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Abstract: This paper focuses on development of an algorithm that automatically differentiates a Femoro-Acetabular 

Impingement (FAI) patient from a healthy control person by comparing their surface electromyography 

(sEMG) signal recorded from Gluteus Maximus (GMax), Tensor Fasciae Latae (TFL), and Rectus Femoris 

(RF) muscles in the hip area. A discrete wavelet transform (DWT) method was used to analyse sEMG signals 

by thirty-eight different wavelet functions (WFs) with 5 decomposition levels of dynamic contractions during 

the three phases (descending, stationary, and ascending) of a squat task. The Bior3.9 WF was selected as it 

provided higher amount of energy for most of the subjects and then the wavelet power spectrum was computed 

for healthy control and FAI groups. The results show that the RF muscle is more active in the ascending phase 

than the descending phase for FAI subjects, whereas it is more active in the descending phase for healthy 

control. An independent sample t-test was used to check the activities of muscle in both groups. The results 

demonstrate no significant difference for GMax (p=0.7477) and TFL (p=0.4997) muscles, while there is a 

significant difference for RF muscle (p=0.0670). 

1 INTRODUCTION 

Femoro-Acetabular Impingement (FAI) is a 

pathological condition in which the femoral head and 

acetabular socket interact abnormally in the hip joint 

(Myers, 1999). This abnormality reduces range of 

motion and ability in patients (Keogh, 2008). In 

young and active adults with FAI, the pain is usually 

in the groin area (Samora, 2011). Hip bone 

abnormalities can damage soft tissue structures and 

limit the patients’ motion. Useful information can be 

obtained from the muscles and such information has 

clinical and engineering applications by measuring 

Electromyography (EMG) signals. EMG is a 

biomedical signal that provides a great source of 

information to clinicians and researchers by 

measuring the electrical currents generated in 

muscles during contraction (Reaz, 2006). The 

physiological and anatomical properties of muscles 

can influence on the nervous system that controls the 

EMG signal (Ahmed, 2009). 

We propose an algorithm to discriminate a FAI 

patient from a healthy person by comparing their 

EMG signal recorded from hip muscles. The 

proposed algorithm will produce a way to diagnose 

FAI based on muscle activities, which can be a 

complement to MRI and x-ray methods. 

1.1 Background 

An EMG signal recorded from muscles requires 

advanced methods for detection, decomposition, 

processing, and classification. To use the EMG signal 

for diagnosis, a feature needs to be extracted before it 

can be analysed or classified. This is due to the fact 

that the raw EMG signal includes both useful 

information and noise. EMG features can be 

computed in various domains such as time, 

frequency, time-frequency, and time-scale domains. 

Analysis of EMG data requires rectification and 

integration of signals or root mean square values to 

extract information related to the amplitude of the 

signal, which deals with the time domain 

representation. However, the frequency content of 

EMG is analysed using Fourier Transform (FT) that 

is a unidimensional technique (Karlsson, 2001). 

Traditional techniques for analysing surface EMG 

signal are based on the FT method. The accuracy and 
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reliability of this technique depends on the data 

lengths’ and the signal requires to be stationary. 

Moreover, a signal can be stationary or non-

stationary. If a signal is stationary, its properties are 

statistically invariant over time; however the transient 

events cannot be predicted in non-stationary signals. 

The EMG signal is a non-stationary signal. 

Furthermore, time-frequency methods that are 

appropriate for non-stationary signal are used instead 

of frequency methods to improve the EMG analysis 

(Karlsson, 2001). Thus, for analysing EMG signals in 

both time and frequency, the short-term Fourier 

transforms (STFT) or wavelets can be used. The 

former of the EMG signals usually has three steps: 

recording the EMG signals, decomposition of signals 

by signal processing techniques, and classification of 

signals for diagnostic purpose. 

In daily life activities or movements, subjects 

perform more dynamic contractions instead of 

isometric contractions. Moreover, in the field of 

rehabilitation medicine, sports medicine, and etc., 

tasks similar to daily activities are performed. During 

dynamic conditions, number of active motor units, 

active muscle fibres, electrode geometry, muscle 

fibre lengths, and innervation zone geometry 

changes. These factors emphasize that the ME signals 

are non-stationary. Therefore, time-frequency 

methods have been introduced for the analysis of non-

stationary signals. These time-frequency 

representation methods are:  STFT, Wigner-Ville 

distribution (WVD), Choi-Williams Distribution 

(CWD), and wavelet transform (WT) that were 

compared with recent studies for accuracy and 

precision to analyse the ME signals (Karlsson, 2000 

and 2001). A time-frequency analysis based on 

wavelets (Meyer, 1993), which is introduced recently, 

is an appropriate tool to overcome the limitations of 

the traditional time-frequency methods. Karlsson 

introduced the wavelet transform as a “mathematical 

microscope” that help observe various parts of the 

signal by setting the focus (Karlsson, 2000 and 2001). 

The WT has some advantages over the other time-

frequency methods. WT uses short window for high 

frequencies and long window for low frequencies, 

although the STFT uses a single analysis window for 

all frequencies (Rioul, 1991). Furthermore, the WT 

can be used to analyse both stationary and non-

stationary signals in both time and frequency domain. 

The WT is classified into continuous wavelet 

transforms (CWT) and discrete wavelet transforms 

(DWT). The wavelet transform requires the selection 

of a mother wavelet depending on the application. 

Wavelets are defined by the scaling function (also 

called father wavelet) and wavelet function (or the 

mother wavelet). The scale function in WT 

determines wavelet dilation and compression of the 

various wavelets from a mother wavelet. 

Furthermore, the optimization of the WT is related to 

the scale function, which is used for a specific signal. 

The ability of DWT to extract features from the 

signal is dependent on choosing an appropriate 

mother wavelet function. The common standard 

families of wavelet basis functions are Haar, 

Daubechies (db1 to db10), Coiflet (coif1 to coif5), 

Symmlet (sym2 to sym8), Morlet, and Mexican Hat. 

Although there is not a specific rule for selecting a 

wavelet basis function, some features of wavelets 

cause a specific mother wavelet to be more 

appropriate for a particular application and signal 

type. According to Santoso et al. (Santoso, 1994) 

state, for slow transient disturbances db8 and db10 

wavelets were the best choice, whereas for short and 

fast transient disturbances db4 and db6 were more 

proper. Also, Walker (Walker, 1999) presented 

general guidelines for selecting a wavelet such that 

db4 was more appropriate for feature extraction and 

coiflet6 provided better data compression results. In 

order to select a more accurate wavelet function, it is 

significant that the characteristic of signal should be 

matched with the properties of the wavelet function. 

For applying WT to the EMG signal various 

mother wavelets and scale functions can be used 

although no agreement has been reached regarding 

the selection of the mother wavelet and the scale 

function. For example, Karlsson et al. (Karlsson, 

1999) used a Morlet mother wavelet with a linear 

scale function (Karlsson, 1999, 2000, 2003) and Neto 

et al. (Neto, 2007) applied Morlet with exponential 

function. Von Tscharnar (Von Tscharnar, 2000), used 

Cauchy mother wavelets with polynomial function. 

Hostens et al. (Hostens, 2004) and Beck et al. (Beck, 

2005) applied Daubechies mother wavelets to the 

EMG signal with different scale functions. Hostens et 

al. (Hostens, 2004), used a linear scale function while 

Beck et al. (Beck, 2005) used a dyadic function. 

The WT of the EMG signal has been used in 

several studies related to muscle fatigue, EMG signal 

processing, and muscle strength. Moreover, Neto et 

al. (Neto, 2007, 2008), and Von Tscharner et al. (Von 

Tscharnar, 2000, 2002, 2003, 2006), used the WT for 

the EMG signals that were recorded during the sports. 

Flanders (Flanders, 2002) used DWT to identify 

the time of occurrence of EMG bursts. They chose 

wavelet db2 and focused on the coefficient at an 

intermediate scale (D3) because by plotting the peak-

to-peak range of the db2 weighting coefficient values 

of several muscles, the D3 component had the largest 

peak weighting coefficients based on their research. 
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Thus, Flanders demonstrated that the simplest 

wavelet such as db2 was suitable for recognizing 

multiunit EMG bursts. Moreover, Kilby and Gholam 

Hosseini (Kilby, 2004) also used mother wavelet that 

had a different set of families to extract detailed 

features of the sEMG signals. They used mother 

wavelets that were available in LabVIEW® to 

decompose the sEMG signals and reconstruct the 

signal back. The reconstructed signals were 

subtracted from the original signals in order to 

calculate the errors to achieve statistical analysis. 

Based on different errors of the various families of the 

mother wavelets, they concluded the Daubechies 

(db5) was the most appropriate mother wavelet for 

analysing sEMG signals. However, they did not 

consider several mother wavelets such as Morlet, 

Meyer, and Mexican Hat because these mother 

wavelets were not available by the software. Ahmed 

et al. (Ahmed, 2009) illustrated a comparative study 

of decomposing sEMG signals by using different 

types of wavelets. Their goal was to choose a wavelet 

based on the best possible energy localization in the 

time-scale plane. In their algorithm, they decomposed 

a signal using DWT for various wavelets and the 

energy localization in time-scale plane was 

calculated. From their results, db4, db5, and db6 were 

shown to have the best energy localization compare 

to other wavelets for normal and healthy muscle 

EMG signal. 

2 METHODOLOGY 

The EMG data of Gluteus Maximus (GMax), Tensor 

Fasciae Latae (TFL), and Rectus Femoris (RF) 

muscles were recorded from 30 subjects during 

dynamic contraction of a squat task (Fig. 1). 

 

Figure 1: Descending, Stationary, and Ascending Phase of 

Squat (Lamontagne, 2009). 

During the squat, subjects were required to stand 

with feet shoulder-width apart, parallel to one 

another. Both arms were anteriorly extended, and 

heels were in contact with the floor during the entire 

squat. EMG signals were recorded during squat 

cycles, thus each recorded signal was divided into 

three regions based on squat phases (Descending, 

Stationary, and Ascending phase). Five repetitions of 

the same movement were executed (Lamontagne, 

2009) The recorded sEMG signals formed two 

groups: control (15 males and 1 female) and FAI (11 

males and 3 females). Participant characteristics are 

indicated in Table 1. 

Table 1: Participant characteristics by group. 

Group Gender Weight (Kg) Height (cm) 

Control (CON)   

1 M 104.591 191.2 

2 M 132.009 179 

5 M 113.527 176 

6 F 97.245 152 

7 M 120.189 180.5 

10 M 93.078 175.5 

11 M 83.666 180.5 

12 M 87.466 168 

15 M 117.896 177.5 

17 M 83.551 178 

19 M 83.311 181 

20 M 106.529 183 

22 M 82.646 177 

23 M 147.725 176 

24 M 61.129 160.5 

25 M 79.526 175.5 

FAI (OR)   

3 M 129.012 183.75 

4 M 83.035 168 

8 M 139.491 186 

9 M 133.394 176.5 

13 M 126.997 174.2 

14 M 101.154 175 

16 M 108.719 175 

18 M 149.428 176 

21 F 97.508 163 

26 M 64.312 167 

27 M 136.712 167 

28 M 120.632 175 

29 F 132.507 168.5 

30 F 59.766 167 

 

The sampling frequency of the signal was 

1000Hz. The DC offset was removed from the raw 

EMG signals. In order to be able to compare the EMG 

activity in the same muscle on different subjects, the 

signals have to be normalized. Normalization of 

EMG signals were performed by dividing EMG 

signals during a squat task to a reference EMG value 

achieved from the same muscle of the same subject. 

We utilized the Maximum Voluntary Isometric 

Contraction (MVIC) method for normalization. To 

measure the MVIC the participants were asked to lie 

down on a testing bench, which was provided with 

support beams and adjustable straps to limit the 

movement of the limbs and hold it in place during 

isometric contraction. The MVIC data were collected 

BIOSIGNALS 2017 - 10th International Conference on Bio-inspired Systems and Signal Processing

216



for duration of 5 seconds for each muscle. MVICs for 

GMax and RF muscles were measured when the 

participants’ leg was straight, and they were asked to 

push upwards against the Hand-Held Dynamometer 

(HHD). Moreover, MVIC for TFL muscle was 

collected when the participants were asked to push 

diagonally against the HHD. After normalization, 

EMG signals were full-rectified meaning that the 

absolute value of the signal was used. The rectified 

signals were passed through a 5th-order low-pass 

Butterworth filter with cut off frequency of 10Hz. 

This process provided the linear envelope of signals. 

Furthermore, the filtered signals were amplitude-

normalized to the peak MVIC EMG (nEMG) and 

then integrated to produce the integrated EMG 

(IEMG) values.  

2.1 EMG Analysis using Wavelet 
Transforms 

Data analysis was performed using the MATLAB 

programming language with the signal processing 

and Wavelet toolboxes (The Math Works, INC.). The 

EMG values were recorded from GMax, TFL, and RF 

muscles of the affected sides of the 30 subjects. There 

were 5 repetitions for every subject with sampling 

frequency of 1000Hz. The number of samples in each 

EMG data set was very large, so EMG signals were 

pre-processed by using the wavelet transform.  

The analysis of the data commenced by removing 

any DC offset in order to be ready for the wavelet 

families’ analysis. The wavelet analysis was 

performed by a function called mother wavelet. There 

are different families or set of mother wavelets in the 

Wavelet method which differ in their mathematical 

principles named as Haar, Daubechies (db1 to db10), 

Symlets (sym2 to 8), Coiflets (coif1 to 5), 

Biorthogonal (bior1.1 to 6.8), Reverse biorthogonal 

(rbio1.1 to 6.8), Meyer (meyr), Discrete 

approximation of Meyer (dmey), Gaussian (gaus1 to 

8), Mexican hat (mexh), and Morlet (morl). EMG 

signals were decomposed using DWT with various 

wavelet functions (WFs). We used discrete wavelet, 

which allowed us to decompose our EMG signals 

based on Haar, Daubechies (db1 to db10), Symlets 

(sym2 to 8), Coiflets (coif1 to 5), Biorthogonal 

(bior1.1 to 6.8), and discrete approximation of Meyer 

(dmey) mother wavelets. Moreover, MATLAB code 

was written to apply a DWT to the EMG signals. The 

WT decomposes a signal into several multi-resolution 

(levels) components based on basis functions or WFs. 

These WFs are achieved by dilation, contraction, and 

shifts of a unique function. Decomposition of the 

signal into basis of wavelet functions implies the 

computation of the inner products between the signal 

and the basis function, leading to a set of coefficients 

called wavelet coefficients.  

The maximum level to apply the wavelet transform 

depends on how many data points are contained 

within our data set, while there is a down-sampling 

by 2 operations from one level to the next level. We 

used 5 levels of decomposition. Thirty eight different 

wavelet functions exerted at decomposition level 1 to 

5. The wavelet coefficients from each wavelet 

function were used to calculate the energy of the 

sEMG signals for each subject in each phase.  

2.2 Wavelet Selection based on Energy 
Calculation 

The wavelet energy was computed for approximation 

(Ea) and detail (Ed) coefficients. Ea is the percentage 

of energy corresponding to the approximation and Ed 

is the vector containing the percentage of energy 

corresponding to the details. Ed for each sEMG signal 

was collected after using 38 wavelet functions and the 

highest five energies were highlighted for each 

subject in three phases. Then, the highest repetition 

wavelet function was chosen as our wavelet function. 

This procedure is indicated in Fig 2. 

 

Figure 2: Procedure of Selecting a WF. 

2.3 Wavelet Power Spectrum 

The wavelet power spectrum is a way to determine 

the distribution of energy along the sEMG signal. 

Wavelet coefficients of the selected wavelet function 

were computed and the power spectrum was 

measured during 5 levels of decomposition. The 

distribution of power for each muscle during 

descending, stationary, and ascending phase for both 

CON and OR groups was determined. Fig. 3 shows 

the block diagram for computing power and 

discriminating two groups based on their power 

spectrum. 
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Figure 3: Block Diagram for Computing Power Spectrum. 

3 RESULTS 

The algorithm developed in this study evaluated for 

its performance by discriminating the CON and OR 

group from one another.  

EMG signals, which were collected from three 

muscles, were analysed by 38 wavelet functions with 

5 levels of decomposition for three phases of dynamic 

contraction during squat task. The five wavelet 

functions that represented the highest amount of 

energy for each subject were highlighted. The same 

scenario was repeated for all subjects by analysing 

EMG signals from all three muscles for each 

descending (D), stationary (S), and ascending (A) 

phase separately. The highest five energies occurred 

in various levels for different subjects and muscles. 

The five WFs that indicated the highest percentage of 

energy were selected for each subject. The total 

number of repetitions for the wavelet functions 

between CON and OR group during three phases was 

computed for each muscle separately. Bior3.9 

wavelet function indicated the highest number of 

repetitions between subjects for each muscle during 

three phases except for muscle 1 of OR group which 

Bior3.7 worked best (Table 2). As the difference 

between Bior3.7 and Bior3.9 was not significant in 

muscle 1 of OR group, Bior3.9 wavelet function was 

used for further analyses. 

 

 

 

 

Table 2: Selection of a WF with Highest Repetition of 

Energy. 

Subject Muscle 
Wavelet 

Function 
D S A Total 

CON 1 (GMax) bior3.9 12 6 7 25 

OR 1 (GMax) bior3.7 6 6 4 16 

CON 2 (TFL) bior3.9 8 8 4 20 

OR 2 (TFL) bior3.9 9 7 9 25 

CON 3 (RF) bior3.9 7 8 13 28 

OR 3 (RF) bior3.9 7 10 6 23 

3.1 Wavelet Power Spectrum 

The WT converts the data array, which is stored from 

the EMG recorded signal, into a series of wavelet 

coefficients. Each of these coefficients represents the 

amplitude of the wavelet function at a specific 

location in the array. The best way to specify the 

distribution of energy within the data is to compute 

the wavelet power. The power, which is the squared 

absolute value of the wavelet coefficients, calculated. 

The wavelet power spectrum for each muscle during 

descending, stationary, and ascending phases was 

computed by using Bior3.9 WF. This scenario was 

repeated for all subjects from both groups. The 

subjects were categorized based on calculated power 

of each phase in Table 3. OR and CON groups were 

divided into three categories based on the squat 

phases. All 16 subjects in the CON group used their 

muscle 1 in the ascending phase whereas; most of 

them used muscle 2 and muscle 3 in their descending 

phase. In OR group, muscle 1 was used in ascending 

the same as CON group. However, muscle 2 was used 

in ascending and muscle 3 in both descending and 

ascending phases. 

Table 3: Muscles used by CON and OR During Squat 

Cycle. 

 Descending Stationary Ascending Total 

CON     

Muscle 1 0 0 16 16 

Muscle 2 10 2 4 16 

Muscle 3 14 2 0 16 

OR     

Muscle 1 2 0 10 12 

Muscle 2 4 0 8 12 

Muscle 3 5 2 5 12 

Moreover, after calculating the power of the DWT 

coefficients at various levels, the power was then 

compared for the sEMG for OR and CON group of 

three muscles (GMax, TFL, RF). Fig. 4 and Fig. 5 

show the results of each muscle for both groups. 
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Figure 4: Muscles Power for CON Group. 

 

Figure 5: Muscles Power for OR Group. 

As indicated in above graphs, subjects from both 

groups used higher power in descending and 

ascending phases. In order to indicate whether there 

is a significant difference between these two groups 

in using their muscles during ascending and 

descending phases, the actual A/D ratio for CON and 

OR was computed.  

By calculating the ratio, we can still see which 

phase was the most active; however, we are also able 

to see the extent of activity. Therefore, we calculated 

the ratio of A/D for every subject in CON and OR 

groups and then calculated the average. The resulting 

average for each muscle is provided in Table 4 with 

the standard deviation for each group. 

Table 4: Average Ratio with Standard Deviation Values for 

Each Muscle in CON and OR Groups. 

 CON OR 

Muscle 1 (GMax) 13.38 ± 1.902 11.319 ±1.921 

Muscle 2 (TFL) 1.33 ± 0.150 1.829 ± 0.205 

Muscle 3 (RF) 0.613 ± 0.090 1.975 ± 0.260 

 

The muscles power is plotted and shown in Fig. 6 

for CON and OR group. In CON group muscle 1 and 

2 were active in ascending phase whereas, muscle 3 

was active in descending phase. Moreover, in the OR 

group all three muscles were active in the ascending 

phase. 

 

Figure 6: Average Ratio Muscle Power for CON and OR. 

In general, the described algorithm can be 

summarized as follows: 

The raw EMG signals are collected from a 

participant for GMax, TFL, RF muscles during 

descending, stationary, and ascending phases of squat 

task. Then, the collected EMG signals are 

normalized. The Bior3.9 wavelet function is applied 

to normalized EMG signals and the wavelet 

coefficients are computed. Based on wavelet 

coefficients the wavelet power spectrum is calculated. 

In addition, the ratio power which is the ratio of 

ascending power over descending power is computed 

in order to identify whether the subject has FAI or not. 

If the ratio value for RF muscle is less than zero, it 

means the participant used his/her RF muscle in 

descending phase and he/she belongs to CON group. 

Whereas, if the ratio value is greater than zero, it 

means he/she used his/her muscle in ascending phase 

and the subject belongs to FAI group. 

3.2 Statistical Analysis 

In this study an independent samples t-test was used 

to check if the two means (averages) from CON and 

OR groups are reliably different from one another. 

Each t-value has a p-value that is the probability that 

the pattern of data in the sample could be produced 

by random data. The 2-tail t-test was applied to check 

the activities of muscles for CON and OR groups. 

Table 5 illustrates no significant difference was found 

for GMax and TFL; whereas RF shows a significant 

difference between CON and OR groups (p= 0.0670) 

although the threshold (p=0.05) was not reached. This 

can be due to the fact that the sample size in this study 

was small and we require more samples for more 

reliable results. 
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Table 5: P-value for GMax, TFL, and RF Muscle. 

 P-value 

Muscle 1 (GMax) 0.7477 

Muscle 2 (TFL) 0.4997 

Muscle 3 (RF) 0.067 

4 DISCUSSION 

Spectral properties of EMG signals have been defined 

by their power spectra. The shape of the power 

spectrum can be changed when the EMG signals are 

generated from different types of Motor Unit (MU) 

(Moritani, 1985; Gerdle, 1998; Elert 1992). 

This study has indicated that the wavelet transform 

method can be used to quantify features of the muscle 

activity for dynamic contraction. The fundamental 

properties of EMG spectra are conserved across 

dynamic contraction, therefore the WT will be a 

useful tool for studying EMG signals. The wavelet 

power spectrum of OR and CON groups was analysed 

for GMax, TFL, and RF muscles in the hip area by 

using the Bior3.9 wavelet function in order to 

discriminate the two groups. The power was 

calculated for each muscle and an independent 

sample t-test was used to check the activity of three 

muscles in hip area to discriminate an OR patient 

from a healthy person. The p-value for GMax, TFL, 

and RF muscles is 0.7477, 0.4997, and 0.0670 

respectively for 2-tail test. Therefore, RF muscle is 

statistically significant although the threshold 

(p=0.05) was not reached due to small sample size. 

As a result, RF muscle is more active in ascending 

than descending phase for OR people, whereas it is 

more active in descending phase for CON people. 

Muscle contraction is produced by a sequence of 

electrical and chemical events, which start with an 

action potential, which is created at the 

neuromuscular junction. Individual muscle fibres are 

classified into three primary muscle fibre types 

named type I, type IIA, and type IIB based on their 

contractile and metabolic properties. Type I is 

referred to slow twitch oxidative, type IIA is fast 

twitch oxidative and type IIB is fast twitch glycolytic 

(Ethier, 2007). These three types of muscle fibres 

have very different functional characteristics. Type I 

fibre is characterized by low force, power, speed 

production and high endurance. Type IIB has high 

force, power, speed production and low endurance, 

while type IIA indicates feature between the two 

other types. The MU consists of a single motoneuron 

and the group of muscle fibre it innervates. All 

muscle fibres in a single MU contain the same muscle 

fibre type. Three types of MUs (slow, fast fatigue-

resistant, and fast fatigable) are categorized on the 

basis of their twitch speed and fatigability. The slow 

twitch MU is small and can produce less force 

compare to fast twitch MU. Type I muscle MUs 

contract slower, and they reach to peak power slower 

and highly resistant to fatigue compare to type II fast 

twitch MUs. Type IIA and IIB are capable of the same 

amount of peak force, however type IIA fibres take 

longer to reach their peak power compare to type IIB. 

Therefore, the total peak power by type IIB is higher 

than type IIA. In other words, type I has low intensity, 

lower frequency, and low power compare to type II. 

The average ratio (ascending over descending phase) 

power for GMax, TFL, and RF muscles, as indicated 

in Table 4, presents the power of RF muscle is higher 

in OR group than CON group. The faster motor units 

generate higher frequencies in their power spectra 

(Wakeling, 2004). Thus, the larger numbers of MUs 

are recruitment in RF muscle for OR than CON. 

Therefore, type II (fast twitch) MUs are active in OR 

group, while in CON group type I (slow twitch) MUs 

are used. 

5 CONCLUSION & FUTURE 

WORK 

The algorithm developed in this study aimed to 

automatically discriminate CON and OR groups 

based on sEMG recorded from three hip muscles 

(GMax, TFL, and RF) during dynamic contraction. 

The program was capable of identifying OR from 

healthy people by analysing the activity of hip 

muscles. 

The novel method developed in this study was used 

to analyse EMG signals recorded from GMax, TFL, 

and RF muscles for 16 CON and 14 OR subjects 

during squat cycles. In this study the DWT was 

selected and various wavelet functions from this WT 

method were applied to EMG signals from three 

muscles in order to select the best possible energy 

localization in the time-frequency plane. This 

analysis showed the Bior3.9 wavelet function 

provided higher amount of energy for most of our 

subjects. By selecting Bior3.9 the wavelet power 

spectrum was computed for CON and OR during 5 

levels of decomposition. The result indicated the RF 

muscle (muscle 3) is more active in the ascending 

phase than the descending phase for OR, while it is 

more active in descending phase for CON. 
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During dynamic contraction there is a progressive 

recruitment of faster MUs in OR group during 

ascending phase. EMG activity at higher frequencies 

correlated with higher contractile force, and with the 

progressively faster types of MU, which can be 

assumed to be recruited. Thus, during dynamic 

contraction the higher wavelet power in RF muscle of 

OR group demonstrates that faster MUs were active, 

while lower power in CON group related to the fact 

that slower MUs were active. 

This research work showed that the proposed 

algorithm can find a good solution for pre-screening 

problem. Nevertheless, some more improvements 

could be achieved. In this algorithm, only the three 

muscles of hip area were considered, this might be 

different if we consider all the muscles in the hip area. 

Another limitation is that the physical activity and age 

parameters of subjects were not available. Therefore, 

research should be conducted in a wider range, 

parameters like physical activity, age, and gender 

could be considered. 

Some future work from this thesis may consist of 

considering a larger sample size for more accurate 

and reliable values. The goal can be developing a 

software application, which can assist doctors and 

physicians to diagnose FAI faster and easier. 
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