a file that is already locked.

1.2 Direct and Indirect Conflicts

There are two different classes of conflicts: direct
conflicts and indirect conflicts (Brun, 2011). A
direct conflict is caused by changing the same line of
source code by two developers in their local
workspaces at the same time. The SCM repository
can detect such conflicts during the commit of
source code.

An indirect conflict originates from changing the
source code in a file which affects concurrent
changes of a second developer in the same or
another source code file. If indirect conflicts are not
detected and resolved then they can cause syntax
errors in the source code stored in the SCM

312
Eyl M., Reichmann C. and MÃijller-Glaser K.
Prevent Collaboration Conflicts with Fine Grained Pessimistic Locking.
DOI: 10.5220/0006119703120319
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 312-319
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

repository. Also new defects can arise which only
exists in the combination of both source code
changes. Continuous Integration (CI) is used to
detect the syntax errors. The new defects can only be
found via tests for example via automated tests
during CI (Eyl, 2016). A typically example of an
indirect conflict is the following: one developer
renames a method in one class and the other
developer adds a new invocation of this method in a
second class with the original name. If both
developers commit the source code at the same time
into the SCM repository then there is no direct
conflict but there is a syntax error in the second class
calling a method which does not exists with this
name anymore.

1.3 Motivation and Objectives

As already mentioned, direct conflicts can be very
difficult and costly to solve (Estublier, 2005). If
there are several lines of source code involved for
example in an algorithm then in some cases it is not
possible to solve the conflict without the help of the
developers who did the conflicting changes (Grinter,
1995). Sometimes it is easier to undo your own
changes and to redo the changes in the updated
source code. These merge conflicts are very
annoying because it prevents the developer for
committing the source code although his/her work is
already finished. Indirect conflicts which cause
syntax errors in the SCM repository can block other
team members (which CI cannot prevent). If the
developers update their source code with the source
code from the SCM repository containing a syntax
error, the developers have to fix the syntax error
before they can continue to work. Also a CI run with
automated tests cannot be executed if there are
syntax errors in the code.

By using pessimistic locking it is never
necessary to merge source code and therefore the
developer can commit the source code anytime. If
the developer wants to change already locked source
code it is necessary to communicate with the
colleague to coordinate the work. Pessimistic
locking can also be used to prevent indirect conflicts
which cause syntax errors in the SCM repository.
However pessimistic locking of a complete file is
difficult because only one developer can change the
code in the file. Pessimistic locking is practical when
a fine grained pessimistic locking is supported which
allows parallel editing of a class or even a method.

We implemented a prototype with the following
objectives:
 Defining a meta-model for the source code

(Abstract Syntax Tree).
 Pessimistic locking on one or more model

artefacts.
 Allow parallel editing of classes and methods by

using only a small number of fine grained locks.
 No syntax errors in the SCM repository.
 Minimal automatic locking during editing of the

source code in the editor.
 Keep isolation from other developers and the

developer decides when to commit the source
code.

Using optimistic locking a direct merge conflict can
only be resolved after an update of the affected file.
Pessimistic locking forces sequential changes of the
source code. Therefore an update is necessary when
the developer acquires a lock for an AST artefact.
The developer is forced to update earlier than with
optimistic locking. However the developer can
freely decide when to commit the finished source
code.

The prototype has been implemented for Java
and is an extension of Eclipse Integrated
Development Environment (IDE) (Eclipse, 2016).
The fine grained pessimistic locking is part of a
larger research project which is called Morpheus.

2 ABSTRACT SYNTAX TREE
(AST)

The AST provides us with the means to find
dependencies in the code which we need to set the
correct locks to prevent indirect conflicts. Also the
AST is fine grained enough for the fine grained
pessimistic locks. An AST is composed of AST
nodes and relations between the nodes. There are
two types of relationships: composition and
association.

AST nodes are for example Package
Declaration, Type Declaration, Method Declaration,
Method Invocation, If Statement and so forth. In this
paper all AST nodes are written in italic. The AST
nodes build up a hierarchically tree via the
composition for example the Method Declaration is
contained in the Type Declaration. We call the Type
Declaration “composite node” and the Method
Declaration “component node”.

The association is a usage relation and comes
often with a declaration and a use of the declared
artefact. We call the declaration “supplier node” and
the other side of the relation “client node”. The
client depends on the supplier. The invocation of a

Prevent Collaboration Conflicts with Fine Grained Pessimistic Locking

313

method is such an association between a Method
Invocation and a Method Declaration. Another
example is the inheritance of a class from another
class which is an association between two Type
Declarations.

When the developer wants to change source
code, the corresponding AST nodes have to be
locked to prevent parallel modifications. To prevent
indirect conflicts depended artefacts also have to be
considered. Therefor we have to define some rules
(see Section 4).

2.1 The AST as Meta-Model

AST nodes have to be locked and it is difficult to
keep track of the locks when the AST node does not
have a unique object identifier (OID) especially the
AST nodes without a name for example a “for loop”
or an “if statement”. For this reason we used the
Meta Data Framework (MDF) of PREEvision
(Vector, 2016; Zhang 2011). PREEvision is a model
based, 3-tier application used mainly in the
automobile industry. MDF is based on the OMG’s
Meta Object Facility (MOF) Standard (OMG, 2016).
MDF allows us to define a meta-model for the AST
and to generate the Java source code for the model.
PREEvision also provides functionality for storing
the model into a data backbone (PREEvision server).
We use PREEvision with the AST meta-model as a
model based Software Configuration Management
(SCM) repository.

The AST model can be edited by using a
structured editor, for example the projectional editor
of JetBrains Meta Programming System (MPS)
(JetBrains, 2016). Alternatively an existing Java text
editor has to be extended so that the editor is aware
of the AST artefacts. We chose the second solution
and added the required functionality to the Java text
editor of the Eclipse Integrated Development
Environment (IDE). We call this text editor Java
AST Editor. The editor makes sure that changing
and refactoring of the source code (for example
rename or move) does not delete and recreate AST
nodes but only changes the existing AST nodes. For
example if the developer changes the name of a
method then the Method Declaration is not deleted
and recreated. Instead the name of the Method
Declaration is modified.

2.2 Meta-Model and Syntax Errors

In the source code text the link between Method
Declaration and Method Invocation is realized via
full qualified name: package name, class name and

the method name. By changing the name in the
method declaration but not in the method call the
link is broken because the names no longer match
and we have caused a syntax error. In the meta-
model the link between Method Declaration and
Method Invocation is represented as an association
with the cardinality “1”: the Method Invocation has
to have exactly one Method Declaration.

So, the meta-model makes sure that the syntax
error “Method Invocation without Method
Declaration” is not possible. Just by using a meta-
model some syntax errors can no longer occur.
However the meta-model does not prevent all syntax
errors. For example if the number of parameters or
the type of the parameters is not correct in the
method invocation then it is still possible to build up
a valid AST which can be stored in the server. The
Java compiler detects such syntax errors in the
source code and it is not reasonable to add all this
functionality to the meta-model. To make sure that
no syntax errors can occur in the SCM repository we
have to ensure two things: Firstly, the developer
should not be able to commit source code with
syntax errors into the SCM repository. If Eclipse
indicates any syntax errors in the current source
code then the commit will be rejected. Secondly,
syntax errors because of indirect conflicts have to be
prevented with pessimistic locking.

3 FINE GRAINED AST LOCKS

An exclusive lock is a marker for an AST node
which determines who can currently modify the
AST node. A lock can be acquired by sending a
request to the server where a list of all locks is
stored. For each lock the server stores the object
identifier (OID) of the AST node, the user who owns
the lock and the date when the lock has been
acquired. The locks are automatically released after
the commit of the AST into the server.

Our objective is to allow as much parallel editing
as possible. In order to achieve this, we need an
additional lock type. For example if the developer
wants to add new source code which contains a new
method call then a new AST node (Method
Invocation) is created and an association to the
according Method Declaration. To ensure that
another developer is not modifying the method
signature or deleting the method at the same time the
developer needs an exclusive lock for the Method
Declaration. This exclusive lock would prevent
other developers to add also a new method call to
this method because only one developer can own an

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

314

exclusive lock for an AST node. However this
parallel editing would never cause a direct or
indirect conflict. The problem can be solved with a
shared lock. Several developers can own a shared
lock for the same AST node. No exclusive lock can
be acquired for an AST node with a shared lock. The
shared lock ensures that other developers do not
change the method signature but still allow several
developers to call this method at the same time.

4 LOCK RULES

In this section we want to clarify which Abstract
Syntax Tree (AST) nodes have to be locked with
which lock type (shared or exclusive) when
changing the source code to prevent any merge
conflicts. Therefore we will define several rules.

We have to consider the following types of
conflicts: direct conflict, indirect conflict and name
conflict.

4.1 Direct Conflict

After modifying the local AST by changing the
source code in the local workspace the AST has to
be merged during commit with the current AST
from the server which likely has also been changed
by other users. A direct merge conflict occurs when
the merge cannot be executed without deciding
which of the both changes (the local or the change
from the server) shall be used. A change is an
attribute change, the deletion or creation of a relation
or the deletion of an AST node. The creation of an
AST node is not relevant because no one else can
change this new node.

For example, two developers change the attribute
“name” of a Method Declaration at the same time
then a merge is not possible because the merger
cannot decide which attribute value is the correct
one.

Rule 1:

Attribute change: The AST node which owns the
attribute needs an exclusive lock.

If the developer deletes an AST node then the
complete tree with all components are deleted too
(e.g. deleting a Method Declaration deletes also the
content of the method). Deleting and changing an
AST node at the same time cause again a conflict.

Rule 2:

Deletion of an AST node: The AST node and all
component AST nodes below need an exclusive lock.

Next, we want to examine the creation of an AST
node for example a Java class. A class is created
below a package. To make sure that the package will
not be deleted by another developer we need a lock
for the package. An exclusive lock would prevent
other developers to create a new class in parallel
which would be not a problem. Therefore we
introduce the concept of a shared lock and the
package only has to be shared locked.

Figure 1: Example of an Abstract Syntax Tree.

In the AST example (see Figure 1) there are
three Expression Statements below a Block. The
curly braces indicate a Block in Java which can
contain one more statements. The order of these
statements is relevant. In this example the output on
the console should be “1”, “2” and “3”. If a
developer adds a new Expression Statement to print
“4” after “3” and uses only a shared lock on the
Block, another developer could add at the same time
an Expression Statement to print “finished” after
“3”. In this case we have a merge conflict because
the merger cannot decide whether “4” comes after
“3” or “finished”. If the order is relevant of the AST
nodes we need an exclusive lock. The order of the
classes in the package is not relevant. Also a
changed order of the methods in a class cannot
provoke a syntax error and will not change the
behaviour of the software.

Of course someone might argue that the
developer wants to see the methods in a certain order
in the class. However in which order can be different
from one use case to another. Nowadays the source
code is presented in a very rigid view which is
dictated by the source code text. The source code
could be presented in different views for example all
methods of different classes which are relevant for a
certain aspect of the software (Chu-Carroll, 2000).
The AST node Method Declaration could get some
additional attributes (e.g. categories) which define
the order of the methods for different use cases.

Rule 3:

Creation or deletion of a composite relationship
with the cardinality 0..n: If the order of the

Prevent Collaboration Conflicts with Fine Grained Pessimistic Locking

315

component nodes is relevant, the composite node
needs an exclusive lock otherwise a shared lock.

Order relevant relations are for example statements
in a method or parameters in a method declaration.

Next, we want to derive a class from a base class.
Therefore a Type Reference is created below the
Type Declaration (the Java class). Of course the
class can be derived from only one base class. If one
developer derives the class from the base class B1
and another developer in parallel from B2 then we
have a merge conflict. The merger cannot decide
which base class is the correct one. In this use case
we need an exclusive lock for the class.

Rule 4:

Creation or deletion of a composite relationship
with the cardinality 0..1: The composite node needs

an exclusive lock.

For the interfaces the third rule is applicable and
because the order of the interfaces is not relevant
only a shared lock is needed for the class when
adding or removing an interface.

Next, we want to change the content of a
method. We have already established that the
statements in the method are order relevant. For
inserting new statements, deleting statements or
changing the order of the statements we need an
exclusive lock for the composite node Block (see
Figure 2).

Figure 2: AST nodes of a Method Declaration.

Changing an existing statement could be done
without an exclusive lock of the Block. However to
simplify the logic we also acquire an exclusive lock
for the Block because when the developer changes
code the probability is high that new statements are
created or existing statements are deleted. If the
Block is exclusive locked then we can lock all
statements below the Block because nobody else can
change a statement below the Block. If there is a
statement with a new Block (for example a For
Statement or an If Statement) then it is not necessary
to lock this Block too. With a new Block a new
ordered list of statements starts and therefore locks
of other developers are possible. In Figure 2 we can
see that one developer has locked the statements

below the Method Declaration (in red colour) and
another developer the statements below the If
Statement (in green colour). The Block below the
For Statement can be locked by some else.

Rule 5:

Inserting, deleting or changing statements inside a
Block: Starting with the composite node Block of the
statement all component nodes and the Block node

itself need an exclusive lock until the next Block
nodes.

4.2 Indirect Conflicts

An indirect conflict occurs when after the merge of
the ASTs a syntax error has been created. This is the
case when the supplier node in an association is
changed and the client node has not been adapted. If
the association already exists and the developer
changes the supplier node then the same developer
has to correct all client nodes before a commit of the
AST is possible because a commit of an AST with
syntax errors is not possible. For the adaption the
developer needs exclusive locks for the client nodes.
There is no additional rule necessary. However in
the case of the creation of a new association we have
to make sure that the supplier node will not be
changed or deleted. This can be achieved via a
shared lock. For example when several developers
want to call the same method every developer
receives a shared lock for the method. With the
shared lock there is no modification of the method
possible.

Rule 6:

Creation of a new association: the supplier node
needs a shared lock.

The following special use cases have to be
considered:

4.2.1 Method Override

With the annotation “@Override” in front of a
Method Declaration it is well defined that the
Method Declaration overrides another Method
Declaration from a base class or interface. If the
Method Declaration in the base class or interface
changes (e.g. the parameters) the Method
Declaration from the derived class has to be
adapted. Therefore we need an additional association
in the meta-model to express this relationship. With
this additional association and rule 6 we can prevent
indirect merge conflicts.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

316

4.2.2 Default Constructor

In a Java class without any constructor Java provides
a default constructor with no parameters which can
be used to instance the class. However the AST node
Class Instance Creation needs always a constructor
for the association “constructor invocation”.
Therefore during the creation of a new class the
according AST nodes are automatically created for
the default constructor which then can be used in the
association. Indirect merge conflicts are prevented
with the already defined locking rules.

4.2.3 Return Statement

If the return type of a Method Declaration is
changed then all Return Statements have to be
adapted, too. For example if the return type is
changed from void to integer then all return
statement have to be changed from “return” to
“return <integer>”. There is a kind of association
between the two AST nodes. This association has
not been added in the meta-model but we need an
additional rule.

Rule 7:

Addition of a new Return Statement: the composite
Method Declaration needs a shared lock.

4.3 Name Conflicts

There is an additional potential conflict which we
have not yet considered. In Java a package, a class
or a method provides a namespace. Inside the
namespace names have to be unique for example it
is not possible to have two methods with the same
name in the same class. Because we use only a
shared lock for the Type Declaration it is possible
that two developers create two Method Declarations
with the same name. The following two solutions are
possible: Firstly, we use an exclusive lock for the
Type Declaration. Then only one developer can
create a new method inside a class. Then of course
parallel editing would be much more restricted.
Secondly, we introduce a new feature which allows
us to reserve or lock a name inside a namespace.
These locks could be stored along with the standard
locks in the server.

Name conflicts occur less often because the
probability that two developers choose exactly the
same name in the same name space at the same time
is not that high. Also the conflict can be resolved
very easily by just renaming the artefact. Therefore
we allow this kind of merge conflicts and we did not
implement one of the suggested solutions. However

we have to ensure that the conflicts are detected and
no syntax errors are stored in the server. Therefore
the Compilation Unit has to be exclusive locked
immediately before the commit which will cause an
update of the Compilation Unit content and reveal
any name conflicts.

5 INTEGRATION INTO THE
EDITOR

The developer should not bother about locking the
Abstract Syntax Tree (AST) nodes according to the
lock rules. Therefore we need a good integration of
the locking functionality into the Java AST editor.

The Java AST editor knows which AST nodes
are located at a certain position in the editor. When
the developer starts editing the source code text the
Java AST editor determines all AST nodes to be
locked by using the lock rules and requests the locks
from the server. This is done immediately with the
first key stroke because the developer might not
retrieve the locks because in the meantime someone
else has already locked the AST nodes. In this case
the developer should not be able to continue
changing the source code text.

In the editor the areas of text which cannot be
changed because of foreign locks are displayed with
a grey background. In these lines no key strokes are
accepted from the editor. The developer can also
open a popup window on top of these lines which
shows the following information about the lock: lock
type, owner of the lock and since when the AST
node is locked (see Figure 3).

Figure 3: Java AST Editor with lock information.

6 RELATED WORK

The different concept to solve or to improve the
handling of collaboration conflicts can be classified
into intrusive and non-intrusive strategies (Levin,
2015). Intrusive strategies automatically update the
private copy of source code in the local workspace
with the source code of other developers. Non-

Prevent Collaboration Conflicts with Fine Grained Pessimistic Locking

317

intrusive strategies only inform the developer about
the current changes other developers to indicate a
potential merge conflict (awareness enhancers) or
supports the developer during merging.

6.1 Non-intrusive Strategies

One approach is to analyze changes from different
branches within a sequence of changes and to
support the integrators work by not just using the
text but also the AST (Gómez, 2014).

Other concepts belonging to this strategy
propagate information about current changes in the
local workspace between team members. There are a
number of tools available: Syde (Hattori, 2010),
CollabVS (Dewan, 2008), Palantír (Sarma, 2003)
and others. Several tools only consider direct merge
conflicts.

Palantír is a workspace awareness tool which
provides developers insight into other workspaces
and was original developed to detect direct merge
conflicts. Palantír has then been extended to detect
also indirect merge conflicts (Sarma, 2007).
Therefore a six-step process has been introduced:
collecting, distributing, analysing, informing,
filtering, visualizing. In the analysing step the
changes in the local workspace and in the remote
workspaces are brought together to find any
potential indirect conflicts. This is done by
examining the dependencies of the remotely
changed artefact, both forwards and backwards and
then Palantír verifies if any local changed artefacts
are involved.

These concepts collect relevant information and
then present the information to the software
developer. The developer can use or ignore this
information. In contrast our approach proactively
prevents any conflict before it actually occurs and it
is not up to the user to react on the conflict. The
underlying assumption is that the developer would
rather wait to change the source code than to
undergo the effort of a manual merge.

6.2 Intrusive Strategies

Concepts belonging to this strategy propagate the
source code between team members and
automatically synchronize the source code of the
developer with the changes of other developers.
There are a small number of projects which
implement this strategy for example CloudStudio
(Nordio, 2011), Collabode (Goldman, 2011) and CSI
(Levin, 2013). This project implements the

Synchronized Software Development (SSD)
approach.

The CSI solution is an Eclipse plugin. It differs
from the other two by supporting a pessimistic
locking concept. When a developer is editing a
semantic element (e.g. a method) other developers
cannot change the same sematic element. While
blocked, of course other elements can be changed.
This blocking functionality also considers indirect
merge conflicts. So, it is not possible that one
developer changes a declaration (e.g. of a method)
and another developer changes in parallel the source
code which depends on the declaration (e.g. the
method call). The smallest unit which can be locked
is a method and not an Abstract Syntax Tree (AST)
node. Therefore it is not possible that two developers
work on the same method. When the source code is
in a state where no compilation errors are present
then the code is propagated automatically to all team
members. The developers work on the same unified
code version. Several but not all possible scenarios
are supported: creating, deleting, renaming or
changing a method or a member field.

In contrast our approach is not an intrusive
strategy because the software developer decides
when his or her changes are published by
committing the source code. It is possible to finish a
complete feature or parts of a feature before
releasing the source code to other developers. Also
CSI does not support any shared lock concepts
which allows more parallel changes.

7 CONCLUSION & FUTURE
WORK

By working with a model (Abstract Syntax Tree -
AST) instead of source code text it is possible to
introduce a fine grained pessimistic locking concept
on artefact level. Direct and indirect merge conflicts
which causes syntax errors are completely
eliminated. The developer can commit his or her
changed source code at any time without any
merging effort. Also syntax errors in the repository
are no longer possible. A continuous integration (CI)
run will never be blocked because of syntax errors in
the repository. The fine grained pessimistic locking
allows parallel changes in the same class or method
by different software developers. The integration of
the locking functionality into the Java AST editor
enables the developer to automatically lock all
necessary AST artefacts without paying attention to
the details.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

318

Our future work includes the usage of Morpheus
with the fine grained pessimistic locking concept in
a large software development project with several
million lines of code. The performance and memory
issues which arise from processing millions of AST
artefacts have to be analysed and solved.

REFERENCES

Perry, D. E., Siy, H. P., & Votta, L. G., 2001. Parallel
changes in large-scale software development: an
observational case study. ACM Transactions on
Software Engineering and Methodology (TOSEM),
10(3), 308-337.

Estublier, J., & Garcia, S., 2005. Process model and
awareness in SCM. In Proceedings of the 12th
international workshop on Software configuration
management (pp. 59-74). ACM.

Conradi, R., & Westfechtel, B., 1998. Version models for
software configuration management. ACM Computing
Surveys (CSUR), 30(2), 232-282.

Grinter, R. E., 1995. Using a configuration management
tool to coordinate software development. In
Proceedings of conference on Organizational
computing systems (pp. 168-177). ACM.

Sarma, A., Noroozi, Z., & Van Der Hoek, A., 2003.
Palantír: raising awareness among configuration
management workspaces. In Software Engineering,
2003. Proceedings. 25th International Conference on
(pp. 444-454). IEEE.

Levin, S., 2013. Synchronized software development
(Doctoral dissertation, Tel-Aviv University).

Sarma, A., Bortis, G., & Van Der Hoek, A., 2007.
Towards supporting awareness of indirect conflicts
across software configuration management
workspaces. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated
software engineering (pp. 94-103). ACM.

Dewan, P., 2008. Dimensions of tools for detecting
software conflicts. In Proceedings of the 2008
international workshop on Recommendation systems
for software engineering (pp. 21-25). ACM.

Levin, S., & Yehudai, A. (2015). Alleviating Merge
Conflicts with Fine-grained Visual Awareness. arXiv
preprint arXiv:1508.01872.

Broschy, P., 2009. Improving conflict resolution in model
versioning systems. In Software Engineering-
Companion Volume, 2009. ICSE-Companion 2009.
31st International Conference on (pp. 355-358). IEEE.

Brun, Y., Holmes, R., Ernst, M. D., & Notkin, D., 2011.
Proactive detection of collaboration conflicts. In
Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering (pp. 168-178). ACM.

Eyl, M., Reichmann, C., & Müller-Glaser, K., 2016. Fast
Feedback from Automated Tests Executed with the
Product Build. In International Conference on

Software Quality (pp. 199-210). Springer International
Publishing.

Eclipse, 2016. „Eclipse Neon“. Eclipse.org. Retrieved
2016-07-30 from http://eclipse.org.

OMG, 2016. „OMG's MetaObject Facility (MOF) Home
Page“. Omg.org. Retrieved 2016-07-30 from
http://www.omg.org/mof/.

JetBrains, 2016: „MPS overview“. JetBrains. Retrieved
2016-07-30 from https://www.jetbrains.com/mps

Hattori, L., & Lanza, M., 2010. Syde: a tool for
collaborative software development. In Proceedings of
the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 2 (pp. 235-238). ACM.

Nordio, M., Estler, H., Furia, C. A., & Meyer, B., 2011.
Collaborative software development on the web. arXiv
preprint arXiv:1105.0768.

Goldman, M., Little, G., & Miller, R. C., 2011. Collabode:
collaborative coding in the browser. In Proceedings of
the 4th international workshop on Cooperative and
human aspects of software engineering (pp. 65-68).
ACM.

Chu-Carroll, M., & Sprenkle, S., 2000. Software
configuration management as a mechanism for
multidimensional separation of concerns.

Vector, 2016: „PREEvision – Development Tool for
model-based E/E Engineering“. Vector.com. Retrieved
2016-07-30 from
https://vector.com/vi_preevision_en.html.

Zhang, R., & Krishnan, A., 2011. Using delta model for
collaborative work of industrial large-scaled E/E
architecture models. In Model Driven Engineering
Languages and Systems (pp. 714-728). Springer Berlin
Heidelberg.

Gómez, V. U., Ducasse, S., & Kellens, A., 2014.
Supporting streams of changes during branch
integration. In Science of Computer Programming (pp.
84-106), 96.

Prevent Collaboration Conflicts with Fine Grained Pessimistic Locking

319

