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Abstract: This paper describes a machine learning approach to creation of computational model for predicting 30-day 

post hospital discharge mortality. The Computational Length of stay, Acuity, Comorbidities and Emergency 

visits (C-LACE) is an attempt to improve accuracy of popular LACE model frequently used in hospital setting. 

The model has been constructed and tested using MIMIC III data. The model accuracy (AUC) on testing data 

is 0.74. A simplified, user-oriented version of the model (Minimum C-LACE) based on 20-most important 

mortality indicators achieves practically identical accuracy to full C-LACE based on 308 variables. The focus 

of this paper is on detailed analysis of the models and their performance. The model is also available in the 

form of online calculator.  

1 INTRODUCTION 

Risk Adjusted Mortality Rates are important 

indicators for care outcome. They are used by 

administrators, Policy makers and organizations 

including government agencies, managed care 

companies and consumer groups (Inouye et al, 1998) 

to compare effectiveness of care among different 

facilities and utilize results in quality improvement 

efforts. Clinicians are mostly interested in accurate 

and valid mortality prediction models to use as tools 

for better planning of care, evaluation of medical 

effectiveness among treatment groups while 

controlling for patients’ baseline risk, and to help 

clinicians decide if a patient may benefit from 

intensive care units and when. From patient’s family 

perspective, discussing outcome of critically ill 

patients is always welcomed and appreciated. 

(Rocker et al, 2004) 

Many illness severity scoring systems that are 

primarily used to measure prognosis early in the 

course of critical illness had been widely used to 

calculate in-hospital mortality. The Simplified Acute 

Physiology Score (SAPS) and the Mortality 

Prediction Model (MPM) use data collected within 

one hour of ICU admission. Sequential Organ Failure 

Assessment (SOFA) scoring uses data obtained 24 

hours after admission and then every 48 hours. 

Logistic Organ Dysfunction Score (LODS) and 

Multiple Organ Dysfunction Score (MODS) also had 

been used to measures severity of illness at time of 

ICU admission. Acute Physiologic and Chronic 

Health Evaluation (APACHE) scoring system widely 

used to predict risk of in-hospital mortality among 

ICU patients. The score uses the worst physiologic 

values measured within 24 hours of admission to the 

ICU and requires a large number of clinical variables 

including age, diagnosis, some laboratory results, and 

other clinical variables and run the result on a 

computer generated logistic regression model to 

calculate risk of mortality. However, these scoring 

systems have shown limited accuracy predicting risk 

of mortality for individual patients. 

Most relevant to the presented work, the LACE 

index, which has been used to predict mortality within 

30 days of hospital discharge can use both primary 

and administrative data. The name LACE explains 

variables required: length of stay (“L”); acuity of the 

admission (“A”); comorbidity or diagnoses of the 

patient (uses Charlson comorbidity score) (“C”); and 

number of emergency department visits in the six 

months before admission (“E”). LACE index scoring 

ranges from 0 (2.0% expected risk) to 19 (43.7% 

expected risk) (Walraven et al, 2010). However, 

standard LACE didn’t show sufficient accuracy and 

it is not always possible to obtain data on the 4th item 

(”E”), as emergency room visits are not necessarily 

available. 
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A recent study added an extension of the LACE 

(LACE+) which uses the same 4 items of LACE as 

well as age and items unique to Canadian 

administrative databases (such as the Canadian 

Institute for Health Information Case Mix Groupings 

and number of hospital days awaiting alternate level 

of care arrangements). LACE+ had shown more 

accuracy in predicting death within 30 days of 

hospital discharge (c-statistic 0.77) than LACE index 

had shown (c-statistic 0.68) (Walraven et al, 2010). 

However, both instruments didn’t show sufficient 

accuracy, besides it is not always possible to obtain 

data on the 4th item of LACE (”E”), as emergency 

room visits are not necessarily recorded in available 

data. 

In the presented work we propose a computational 

alternative to LACE index, called C-LACE, 

constructed by application of machine learning 

methods to data containing information about length 

of stay, acuity of the admission, and comorbidities 

present during hospitalization. We decided not to use 

patients’ emergency visits due to possible problems 

with data availability when applying model. 

A number of other models based on machine 

learning and computational methods have been 

proposed to predict patient mortality. For example, 

(Levy et al., 2015) proposed a Multimorbidity Index 

tuned to predict mortality among nursing home 

patients. A number of methods have been created for 

prediction of mortality among specific disease groups 

such as pneumonia (Cooper et al., 1997), prostate 

cancer (Ngufor et al, 2014), or sepsis (Taylor et al., 

2016). 

The main contributions of the presented work are 

construction of C-LACE model that can be used to 

predict 30-day post-hospitalization mortality, and 

more importantly detailed analysis of the model and 

its behavior on real and simulated data. 

2 DATA ANALYSIS AND MODEL 

CONSTRUCTION 

2.1 MIMIC III Data 

In order to construct and test the C-LACE model, we 

obtained and analyzed Medical Information Mart for 

Intensive Care III (MIMIC III) data. The data is 

publically available to researchers who satisfy certain 

conditions (Goldberg et al, 2000). The MIMIC III 

data has been collected between 2001 and 2012 in the 

Beth Israel Deaconess Medical Center. It consists of 

over 58,000 hospital admissions for more than 40,000 

patients. It is structured into 26 tables organized as a 

relational database (Johnson et al, 2016). 

From the MIMIC III data, we selected only 

admissions for patients at least 65 years old and alive 

at hospital discharge. This results in selection of 

21,651 admissions. The distribution of selected 

attributes in the data is presented in Tables 1a and 1b. 

The tables also show likelihood ratios (RL) associated 

with each of the attributes for predicting mortality. 

Within the data, the majority of patients were treated 

in Medical Intensive Care Units (MICU), followed by 

Cardiac Surgery Recovery Units (SCRU), Cardiac 

Care Units (CCU), Surgical Intensive Care Units 

(SICU) and Trauma Surgical Intensive Care Units 

(TSICU). It can also be noted from the data that the 

majority of patients were hospitalized only once. 

In the presented work, instead of loading to 

relational database, the data has been analyzed within 

distributed computing infrastructure designed and 

implemented as a part of the larger research project 

conducted in GMU’s Machine Learning and 

Inference Laboratory. The data has been mapped to 

concepts within the Unified Medical Language 

System (UMLS) and integrated during analysis based 

on unique concept identifiers. The mapping process 

is a combination of manual labor-intensive 

identification of appropriate concepts which requires 

strong domain background of the person performing 

the mapping, with automated search for concepts 

between different terminologies in UMLS. The latter 

can be done when original data stored in database are 

coded using one of standard terminologies, but the 

final results still need to be verified by human experts. 

In fact, the presented construction of the model served 

as a testing application for the developed platform, 

whose description is out of scope of this paper 

(Wojtusiak et al., 2016). 

Table 1a: Distribution of values in the data. 

 

 

Died in 30 days Not died in 30 days 

N = 1425 N = 20226

Age (mean, SD) 79.33 years (7.26) 76.93 years (7.16)

Length of Stay

Hospital 13.73 days (11.33) 10.52 days (9.15)

CCU (mean, SD) 121.22 days (115.56)  19.79% 72.45 days (86.18)      19.02% 1.05

CSRU (mean, SD) 262.05 days (322.26)  10.74% 92.67 days (132.29)    27.16% 0.32

MICU (mean, SD) 106.10 days (122.87)  57.89% 85.32 days (119.07)    36.14% 2.43

SICU (mean, SD) 143.88 days (222.66)  17.54% 111.51 days (170.28)  16.64% 1.07

Admission Location

Emergency Room Admit 53.75% 39.22% 1.80

Clinic Referral/Premature 18.95% 19.93% 0.94

Phys Referral/Normal Deli 6.95% 21.73% 0.27

Transfer From Hosp/Extram 18.04% 18.39% 0.98

Transfer From Skilled Nur 1.75% 0.61% 2.89

Transfer From Other Healt 0.49% 0.10% 4.75

Info Not Available 0.07% 0.00% 14.20

Variable LR
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Table 1b: Distribution of values in the data, cont. 

 

2.2 Model Construction 

During the analysis, the data has been randomly split 

into training set (80%) and testing set (20%). The 

testing portion of the data has been set aside and the 

experimental work has been performed on the 

training set. Only final application of models has been 

done on the testing set. 

The data (diagnoses, ICU stays, lab tests, and 

medications) has been aggregated on the level of 

admission, i.e., one example in the final dataset 

corresponds to hospital admission. Because of 

specific implementation of machine learning library 

that was used, all data had to be coded as numeric 

attributes. Values of nominal attributes were coded as 

0, 1, 2, etc. 

- Basic demographic information (age, gender, race, 

etc.) for patient has been retrieved and coded. 

- Diagnoses present during hospitalization were 

coded in the original data as ICD-9-CM codes. They 

were aggregated to CCS categories that group 

together similar ICD codes while preserving their 

clinical meaning (AHRQ, 2016).  

- Lab values were coded as normal and abnormal. 

This coding was created as part of the original 

MIMIC dataset. Then, if at least one abnormal value 

for a test was detected, the overall value was coded as 

abnormal. This corresponds to taking the worst case 

and is consistent with several other approached to 

patient modeling. However, this is a significant 

oversimplification, since the values should be treated 

as a time series and patient trajectory analyzed 

accordingly Verduijn et al., 2007; Moskovitch and 

Shahar, 2015).   

- Drugs were coded with a single binary attribute 

indicating use of immunosuppressant drugs. The 

drugs were extracted using their LOINC codes. 

- Binary output attribute indicating mortality within 

30 days after discharge has been calculated using the 

dates of discharge and death. 

The data has been transformed into a single 

analytic file (or technically corresponding data 

structures) in order to be used by machine learning 

software.  

A number of supervised machine learning 

methods have been explored in order to arrive at most 

accurate and useful set of models. Among the tested 

methods were logistic regression, random forest, 

naïve Bayes, and support vector machines. 

Comparison of the methods is presented in section 

3.1, and actual descriptions of the methods is outside 

of the scope of this paper and can be found in the 

literature. 

2.3 Implementation 

The presented work has been implemented in Python 

3 programming language (Anaconda distribution 

Python 3.5.2). The main libraries used are Pandas (v. 

0.18.1) for data processing and sciencekit-learn 

(sklearn v. 0.17.1) for machine learning.  

All developed source code is open source and 

available on request. We are in the process of 

preparing release code that will be available on the 

project website. 

3 RESULTS 

3.1 Method Selection 

The first set of results concern selection of the most 

appropriate method that can handle the data. Table 2 

shows comparison of accuracy of six methods applied 

to training data and testing data. The methods have 

been executed with multiple parameters and top 

results are presented. 

Table 2: Comparison of Methods applied to complete 

dataset. 

Method AUC 

(training) 

AUC (testing) 

Logistic 0.73 0.663 

SVM 1.0 0.5 

Linear SVM 0.522 0.512 

Bayesian 0.514 0.512 

Decision Tree 1.0 0.543 

Random Forest 1.0 0.743 

The table clearly indicates that SVM and naïve 

Bayesian approaches are not performing well on the 

data. Decision tree is strongly overfit and useless on 

Died in 30 days Not died in 30 days 

N = 1425 N = 20226

Cardiac dysrhythmias 42.25% 36.73% 1.26

Acute and unspecified renal failure 37.05% 21.12% 2.20

Essential hypertension 39.16% 52.57% 0.58

Respiratory failure; insufficiency; arrest (adult) 33.40% 17.88% 2.30

Congestive heart failure; nonhypertensive 22.60% 16.28% 1.50

Pneumonia (except that caused by TB or STD) 25.40% 12.66% 2.35

Urinary tract infections 24.70% 16.20% 1.70

COPD 24.84% 17.75% 1.53

Diabetes mellitus without complication 25.47% 24.55% 1.05

Deficiency and other anemia 29.19% 22.87% 1.39

Fluid and electrolyte disorders 27.93% 20.52% 1.50

Disorders of lipid metabolism 26.95% 39.20% 0.57

Coronary atherosclerosis and other heart disease 18.67% 23.09% 0.76

Comorbidities LR
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testing data. Logistic regression preforms reasonably 

on both sets. Although its performance on testing data 

is below desired level. 

Random Forest (Breiman, 2001) has consistently 

shown the highest accuracy on testing data, despite 

clear overfit. Detailed analysis of the model presented 

in Section 4 shows that the model is stable and 

appropriate. Based on the result, the remainder of this 

paper will focus on using Random Forest as the 

prediction algorithm. It is a well-studied approach, 

previously used in healthcare (i.e., Gu et al., 2015), in 

which large number of shallow decision trees are 

generated based on subsets of data (both examples 

and attributes). In our case, the best performance was 

achieved when generating 1,000 trees. 

3.2 Use of Administrative and Clinical 
Data 

The primary dataset used to test the research question 

is MIMIC III (Johnson et al., 2016) which is part of 

PhysioNet project (Goldberger et al., 2000). The 

dataset includes a variety of patient and clinical 

information about hospitalizations, ICU, and patient 

history. MIMIC III comprises over 58,000 hospital 

admissions for 38,645 adults and 7,875 neonates. The 

data spans June 2001 - October 2012. The rationale 

of using MIMIC III in this project is that it includes 

much more complex and diverse information than 

typically found in claims data. One of our goals is to 

illustrate that learning models from such data using 

the described method leads to better results than those 

that can be obtained from claims only data. 

In the second set of experiments we tested if 

addition of clinical data (lab values) to administrative 

data (coded diagnoses) improves accuracy of 

prediction of 30-day mortality.  Inclusion of lab 

values is consistent with existing models such as 

APACHE II. 

The results indicate that addition of clinical data 

makes small difference in the accuracy. The AUC 

increases from 0.72 to 0.74. The ROC for combined 

administrative and clinical data is consistently above 

one for administrative data only, as shown in Figure 

1. Interestingly, when applied to Medical Intensive 

Care Unit (MICU) and Surgical Intensive Care Unit 

(SICU) patients only, the accuracy worsens. While 

contradictory to the fact that these are two distinct 

types of patients and separate modeling should 

improve accuracy, this discrepancy can be explained 

by the amount of data available and thus overfitting 

of models. 

 

 

Figure 1: Receiver-operator curves for four variants of C-

LACE model learned from administrative data only and 

administrative and clinical data. Curves for MICU and 

SICU patients are additionally presented. 

3.3 Minimum C-LACE Model 

Finally, we investigated possibility of reducing 

number of attributes needed to accurately predict 30-

day mortality. Such a reduction is important for 

simplification of the model and, as described in 

Section 4, allows for creation of online calculator in 

which data can be entered manually. 

All 308 attributes used in the full model were 

ranked based on their Mean Decrease Impurity 

calculated by the Random Forest model. It is a 

standard measure reported by RF after forests are 

built. We created a set of models while increasing 

number of attributes until the accuracy became 

comparable to one in full model. This resulted in 

selection of top 20 attributes listed in Table 3 along 

with their weights. The table also includes counts of 

patients and likelihood ratio as additional measure of 

attribute quality. 

Table 3: Selected top 20 attributes along with their 

importance. 

Feature Importance 

Age 0.0452 

HOSPITAL_LOS 0.0346 

MICU_LOS 0.0320 

CCU_LOS 0.0177 

CCS 106 0.0176 

CCS 157 0.0169 

CCS 98 0.0159 

ADMISSION_LOCATION 0.0157 

CCS 131 0.0152 

CCS 108 0.0145 

CCS 122 0.0133 

SICU_LOS 0.0130 

CCS 159 0.0129 

CCS 127 0.0127 

CCS 49 0.0127 

CSRU_LOS 0.0126 

CCS 59 0.0123 

CCS 55 0.0123 

CCS 53 0.0110 
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The AUC of the model based only on age was 

0.516 which is basically a random guess based on 

prior class distribution. Similarly, the AUC of the 

model based on Age and Length of Hospital Stay was 

0.576. Interestingly models based on 5 and 10 top 

attributes performed very close to each other with 

AUC values of 0.6961 and 0.697, respectively. 

Finally, the model based on 20 attributes performed 

only slightly worse than one based on all 308 

attributes (AUCs 0.734 and 0.743 respectively). 

Figure 2 below illustrates ROC for these models. 

 

Figure 2: Accuracy of models for different selection of 

attributes given as ROC. 

Additional analysis indicates that in fact predicted 

probabilities from both models are very close. When 

applied to training data Mean Squared Error (MSE) 

between probabilities of 30-day mortality calculated 

between both models was 0.000439 as illustrated in 

scatterplot in Figure 3. 

 

Figure 3: Comparison of probabilities of C-LACE and 

Minimum C-LACE on training data. 

Similarly, when compared on testing data the 

MSE between the two models was 0.00335 as shown 

in Figure 4. While there is a slight difference in the 

predicted probabilities, the data are clearly clustered 

into two groups that correspond to low and high risks 

of mortality. Assignment to these groups is virtually 

identical regardless of models used. 

 

 

Figure 4: Comparison of probabilities of C-LACE and 

Minimum C-LACE on testing data. 

The above analysis indicates that the two models 

are almost identical in terms of predictions, thus the 

simpler of the models should be used. 

4 MODEL ANALYSIS 

In addition to standard testing of the created model 

presented in the previous section, this section 

discusses a more detailed analysis of the created 

Minimum C-LACE model. The goal is to understand 

the model’s behavior and its sensitivity to changes in 

input attributes. 

The first set of experiments was to investigate 

how probabilities of 30-day mortality depend on 

changes in single variables. This is particularly 

important for continuous variables for which model 

should be “smooth” and not produce sudden changes 

in output probabilities. This property can be 

investigated be applying the model to large simulated 

data and comparing output to distribution of values in 

real dataset.  

First created simulated dataset was completely 

random, that is, each input attribute was assigned 

uniformly a random value from list of allowed values 

for that attribute with exception for one attribute 

being controlled. For example, generation of 

simulated data to test age attribute followed the 

procedure: 

for a = min(age) to max(age): 

 Generate 1,000 random examples: 

 age = a 

 for each attribute x other than age: 

  x = random(domain(x)) 

After simulated dataset is generated, C-LACE 

model is applied to predict mortality probabilities. 

These probabilities can then be investigated to check 

model’s behavior based on changes in age. 
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Obviously, accuracy measures are not applicable to 

this simulated data since no true answer is known. 

The result is shown in Figure 5, which also includes 

distribution of average values depending on age in 

training, testing and complete data. 

One can immediately note that the probabilities 

based on “completely random” simulated data are 

much higher than those in real data. This is correct, 

because a completely randomly generated patient is 

much “sicker” than real patients due to the way data 

are generated. The data on the plot shows that the 

model is smooth in regard to changes of probability 

with age. An interesting fact about model is that 

probabilities are somewhat higher for the lowest 

allowed value of age, namely 65. 

 

Figure 5: Distribution of predicted probability of 30-day 

mortality based on patient age for completely random 

simulated data compared with real data. 

The second (averaged training) method used to 

generate simulated data started with original dataset 

used for training C-LACE model and multiplied the 

data by copying all examples for each fixed age and 

applying low probability random distortion to all 

other attributes. 

for a = min(age) to max(age): 

 For each example in training data: 

  Copy the example 

  age = a 

  for each attribute x other than age: 

   distort x 

One can notice that probabilities of mortality in 

the simulated data are no longer higher than those of 

real data. This is due to the fact that all attributes other 

than age are distributed as in the original dataset 

(Figure 6). In the plot, one can immediately see that 

there is a similar “jump” of probability at the age of 

65 indicating possible instability of model there. 

 

 

Figure 6: Distribution of predicted probability of 30-day 

mortality based on patient age for averaged training 

simulated data compared with real data. 

 

Figure 7: Distribution of predicted probability of 30-day 

mortality based on hospital length of stay for completely 

random simulated data compared with averaged training 

data and actual data. 

The same methodology for creating completely 

random and averaged training simulated data has 

been applied to other attributes in the data with 

similar results. One interesting result was obtained 

when simulating data for fixed hospital length of stay 

(LOS) shown in Figure 7. When applied to 

completely random data, LOS has absolutely no 

effect on predicted probability (straight line on the 

plot). Interestingly, on simulated averaged training 

data, LOS shows clear trend. One possible 

explanation of this fact is that within the model LOS 

is strongly confounded with other attributes. The 

visible trend is in fact one of other attributes 

interacting with LOS to affect predicted mortality 

indirectly. Finally, a number of colored randomly 

looking lines in Figure 7 show that in the original data 

there is no clear pattern of how LOS affects predicted 

30-day mortality. 

The fact that when working with simulated data 

probabilities output by the model are smooth, 
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confirms the hypothesis that the constructed C-LACE 

model is stable. 

4.1 Analysis of Errors 

An interesting and important question concerns 

finding cases for which the model makes mistakes. If 

successful, such analysis may allow for predicting 

when C-LACE is more likely to make a mistake, and 

thus preventing it. 

As shown in Figures 8 and 9, there is basically no 

pattern on when the model makes mistakes based on 

distribution of age and length of hospital stay. In both 

figures, green dots representing patients who died 

should be clustered towards the top, and red ones 

representing alive patients towards the bottom. The 

distribution errors in the model (how far green dots 

are from the top) is practically uniform with respect 

to age. While the distribution of hospital length of 

stay is clearly positively skewed, there seems to be no 

pattern in when errors are made (Figure 9).  

 

Figure 8: Predicted probabilities of 30-day mortality for 

training data in relation to patient age. Color of dots 

represents true class. 

 

Figure 9: Predicted probabilities of 30-day mortality for 

training data in relation to hospital length of stay. Color of 

dots represents true class. 

Secondary model was learned from data to predict 

when C-LACE is likely to misclassify positive 

mortality examples. Specifically, it was built from 

data labeled as correct classification/misclassification 

of testing data used to evaluate C-LACE.  The 

secondary model has been learned using logistic 

regression. Following the standard procedure the 

misclassification data was split into training (80%) 

and testing (20%). When tested, the model showed 

very high promise of predicting when C-LACE is 

likely to make mistakes. It achieved AUC 0.867 on 

misclassification training and AUC 0.858 on 

misclassification testing data. 

The final set of performed tests investigated 

optimal classification threshold based on precision 

and recall. Using C-LACE it is possible to achieve 

any value or recall, precision in general stays very 

low as shown in Figure 10. The figure indicates that 

selection of classification threshold for C-LACE 

around 0.1 may be the most reasonable. More detailed 

cost-benefit analysis of false positives and false 

negatives of the model is needed to arrive at final 

threshold applicable for final use. 

 

Figure 10: Analysis of Precision and Recall of the 

Minimum C-LACE model on testing data. 

5 ONLINE CALCULATOR 

In order for other researchers to test the developed 

mortality prediction models, an online calculator 

which includes Minimum and Full C-LACE models 

was created. The minimum model is available 

through a web form that can be used by entering data, 

as well as Application Programing Interface (API) for 

automated use. The full model is available only 

through an API, since it is unlikely for anyone to 

answer 308 questions on a web form. At this stage, 

the online calculator is intended only for research 

purposes and not for clinical use, since additional 
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validation is needed. The online calculator is 

available at the website http://hi.gmu.edu/cgi-

bin/calculatros/c-lace/c-lace.cgi. 

 

Figure 11: Design of the simple form used to enter patient 

and hospitalization information. 

Simple online form (Figure 11) is used to enter 

patient and hospitalization characteristics. The entry 

is split into sections related to length of stay in 

hospital and specific ICUs, age, admission location 

and selected conditions most predictive of 30-day 

mortality. After submitting the form, user is provided 

with estimated probability of 30-day mortality. 

Because of the way the data was analyzed, the 

calculator is intended to be used at the time of hospital 

discharge.  

It is important to note that within the scope of this 

project it was impossible to completely test the 

calculator and in particular assess its impact on 

patient care. Thus, the site contains a disclaimer that 

the calculator is intended to be used only for research 

purposes.  

6 CONCLUSIONS 

This paper presented construction and analysis of C-

LACE method for predicting probability of 30-day 

post-hospitalization mortality. The presented solution 

based on application of Random Forest algorithm 

gives accuracy comparable to other methods 

available in the literature and superior to accuracy of 

the original LACE index. It shows that Minimum C-

LACE, a 20-attributes version of the presented 

method, achieves the same results as one that uses 

308 attributes. 

Detailed analysis of the constructed model shows 

that the model is not sensitive to changes in values of 

key variables and, in fact, smoothens the data (the 

most visible for length of stay). While the accuracy of 

the model precludes its use completely 

independently, it is a reasonable improvement over 

popular LACE method. The model can be used to 

inform clinicians when performing patient risk 

assessment. Analysis has indicated that it may be 

possible to automatically assess classification errors 

from the model, though additional work is needed in 

this area. 

The current continuation of research proceeds in 

two main directions:  

- Possible improvement of the model accuracy by 

using additional clinical variables. There is 

significant work that remains to be done in the area 

of incorporating detailed clinical information and 

patient notes with specific focus on temporal aspect 

of the data. In the presented Minimum C-LACE 

model, no clinical attributes were included, which 

may be result of oversimplification of how the 

values were coded (see Section 2.2). 

- Analysis of how the model should be presented to 

end-users so they understand predicted 

probabilities and model limitations. The latter is 

particularly important to make the presented online 

calculator useful. 
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