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Abstract: Drug repositioning reduces safety risk and development cost, compared to developing new drugs. 
Computational approaches have examined biological, chemical, literature, and electronic health record data 
for systematic drug repositioning. In this work, we built an entire computational pipeline to investigate the 
feasibility of mining a new data source – the fast-growing online patient forum data for identifying and 
verifying drug-repositioning hypotheses. We curated a gold-standard dataset based on filtered drug reviews 
from WebMD. Among 15,714 sentences, 447 mentioned novel desirable drug usages that were not listed as 
known drug indications by WebMD and thus were defined as serendipitous drug usages. We then 
constructed 347 features using text-mining methods and drug knowledge. Finally we built SVM, random 
forest and AdaBoost.M1 classifiers and evaluated their classification performance. Our best model achieved 
an AUC score of 0.937 on the independent test dataset, with precision equal to 0.811 and recall equal to 
0.476. It successfully predicted serendipitous drug usages, including metformin and bupropion for obesity, 
tramadol for depression and ondansetron for irritable bowel syndrome with diarrhea. Machine learning 
methods make this new data source feasible for studying drug repositioning. Our future efforts include 
constructing more informative features, developing more effective methods to handle imbalance data, and 
verifying prediction results using other existing methods. 

1 INTRODUCTION 

Drug repositioning, also known as drug repurposing, 
is the identification of novel indications for 
marketed drugs and drugs in the late-stage 
development (Dudley et al., 2011). A well-known 
example is sildenafil, which was originally 
developed to treat angina in clinical trial. However, 
after failure, it was resurrected to treat erectile 
dysfunction (Ashburn and Thor, 2004). Another 
example is the repositioning of duloxetine from 
depression to stress urinary incontinence, which was 
irresponsive to many drug therapies at that time 
(Ashburn and Thor, 2004). These successful stories 
demonstrated advantages of drug repositioning over 
new drug discovery and development. Repositioned 
drugs have a better safety profile than compounds in 
the early discovery and development stage, as they 
have already passed several preclinical tests in 
animal models and safety tests on human volunteers 

in the Phase I clinical trials. Thus the time and cost 
of early drug discovery and development can be 
saved, making repositioned drugs more available to 
the patients of currently not properly treated diseases 
and more cost-efficient to pharmaceutical companies 
(Yao et al., 2011). Despite some potential 
intellectual property issues, drug repositioning 
carries the promise of significant societal benefits 
and has attracted broad interests from the biomedical 
community in the past decade.  

Traditionally, drug-repositioning opportunities 
were discovered by serendipity. In the case of 
sildenafil, the clinical team was inspired with the 
new repositioning idea when they found that some 
patients enrolled in the original trial for angina were 
reluctant to return the medicine due to the desirable 
side effect (Shandrow, 2016). Various computational 
methods have been developed to systematically 
explore more drug-repositioning opportunities. One 
common strategy is to mine chemical, biological, or 
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clinical data for drug similarity, disease comorbidity, 
or drug-disease associations that imply repositioning 
opportunities (Dudley et al., 2011, Andronis et al., 
2011). For instance, Keiser et al. (2009) compared 
chemical structure similarities among 3,665 drugs 
and 1,400 protein targets to discover unanticipated 
drug-target associations and implicated the potential 
role of Fabahistin, an allergy drug, in treating 
Alzheimer’s disease. Sanseau et al. (2012) 
investigated data from genome-wide association 
studies to systematically identify alternative 
indications for existing drugs and suggested 
repositioning denosumab, which was approved for 
osteoporosis, for Crohn's disease. Hu and Agarwal 
(2009) created a drug-disease network by mining the 
gene-expression profiles in GEO datasbase and the 
Connectivity Map project. By analyzing topological 
characteristics of this network, they inferred the 
effects of cancer and AIDS drugs for Huntington's 
disease. Wren et al. (2004) constructed a network of 
biomedical entities including genes, 
diseases/phenotypes, and chemical compounds from 
MEDLINE (U.S. National Library of Medicine, 
2016a), and computationally identified novel 
relationships between those biomedical entities in 
scientific publications. One such relationship they 
found and validated in the rodent model was 
between chlorpromazine and cardiac hypertrophy. 
Gottlieb et al. (2011) designed an algorithm called 
PREDICT, to discover novel drug-disease 
associations from OMIM, DrugBank, DailyMed, 
and Drugs.com. Their algorithm predicted 27% of 
drug-disease associations in clinical trials registered 
with clinicaltrial.gov. Although these computational 
methods have demonstrated their promise, they often 
face the issue of high false positive rates (Dudley et 
al., 2011, Shim and Liu, 2014). One primary reason 
is sharing similar chemical structures or co-
occurring in the same publication does not always 
imply medical relevance. Also, ignoring the context 
(e.g., whether the similarity or validation is observed 
in experiments on molecular, cell line, or animal 
models) might impact their capability to be 
translated to human beings. 

More recently, researchers began to verify some 
drug-repositioning hypotheses using the Electronic 
Health Record (EHR) data. For example, Khatri et 
al. (2013) retrospectively analyzed the EHR of 2,515 
renal transplant patients at the University Hospitals 
Leuven to confirm the beneficial effects of 
atorvastatin on graft survival. Xu et al. (2014) 
verified that metformin, a common drug for type 2 
diabetes, is associated with improved cancer survival 
rate by analyzing the patients’ EHR data from 

Vanderbilt University Medical Center and Mayo 
Clinic. These proof-of-concept studies also 
witnessed several limitations, due to the nature of 
EHR data: (1) EHR systems do not record the causal 
relationships between events (e.g., drugs and side 
effects) as they are mostly designed for clinical 
operation and patient management instead of 
research. Whether a statistical association is causal 
needs to be verified through temporal analysis with a 
lot of assumptions. Therefore, the models become 
disease and/or drug specific and remain difficult to 
generalize and automate in large scale. (2) A 
significant amount of valuable information, such as 
the description of medication outcomes, is stored in 
clinicians’ notes in free-text format (Yao et al., 
2011). Mining these notes requires advanced natural 
language processing techniques and presents patient 
privacy issues. (3) In the US, data from a single 
provider's EHR system only provide an incomplete 
piece of patient care (Xu et al., 2014). Integrating 
EHR data from multiple providers may be a 
solution, but currently encounters legal and technical 
challenges, as discussed in depth by Jensen et al. 
(2012). Due to these limitations, neither EHR, nor 
any of scientific literature, biological, and chemical 
data alone appear sufficient for drug repositioning 
research. We need to identify additional data sources 
that contain patient medication history and 
outcomes, as well as develop advanced data 
integration methods to identify synergistic signals. 

In the last decade or so, another type of patient 
data has increased exponentially in volume with the 
emergence of smart phones and social media 
websites. People today not only post their travel 
pictures but also share and discuss their experiences 
with diseases and drugs in patient forums and social 
media websites, such as WebMD, PatientsLikeMe, 
Twitter, and YouTube (Ru et al., 2015). Such data 
directly describes drug-disease associations in real 
human patients and bypasses the translational hurdle 
from cell-line or animal model to human, thus has 
led to increased research interests. For example, 
Yang et al. (2012) detected adverse drug reaction 
(ADR) signals from drug related discussions in the 
MedHelp forum by using an ADR lexicon created 
from the Consumer Health Vocabulary. Yates and 
Goharian (2013) extracted ADR in the breast cancer 
drug reviews on askpatient.com, drugs.com, and 
drugratingz.com using a ADR synonym list 
generated from the United Medical Language 
System (UMLS) specifically for breast cancer. 
Rather than collecting existing social media 
discussions, Knezevic et al. (2011) created a 
Facebook group for people to report their ADR 
outcomes and found social media a highly sensitive 
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instrument for ADR reporting . Powell et al. (2016) 
investigated the MedDRA Preferred Terms that 
appeared on Twitter and Facebook and found 26% 
of the posts contained useful information for post-
marketing drug safety surveillance. 

In this work, we expand current social media 
mining research that is primarily ADR focused to 
the discovery of serendipitous drug usages, which 
can suggest potentially new drug repositioning 
hypotheses. We build a computational pipeline 
based on machine learning methods to capture the 
serendipitous drug usages on the patient forum 
published by WebMD, which was reported in a 
previous study (Ru et al., 2015) to have high-quality 
patient reported medication outcomes data. 
However, this is an extremely difficult machine 
learning task because: (1) User comments on patient 
forum are unstructured and informal human 
language prevalent with typographic errors and chat 
slangs. It is unclear how to construct meaningful 
features with prediction power; (2) the mentioning 
of serendipitous drug usages by nature is very rare. 
Based on our experience with the drug reviews on 
WebMD, the chance of finding a serendipitous drug 
usage in user posts is less than 3% (See Methods). 
Therefore, we caution the audience that our 
objective in this work is not to build a perfect 
pipeline or a high performance classifier, but to 
perform a feasibility check and identify major 
technical hurdles in the entire workflow. We plan to 
direct our systems engineering efforts towards 
improving the performance of those bottleneck 
modules as the next step. 

2 METHODS 

In this feasibility study, we built the entire 
computational pipeline using standard tools and 
applications, to identify serendipitous drug usages in 
patient forum data, which includes data collection, 
data filtering, human annotation, feature 

construction and selection, data preprocessing, 
machine learning model training and evaluation, as 
illustrated in Figure 1. Each module is further 
described below. 

2.1 Data Collection 

We started by collecting drug reviews posted by 
anonymous users on the patient forum hosted by 
WebMD. WebMD is a reputable health care website 
that exchanges disease and treatment information 
among patients and healthcare providers. In its 
patient forum, after filling the basic demographic 
information including gender and age group, users 
are allowed to rate drugs in terms of effectiveness, 
ease of use, overall satisfaction, and post additional 
comments about their medication experience (See 
Figure 2). We chose it based on two considerations: 
(1) With over 13 years’ history of operation and on 
average over 150 million unique visits per month, 
WebMD contains a large volume of drug reviews 
that is highly desirable for conducting systematic 
studies. (2) The quality of drug reviews was reported 
to be superior to many other social media platforms 
in a previous study (Ru et al., 2015). Spam reviews, 
commercial advertisements, or information 
irrelevant to drugs or diseases are rare, probably 
thanks to their forum modulators. We downloaded a 
total number of 197,883 user reviews on 5,351 drugs 
by the date of March 29, 2015. Then, we used 
Stanford CoreNLP (Manning et al., 2014) to break 
down each free-text comment into sentences, which 
is the standard unit for natural language processing 
and text mining analysis. 

2.2 Gold Standard Dataset for 
Serendipitous Drug Usages 

In machine learning and statistics, gold standard, or 
accurately classified ground truth data is highly 
desirable,   but    always    difficult    to   obtain   for 

 
Figure 1: A workflow to identify serendipitous drug usages in patient forum data. 
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supervised learning tasks. For identifying 
serendipitous drug usages, it would be ideal if a 
database of drug usages approved globally or 
customarily used off-label were readily available as 
the benchmark for known drug usages. The 
professional team at WebMD has published 
monographs to introduce each drug, including 
information on drug use, side effects, interactions, 
overdose, etc. We thus used such data as the 
benchmark for known drug usages in this work. We 
assume a drug use is serendipitous if the user 
mentioned improvement of his or her condition or 
symptom that was not listed in the drug's known 
indications according to WebMD (See the examples 
in Figure 2). Otherwise, we set the mentioned drug 
use to be non-serendipitous. Below we explain in 
more details how we applied this principal to semi-
automatically prepare our gold standard dataset for 
serendipitous drug usages. 

2.3 Data Filtering 

Three filters were designed to reduce the number of 
drug review sentences to a number more manageable 
for human annotation. Firstly, we identified and 
removed review sentences that did not mention any 
disease or symptom at all, because these sentences 
have no chance to be related to serendipitous drug 
usages. To do this, we selected the UMLS concepts 
in English and with the semantic types equal to 
Disease or Syndrome, Finding, Injury or Poisoning, 
Mental or Behavioral Dysfunction, Neoplastic 
Process, or Sign or Symptom and used them to 
approximate medical concepts that could be related 
to serendipitous drug usages. We then used 
MetaMap (Aronson and Lang, 2010) to identify 
these medical concepts in each review sentence. 
Next, for sentences that did mention any of those 
concepts, we used SNOMED CT (U.S. National 
Library of Medicine, 2016b) to determine whether 
the mentioned concept is semantically identical or 

similar to the drug's known indications listed on 
WebMD. Mathematically SNOMED CT is a 
directed acrylic graph model for medical 
terminology. Medical concepts are connected by 
defined relationships, such as is-a, associated with, 
and due to. The semantic similarity between two 
concepts was usually measured by the length of the 
shortest path between them in the graph (Pedersen et 
al., 2007, Shah and Musen, 2008).  If the medical 
concept mentioned in a review sentence was more 
than three steps away from the known indications of 
the drug, we assumed the mentioned medical 
concept was more likely to be an unanticipated 
outcome for the drug and kept the sentence in the 
dataset for the third filter. Otherwise, we excluded 
the sentence from further evaluation, as it was more 
likely to be related to the drug’s known usage rather 
than serendipitous usage we were looking for. In the 
third step, we used the sentiment analysis tool, 
Deeply Moving (Socher et al., 2013) offered by the 
Stanford Natural Language Processing Group to 
assess the sentiment of each sentence where 
unanticipated medical concept occurred. We filtered 
out all sentences with Very Negative, Negative, or 
Neutral sentiment and only kept those with Positive 
or Very Positive sentiments because serendipitous 
drug usages are unexpected but desirable outcomes 
to patients. Negative sentiment is more likely to be 
associated with undesirable side effects or potential 
drug safety concerns. After these three filtering 
steps, 15,714 drug review sentences remained for 
further human annotation. 

2.4 Human Annotation 

One public health professional and one health 
informatics professional with master degrees, 
independently reviewed the 15,714 sentences and 
annotated whether each sentence was a true mention 
of serendipitous drug usage based on the benchmark

 

Figure 2: Examples of serendipitous drug usage mention on WebMD. In the example on the left, a patient reported that his 
irritable bowel syndrome (IBS) symptoms were alleviated when taking sulfasalazine to treat rheumatoid arthritis. In the 
example on the right, an asthma patient taking prednisone reported the improvement of her eczema. 
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dataset of known drug usages defined by WebMD. 
That is, they labeled a drug use to be serendipitous if 
the user mentioned an improved condition or 
symptom that was not listed in the drug's known 
indications according to WebMD. Otherwise, they 
assigned the mentioned drug use to be non-
serendipitous. In case that the annotators did not 
agree with each other, they discussed and assigned a 
final label together. Six months later, the two 
professionals reviewed their annotation again to 
avoid possible human errors. In total, 447 or 2.8% of 
sentences were annotated to contain true 
serendipitous drug usage mentions, covering 97 
drugs and 183 serendipitous drug usages. The rest 
15,267 sentences were annotated to contain no 
serendipitous drug usage mentions. This dataset was 
used throughout the study as the gold standard 
dataset to train and evaluate various machine 
learning models. 

2.5 Feature Construction and Selection 

Feature construction and selection is an important 
part of data mining analysis, in which the data is 
processed and presented in a way understandable by 
machine learning algorithms. The original drug 
reviews downloaded from WebMD website come 
with 11 features, including patients’ ratings of drug 

effectiveness, ease of use, overall satisfaction, and 
the number of people who thought the review is 
helpful (See Table 1).  

In the data-filtering step, we created four more 
features, which are (1) whether the sentence contains 
negation, (2) the UMLS semantic types of 
mentioned medical concepts; (3) the SNOMED CT-
based semantic distance between a drug's known 
indication and the medical concept the user 
mentioned in a review sentence; (4) the sentiment 
score of the review sentence.  

Prior knowledge in drug discovery and 
development also tells that some therapeutic areas, 
such as neurological disorders, bacteria infection, 
and cancers are more likely to have “dirty” drugs, 
which bind to many different molecular targets in 
human body, and tend to have a wide range of 
effects (Yao and Rzhetsky, 2008, Frantz, 2005, 
Pleyer and Greil, 2015). Therefore, drugs used in 
those therapeutic areas have higher chance to be 
repositioned. We manually selected 155 drug usages 
from those therapeutic areas and used them as binary 
features, which hopefully capture useful information 
and improve machine learning predictions of 
serendipitous drug usages.  

We also adopted a commonly used text-mining  

Table 1: List of the features constructed for the annotated datasets. 

Name Data Type Source 

Original Features obtained from the Patient Forum 

User rating of effectiveness Numerical WebMD 

User rating of ease of use Numerical WebMD 

User rating of overall satisfaction Numerical WebMD 

Number of users who felt the review was helpful Numerical WebMD 

Number of reviews for the drug Numerical WebMD 

The day of review Categorical WebMD 

The hour of review Categorical WebMD 

User's role (e.g., Patient, Caregiver) Categorical WebMD 

User's gender Categorical WebMD 

User’s age group Categorical WebMD 

The time on the drug (e.g., less than 1 month, 1 to 6 months, 6 months to 1 year) Categorical WebMD 

Additional Features 

Whether the sentence contains negation Binary MetaMap 

Semantic types of medical concepts mentioned in the sentence Categorical MetaMap 

Semantic distance between the mentioned medical concept and the drug’s known 
indications in SNOMED CT 

Numerical SNOMED 

Sentiment score  Numerical Deeply Moving 

Therapeutic areas (155) Binary Self-constructed 

N-grams extracted from drug review sentences (177) Binary Self-constructed 
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method, n-gram (Fürnkranz, 1998), to generate more 
textual features. An n-gram is a contiguous sequence 
of n words from a given text and it captures the 
pattern about how people use word combination in 
their communication. We used the tm package in R 
(Feinerer and Hornik, 2012) to do this. After the 
steps of punctuation and stop words removal, word 
stemming, and rare words pruning, we extracted 
3,264 unigrams, 10,064 bigrams, and 5,058 trigrams. 
For each n-gram, we calculated the information gain 
(Michalski et al., 2013) to assess its differentiating 
power between true and false classes in Weka (Hall 
et al., 2009). We excluded n-grams whose 
information gain equaled zero and kept 177 n-grams 
with positive information gain (namely 64 unigrams, 
73 bigrams, and 40 trigrams) as additional textual 
features. In total, 347 features were constructed for 
the machine learning classification, as summarized 
in Table 1.  

2.6 Data Preprocessing 

We normalized the data by linearly re-scaling all 
numerical features to the range of [-1, 1]. Such 
processing is necessary for support vector machine 
(SVM) to ensure no features dominate the 
classification just because of their order of 
magnitude, as SVM calculates the Euclidean 
distances between support vectors and the separation 
hyperplane in high-dimensional space (Ali and 
Smith-Miles, 2006). Then we split the 15,714 
annotated sentences into training, validation, and test 
datasets, according to their post dates. Sixty percent 
of them, or 9,429 sentences posted between 
September 18, 2007 and December 07, 2010, were 
used as the training dataset to build machine 
learning models. Twenty percent of the data, or 
3,142 sentences posted between December 08, 2010 
and October 11, 2012 were used as the validation 
dataset to tune the model parameters. The remaining 
20% of data, or 3,143 sentences that were posted 
between October 12, 2012 and March 26, 2015, 
were held as the independent test dataset. The 
proportion of serendipitous drug usages in the three 
datasets was between 2.0% and 3.2%. This 
arrangement is essential to pick up the models that 
could generalize on future and unseen data and 
minimize the bias led by overfitting, as the 
validation and test datasets occur temporally after 
the training dataset.  

2.7 Machine Learning Models 

We   selected   three   state-of-art   machine  learning  

algorithms, namely SVM (Cortes and Vapnik, 
1995), random forest (Breiman, 2001) and 
AdaBoost.M1 (Freund and Schapire, 1996) to build 
the prediction models. The implementation was 
based on Weka (version 3.7) (Hall et al., 2009) and 
LibSVM library (Chang and Lin, 2011). For SVM, 
we used the radial basis function (RBF) kernel and 
conducted grid search to find the optimal parameters 
including C and gamma (γ). LibSVM is able to 
produce both probability estimates (Wu et al., 2004)  
and class labels as output. For random forest, we 
empirically set the number of trees to be 500 and 
iteratively searched for the optimal value for number 
of features. By default the prediction gives a 
probability estimate for each class. For 
AdaBoost.M1, we selected the decision tree built by 
C4.5 algorithm (Quinlan, 2014) as the weak learner 
and obtained the optimal value for number of 
iterations through iterative search. The Weka 
implementation of AdaBoost.M1 only provides class 
labels as prediction results. Our evaluation therefore 
is based on class label predictions from all three 
algorithms, without considering the probability 
estimates from SVM and random forest. 

As the chance of finding a serendipitous drug 
usage (positive class) is rare and the vast majority of 
the drug reviews posted by users do not mention any 
serendipitous usages (negative class), we were 
facing an imbalanced dataset problem. Therefore, 
we used the oversampling technique (He and Garcia, 
2009, Batuwita and Palade, 2010, Kotsiantis et al., 
2006) to generate another training dataset where the 
proportion of positive class was increased from 
2.8% to 20%. Afterward, we tried the same machine 
learning algorithms on the oversampled training 
dataset, and compared the prediction results side-by-
side with those from the original, imbalanced 
training dataset. 

2.8 Evaluation 

We were cautious about choosing appropriate 
performance evaluation metrics because of the 
imbalanced dataset problem. Of commonly used 
metrics, accuracy is most vulnerable to imbalanced 
dataset since a model could achieve high accuracy 
simply by assigning all instances into the majority 
class. Instead we used a combination of three 
commonly used metrics, namely precision, recall, 
and area under the receiver operating characteristic 
curve (also known as AUC score) (Caruana and 
Niculescu-Mizil, 2004), to evaluate the performance 
of various prediction models on the independent test 
dataset. We also conducted 10-fold cross validation 
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by combining training, validation and testing 
datasets together, in order to compare our results 
directly with some other drug-repositioning studies. 

In addition, we manually reviewed 10% of 
instances in the test dataset that were predicted to be 
serendipitous drug usages and searched through the 
scientific literature to check if these predictions 
based purely on machine learning methods can 
replicate the discoveries from biomedical scientific 
community, as another verification on whether 
machine learning methods alone can potentially 
predict completely new serendipitous drug usages.  

All our data and scripts from this work will be 
made available to academic users upon request.  

3 RESULTS 

3.1 Parameter Tuning 

We used AUC score to tune the model parameters 
on the validation dataset. In case that the AUC 
scores of two models were really close, we chose the 
parameter and model that yielded higher precision. 
This is because end users (e.g., pharmaceutical 
scientist) are more sensitive to cases that were 
predicted to be the under-presented, rare events, 
which are serendipitous drug usages in this work, 
when they evaluate the performance of any kind of 
machine learning based predictive models. For SVM 
models, the optimal value of gamma (γ), the width 
of RBF kernel was 0.001 without oversampling and 
0.1 with oversampling. The optimal value of C, 
which controls the trade-off between model 
complexity and ratio of misclassified instances, was 
equal to 380 without oversampling and 0.1 with 
oversampling. For random forest models, the 
number of features decides the maximum number of 
features used by each decision tree in the forest, 
which was found to be 243 without oversampling 
and 84 with oversampling at the best performance 
on validation dataset. For AdaBoost.M1, the number 

of iterations specifies how many times the weak 
learner will be trained to minimize the training error. 
Its optimal value equaled 36 without oversampling 
and 58 with oversampling. 

3.2 Performance Metrics 

We evaluated the performance of six prediction 
models, namely SVM, random forest and 
AdaBoost.M1 with and without oversampling, on 
independent test dataset. The results were 
summarized in Table 2. The highest AUC score 
(0.937) was achieved from the AdaBoost.M1 model, 
whereas the lowest score (0.893) was from the SVM 
with oversampling. On the whole, AUC scores for 
all models were higher than 0.89, demonstrating the 
promise of machine learning models for identifying 
serendipitous drug usages from patient forums. 

The precision of random forest and 
AdaBoost.M1 models with and without 
oversampling, and the SVM model without 
oversampling were between 0.758 and 0.857, with 
the highest precision achieved on the random forest 
model without oversampling. However, the 
precision for the SVM model with oversampling was 
0.474, which was significantly lower than the other 
models. The recall of all models was less than 0.50. 
This means more than 50% of serendipitous usages 
were not identified. Obtaining either low recall or 
low precision remains a common challenge for 
making predictions from extremely imbalanced 
datasets like ours (He and Garcia, 2009). In many 
cases, it becomes a compromise depending on the 
application and the users’ need. In our experiment, 
after we increased the proportion of the positive 
class to 20% by oversampling, the recall of SVM 
and random forest models increased slightly; but the 
precision and the AUC score decreased. 
Oversampling seemed ineffective on AdaBoost.M1 
models. The AUC score, precision and recall for 
AdaBoost.M1 with oversampling all decreased,  

Table 2: Model performance in terms of precision, recall and AUC score. 

Model 
Test dataset 10-fold cross validation 

AUC Precision Recall AUC Precision Recall 

SVM 0.900 0.758 0.397 0.926 0.817 0.539 

SVM - Oversampling 0.893 0.474 0.429 0.932 0.470 0.620 

Random Forest 0.926 0.857 0.381 0.935 0.840 0.506 

Random Forest - Oversampling 0.915 0.781 0.397 0.944 0.866 0.530 

AdaBoost.M1 0.937 0.811 0.476 0.949 0.791 0.575 

AdaBoost.M1 - Oversampling 0.934 0.800 0.444 0.950 0.769 0.559 
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compared to the metrics on AdaBoost.M1 models 
without oversampling. In the 10-fold cross 
validation experiment, both recall and AUC scores 
seemed to be better than what were observed on the 
independent test set. Our AUC scores were close to 
the same scores reported by the drug-repositioning 
algorithm of PREDICT (Gottlieb et al., 2011), which 
were also from a 10-fold cross validation. 

3.3 Prediction Review 

For the 10% of instances in the test dataset that were 
predicted to be serendipitous drug usages, we 
conducted a literature and clinical trial search to 
provide a closer verification of our prediction 
models. Table 3 summarizes the analysis. We also 
presented the condensed evidences in literature 
and/or clinical trial below, for each instance. 

3.3.1 Metformin and Obesity 

A patient reported weight loss while taking 
metformin, a type 2 diabetes drug. Actually in the 
past two decades, metformin's effectiveness and 
safety for treating obesity in adult and child patients 
have been clinically examined in dozens of clinical 
trials and meta-analyses studies with promising 
results (Igel et al., 2016, Desilets et al., 2008, 
Paolisso et al., 1998, Peirson et al., 2014, McDonagh 
et al., 2014). According to the literature review by 
Igel et al. (2016), one possible explanation is that 
metformin could increase the body’s insulin 
sensitivity, which helps obese patients (who 
typically develop resistance to insulin) to reduce 
their craving for carbohydrates and to reduce the 
glucose stored in their adipose tissue. Other 
explanations include that metformin may enhance 
energy metabolism by accelerating the 
phosphorylation of the AMP-activated protein 
kinase system, or it may cause appetite loss by 
correcting the sensitivity and resistance of leptin. 

3.3.2 Painkiller and Depression 

When tramadol was taken for back pain, a patient 
found it also helpful with his depression and anxiety. 
Tramadol is an opioid medication, which have been 
long used for the psychotherapeutic benefits 
(Tenore, 2008). Tetsunaga et al. (2015) have 
demonstrated tramadol's efficacy in reducing 

depression levels among lower back pain patients 
with depression in an 8-week clinical trial. The self-
reported depression scale of patients in the tramadol 
group was 6.5 points lower than the control group. 
Similarly the combinatory therapy of acetaminophen 
and oxycodone, another painkiller, was reported by 
Stoll and Rueter (1999) to have antidepressant effect 
too. 

3.3.3 Bupropion and Obesity 

In the specific comment, the patient reported that 
Bupropion, an anti-depressant, helped him to lose 
weight. The weight loss effect of bupropion might 
be attributed to increased dopamine concentration in 
the brain, which leads to suppressed appetite and 
reduced food intake (Greenway et al., 2010). This 
serendipitous drug usage was also supported by 
several clinical trials (Gadde et al., 2001, Anderson 
et al., 2002, Jain et al., 2002). 

3.3.4 Ondansetron and Irritable Bowel 
Syndrome with Diarrhea 

Ondansetron is a medication for nausea and 
vomiting. Sometimes it causes the side effect of 
constipation in patients. Interestingly, this patient 
also had irritable bowel syndrome with diarrhea and 
thus ondansetron helped to regulate that. This 
serendipitous usage actually highlights the 
justification of personalized medicine and has been 
tested in a recent clinical trial (Garsed et al., 2014). 

3.3.5 Desvenlafaxin and Lack of Energy 

In the last case, anti-depressant desvenlafaxine was 
reported to boost energy. Strictly speaking, lack of 
energy is not a disease but a symptom. With limited 
information on the patient's physical and 
psychological conditions before and after 
medication, it remains unclear whether the energy 
boost effect was due to changes in the neural system 
or was purely a natural reflection of more positive 
moods after the patient took the anti-depressant 
medicine. We did not find any scientific literature 
discussing the energy boost effect of desvenlafaxine. 
So this case could represent either a new 
serendipitous drug use or a promiscuous drug usage. 
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Table 3: Examples of serendipitous drug usages predicted by the models. 

True positive examples 

Drug 
Known 

indications 
Serendipitous

usage 
Example 

SV
M

 
SV

M
-O

ve
rs

am
pl

in
g 

R
F

*  
R

F
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ve
rs

am
pl

in
g*  

A
da

*  
A

d
a-

O
ve

rs
am

pl
in

g*  

L
it

er
at

ur
e 

ev
id

en
ce

 

Metformin 

Type 2 
Diabetes 
Mellitus, 

Polycystic 
Ovary 

Syndrome, 
etc. 

Obesity 
I feel AWFUL most of the day, 
but the weight loss is great. 

x x x x x x 

Igel et al. 

(2016), 

Desilets et 

al. (2008), 

Paolisso et 

al. (1998) 

Tramadol Pain 
Depression, 

anxiety 
It also has helped with my 
depression and anxiety. 

x x   
x x 

Tetsunaga et 

al. (2015) 

Acetaminophen 
& oxycodone 

Pain Depression 

While taking for pain I have 
also found it relieves my major 
depression and actually gives 
me the energy and a clear mind 
to do things. 

x x x  x  
Stoll and 

Rueter 

(1999) 

Bupropion 

Depression, 
attention 
deficit  & 

hyperactivity 
disorder 

Obesity 

I had energy and experienced 
needed weight loss and was 
very pleased, as I did not do 
well on SSRI or SNRIs. 

x x
 

x x x 

Greenway et 

al. (2010), 

Gadde et al. 

(2001), 

Anderson et 

al. (2002), 

Jain et al. 

(2002) 

Ondansetron Vomiting 

Irritable 
bowel 

syndrome 
with diarrhea 

A lot of people have trouble 
with the constipation that comes 
with it, but since I have IBS-D 
(irritable bowel syndrome with 
diarrhea), it has actually 
regulated me . 

    x x 
Garsed et al. 

(2014) 

Desvenlafaxine Depression 
Lack of 
energy 

I have had a very positive mood 
and energy change, while also 
experiencing much less anxiety. 

x x x x x   

False positive examples 

5-HTP 
Anxiety, 

depression 

Thyroid 
Diseases, 
Obesity 

i have Hoshimitos thyroid 
disease** and keeping stress 
levels down is extremely 
important for many reasons but 
also for weight loss. 

 x  x    

Cyclobenzaprine 
Muscle 
spasm 

Pain 

While taking this medication for 
neck stiffness and pain; I 
discovered it also helped with 
other muscle spasms. 

 x      

*RF stands for random forest. Ada stands for AdaBoost.M1. "x" indicates the model recognized the example as a 
serendipitous usage. **Hoshimitos thyroid disease was a typo. The correct spelling should be Hashimoto's Thyroiditis. 
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3.3.6 False Positive Predictions 

Besides the true positive examples, we also found 
two cases where some of our models made false 
positive predictions due to difficult language 
expression and terminology flaw. The first example 
is 5-HTP, an over-the-counter drug for anxiety and 
depression. One patient commented that stress relief 
brought by this drug was important to her 
Hashimito's thyroid disease and weight loss. 
Although Hashimoto's disease and weight loss were 
mentioned, the patient did not imply the 5-HTP can  
treat Hashimoto’s disease or control weight. But 
SVM and random forest models with over-sampling 
became confused by the subtle semantic difference. 
In the second case, a patient taking cyclobenzaprine 
for neck stiffness and pain said the drug also helped 
with other muscle spasms. Pain, neck stiffness and 
muscle spasms are really close medical concepts. 
We found that this false positive prediction was 
actually due to imperfect terminology mapping. 

4 DISCUSSION 

In this very first effort to identify serendipitous drug 
usages from online patient forum, we designed an 
entire computational pipeline. This feasibility study 
enabled us to thoroughly examine the technical 
hurdles in the entire workflow and answer the 
question if patient-reported medication outcome data 
on social media is worthwhile to explore for drug 
repositioning research. The best-performing model 
was built from AdaBoost.M1 method without 
oversampling, which had precision equal to 0.811, 
recall equal to 0.476 and AUC score equal to 0.937 
on independent test data. The 10-fold cross 
validation results are also comparable to existing 
drug-repositioning method (Gottlieb et al., 2011). 
Therefore our confidence in applying machine 
learning methods to identify serendipitous drug 
usages from online patient forum data is increased. 
More specifically we have addressed the following 
tasks in this work:  

Previously, there was no curated social media 
dataset available for the purpose of identifying 
serendipitous drug usages. We spent a considerable 
amount of time and effort to collect, filter and 
annotate 15,714 drug review sentences from the 
WebMD patient forum site. Two health 
professionals at master level annotated all the 
sentences independently and discussed on cases 
when disagreement occurred. They repeated this 
process six months later. If more resource available, 

we would like to recruit a larger group of 
professionals to curate a larger and more reliable 
gold standard dataset. But the current annotated 
dataset is comprehensive enough for this work, as it 
covers not only easy instances, but also challenging 
ones for machine learning prediction, as shown in 
Table 3. 

In addition, the drug reviews posted on patient 
forum are unstructured and informal human 
language prevalent with typographic errors and chat 
slangs, which need to be transformed to a 
representation of feature vectors before machine 
learning algorithms could comprehend. We used 
patients’ demographic information, ratings of drug 
effectiveness, ease of use, and overall satisfaction 
from the patient forum. We calculated negation, 
semantic similarity between the unexpected 
medication outcome mentioned in a review sentence 
and the known drug indications based on SNOMED 
CT, and sentiment score of the review sentence. We 
also leveraged our known knowledge on dirty drugs, 
and extracted informative n-gram features based on 
information gain. The results from this feasibility 
study showed that these features are useful to predict 
serendipitous drug usages. For example, dirty drugs 
for neurological conditions did show up 
predominantly in the results. But these features 
seemed not sufficient to predict all serendipitous 
drug usages correctly. As shown in the false positive 
examples of Table 3, the n-grams such as also, also 
help, and also for were often associated with true 
serendipitous drug usages, but could occur in false 
positive cases too. Current medical terminology 
mapping tools (i.e., MetaMap) could be the 
performance-limiting step in cases like pain and 
muscle spasm, despite the close connection of these 
two concepts from the perspective of medicine. We 
will explore more sophisticated methods such as 
DNorm (Leaman et al., 2013), as well as additional 
methods of semantic similarity calculation as shown 
in (Pedersen et al., 2007, Sánchez et al., 2012) in 
future. 

Thirdly, the data are extremely imbalanced 
between two classes (2.8% vs. 97.2%) because 
serendipitous drug usages are rare events by nature. 
Such imbalance inevitably impedes the performance 
of machine learning algorithms. We tried to increase 
the proportion of serendipitous usages in the training 
dataset to 20%, using the random oversampling 
method (He and Garcia, 2009). We have also tried 
two other methods, namely synthetic minority over-
sampling technique (Chawla et al., 2002) and under-
sampling (Kotsiantis et al., 2006), but their 
performance was inferior to that of random 
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oversampling and not shown here. More robust 
machine learning algorithms that are less sensitive to 
imbalanced data or robust sampling methods will be 
desirable to further improve serendipitous drug 
usage predictions. 

Last but not least, we acknowledge that as an 
emerging data source, online patient forums have 
limitations too. Many patients who write drug 
reviews online lack of basic medical knowledge. 
Their description of the medication experience can 
be ambiguous, hyperbolic or inaccurate. Also 
important contextual information, such as co-
prescribed drugs, may be missed in the review. 
Without a comparison between an experiment group 
and a control group, serendipitous drug usages 
extracted from patient forums need to be further 
verified for drug repositioning opportunities by 
integrating with existing data sources, such as EHR 
and scientific literature. 

5 CONCLUSIONS 

Drug repositioning is an important but not yet fully 
utilized strategy to improve the cost-effectiveness of 
medicine and to reduce the development time. The 
dawn of social media brings large volumes of 
patient-reported medication outcome data, and thus 
creates an urgent need to examine it for the purpose 
of drug repositioning. In this work, we collected, 
filtered, and annotated drug review comments posted 
on WebMD patient forum. We built an entire 
computational pipeline based state-of-art machine 
learning and text mining methods to mine 
serendipitous drug usages. Our models achieved 
AUC scores that are comparable to existing drug 
repositioning methods. Most instances that were 
predicted to be serendipitous drug usages are also 
supported by scientific literature. So machine 
learning approaches seem feasible to address this 
problem of looking for a needle in the haystack. 
More of our future efforts will be directed to develop 
more informative features, improve disease mapping 
accuracy, handle imbalanced data, and integrate 
findings from social media with other data sources, 
in order to build really functional drug-repositioning 
applications. 
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