
Distributing Scenario-based Models: A Replicate-and-Project Approach

Shlomi Steinberg1, Joel Greenyer2, Daniel Gritzner2, David Harel1, Guy Katz3 and Assaf Marron1

1The Weizmann Institute of Science, Rehovot, Israel
2Leibniz Universität Hannover, Hannover, Germany

3Stanford University, Stanford, U.S.A.

Keywords: Software Engineering, Scenario-based Modeling, Concurrency, Distributed Systems.

Abstract: In recent years, scenario-based modeling has been proposed to help mitigate some of the underlying difficul-
ties in modeling complex reactive systems, by allowing modelers to specify system behavior in a way that is
intuitive and directly executable. This modeling approach simplifies the specification of systems that include
events occurring in distinct system components. However, when these system components are physically dis-
tributed, executing the scenario-based model requires inter-component coordination that may negatively affect
system performance or robustness. We describe a technique that aims to reduce the amount of joint event-
selection decisions that require coordination and synchronization among distributed system components. The
technique calls for replicating the entire scenario-based executable specification in each of the components,
and then transforming it in a component-specific manner that induces the required differences in execution
while reducing synchronization requirements. In addition to advantages in streamlining design and improving
performance, our approach captures the fact that in certain “smart” distributed systems it is often required that
components know what rules govern the behavior of other components. Our evaluation of the technique shows
promising results.

1 INTRODUCTION

With modern reactive systems becoming both perva-
sive and highly complex, modeling them is becoming
increasingly difficult. Modelers are forced to spend
ever-larger amounts of time and effort in order to rec-
oncile two goals: (1) accurately describe complex
real-world systems and phenomena; and (2) do so us-
ing models that are simple, comprehensible and intu-
itive to humans. These two goals are often conflict-
ing: it is difficult to describe the properties of such
systems accurately while at the same time avoiding
clutter, which makes it harder for humans to compre-
hend the resulting models.

Over the recent two decades, an approach termed
Scenario-Based Modeling (Damm and Harel, 2001)
has emerged as an attempt at tackling these difficul-
ties. The idea at its core is to model systems in
a way that is more intuitive and understandable to
humans — by defining scenarios that describe de-
sirable or undesirable system behavior — and then
to automatically combine these scenarios in a way
that produces a cohesive, global model. Appropriate
scenario-based approaches and tools have executable

semantics, thus helping to streamline the deployment
of scenario-based models in the real world.

A scenario-based approach has been claimed to
be more intuitive for humans to understand (see,
e.g., (Gordon et al., 2012)). It allows the modeler to
specify different but possibly interrelated behavioral
aspects as separate scenarios, reducing the inherent
complexities of the modeling process. However, by
default and as explained later, a scenario-based exe-
cution requires that all scenarios synchronize at every
step for the purpose of joint event selection. When ex-
ecuting scenario-based specifications in a distributed
architecture, inter-scenario synchronization induces
inter-component synchronization, which may be un-
desirable in real-world systems, where communica-
tion is often costly, slow, or unreliable. This difficulty
constitutes a serious barrier when considering the use
of scenario-based modeling in a real-world setting.

We seek to address this problem by proposing an
automated technique for the transformation of clas-
sical, highly synchronous scenario-based models into
equivalent models with a greatly reduced level of syn-
chronization. The basis of our approach is a rather
straightforward replicate-and-project technique but

182
Steinberg S., Greenyer J., Gritzner D., Harel D., Katz G. and Marron A.
Distributing Scenario-based Models: A Replicate-and-Project Approach.
DOI: 10.5220/0006271301820195
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 182-195
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



with some subtle facets: we replicate the full set of
scenarios in all the distributed components but project
them in a component-specific fashion, so that each
component is made responsible only for the actions
that fall within its the local scope. Other, external
actions are assumed to be performed by projections
running on other components.

In order to make the replicated-and-projected sce-
narios behave the same as their non-distributed ver-
sion, the distributed components broadcast the local
actions they perform to all other components. At
times a situation arises that forces some of the dis-
tributed components to mutually agree on the next ac-
tion to perform. This might happen either due to an
exclusive choice among multiple enabled actions (i.e.,
events), or due to communication latency that might
result in different orders of broadcast actions as ob-
served by different components. An important part of
the work in this paper is dedicated to classifying these
cases, presenting them when they arise, and propos-
ing practical approaches to resolving them.

This process is handled automatically by our dis-
tribution algorithm and infrastructure, and, as we dis-
cuss and demonstrate later, it aims to generate a dis-
tributed model that has as few synchronization points
as possible.

The motivation behind the approach is to retain the
modeler’s ability to use classical scenario-based mod-
eling, with its associated advantages, but to be able to
then transform the model into a version that is more
amenable to distribution and deployment in the real
world. We prove that, under certain restrictions, our
proposed transformation preserves the behavior of the
original model. This gives rise to a methodology for
developing distributed scenario-based models, where
one models a distributed system as if it were central-
ized, and the model is then automatically adjusted to
more accurately simulate (or even run in) its final set-
ting.

Automatic distribution of general models (i.e., not
just scenario-based) or synthesizing distributed mod-
els from specifications have been long-standing goals
of the software modeling and engineering community.
Specifically, distributed synthesis is known to be un-
decidable in some cases (Stefanescu et al., 2003). We
contribute to this effort by studying the problem in the
context of scenario-based modeling, and leveraging
some of the paradigm’s properties of naturalness and
relative simplicity. However, difficulties nevertheless
arise. We classify and describe them, and explain how
they can still be addressed. Our experimental results
indicate that the technique holds much potential for
becoming practical.

The rest of the paper is organized as follows.

In Section 2 we provide a brief introduction to the
scenario-based approach. In Section 3 we introduce
the notion of a distributed scenario-based model, and
show how it can be automatically generated from
a non-distributed model by our replicate-and-project
technique. The correctness of this transformation is
proved in Appendix 8. Section 4 describes how the
approach can be applied when different components
in the model operate on different time scales. An
example implementation and its evaluation appear in
Section 5, followed by a discussion in Section 6 of
our ongoing and planned future work. In section 7,
we discuss related work that has been carried out on
automatic distribution, both in the general setting and
in the context of scenario-based modeling. We con-
clude in Section 8.

2 BACKGROUND:
SCENARIO-BASED MODELING

Scenario-based modeling was first presented via the
Live Sequence Charts (LSC) formalism (Damm and
Harel, 2001; Harel and Marelly, 2003a). The ap-
proach, aimed at developing executable models of re-
active systems, shifts the focus from describing indi-
vidual objects of the system into describing individ-
ual behaviors of the system. The basic building block
in this approach is the scenario: an artifact that de-
scribes a single behavior of the system, possibly in-
volving multiple different components thereof. Sce-
narios can describe either desirable behaviors of the
system or undesirable ones. A set of user-defined sce-
narios can then be interwoven into one cohesive, po-
tentially complex, system behavior.

Several facets of scenario-based modeling have
been discussed and handled in different ways: sce-
narios can be represented graphically, as in the
original LSC approach, or textually (Harel et al.,
2012b; Greenyer et al., 2016a); scenario-based
models can be executed by naı̈ve play-out (Harel
and Marelly, 2003b), by smart playout with look-
ahead (Harel et al., 2002) or via controller synthesis
(see, e.g., (Harel and Segall, 2011; Greenyer et al.,
2016a)). The modeling process can be augmented by
a variety of automated verification, synthesis and re-
pair tools (Harel et al., 2012a; Harel et al., 2013b).
However, research has shown that the basic princi-
ples at the core of the approach, shared by all fla-
vors, are naturalness and incrementality — in the
sense that scenario-based modeling is easy to learn
and understand, and that it facilitates the incremen-
tal development of complex models (Gordon et al.,
2012; Alexandron et al., 2014). These properties stem

Distributing Scenario-based Models: A Replicate-and-Project Approach

183



from the fact that modeling is done in a way similar to
the way humans explain complex phenomena to each
other, detailing the various steps and behaviors one at
a time.

For the remainder of the paper, we focus on a par-
ticularly simple variant of scenario-based modeling,
called behavioral programming (BP) (Harel et al.,
2012b). Despite its simplicity, BP has been success-
fully used in developing medium scale projects (Harel
and Katz, 2014; Harel et al., 2016), and is also
known to be particularly amenable to automatic anal-
ysis tools (Harel et al., 2015c). These properties ren-
der BP a good candidate for demonstrating our ap-
proach. The rest of this section is dedicated to demon-
strating and formally defining BP.

In BP, a model is a set of scenarios, and an execu-
tion is a sequence of points, in which all the scenar-
ios synchronize. At every behavioral-synchronization
point (abbreviated bSync) each scenario pauses and
declares events that it requests and events that it
blocks. Intuitively, these two sets encode desirable
system behaviors (requested events) and undesirable
ones (blocked events). Scenarios can also declare
events that they passively wait-for — stating that they
wish to be notified if and when these events occur.
The scenarios do not communicate their event decla-
rations directly to each other; rather, all event declara-
tions are collected by a central event selection mech-
anism (ESM). Then, at every synchronization point
during execution, the ESM selects (triggers) an event
that is requested by some scenario and not blocked by
any scenario. Every scenario that requested or waited
for the triggered event is then informed, and can up-
date its internal state, proceeding to its next synchro-
nization point. Fig. 1 (borrowed from (Harel et al.,
2016)) demonstrates a simple behavioral model.

Formally, BP’s semantics are defined as follows.
A scenario, also referred to in the literature as a be-
havior thread (abbreviated b-thread), is defined as a
tuple

BT = 〈Q,q0,δ,R,B〉

and with respect to a global set of events Σ. The com-
ponents of the tuple are: a set of states Q represent-
ing synchronization points; an initial state q0 ∈ Q; a
deterministic transition function δ : Q× Σ→ Q that
specifies how the thread changes states in response
to the triggering of events; and, two labeling func-
tions, R : Q→ P (Σ) and B : Q→ P (Σ), that specify
the events that the thread requests (R) and blocks (B)
in a given synchronization point.

A behavioral model M is defined as a collection of
b-threads

M = {BT 1, . . . ,BT n},

wait for
WATERLOW

request
ADDHOT

request
ADDHOT

request
ADDHOT

ADDHOTWATER

wait for
WATERLOW

request
ADDCOLD

request
ADDCOLD

request
ADDCOLD

ADDCOLDWATER

wait for
ADDHOT

while
blocking

ADDCOLD

wait for
ADDCOLD

while
blocking
ADDHOT

STABILITY

· · ·
WATERLOW

ADDHOT
ADDCOLD
ADDHOT

ADDCOLD
ADDHOT

ADDCOLD
· · ·

EVENT LOG

Figure 1: Incrementally modeling a controller for the wa-
ter level in a tub. The tub has hot and cold water sources,
and either may be turned on in order to increase/reduce
the water temperature. Each scenario is given as a tran-
sition system, where the nodes represent synchronization
points. The scenario ADDHOTWATER repeatedly waits for
WATERLOW events and requests three times the event AD-
DHOT. Scenario ADDCOLDWATER performs a similar ac-
tion with the event ADDCOLD, capturing a separate re-
quirement, which was introduced when adding three wa-
ter quantities for every sensor reading proved to be insuffi-
cient. When a model with scenarios ADDHOTWATER and
ADDCOLDWATER is executed, the three ADDHOT events
and three ADDCOLD events may be triggered in any order.
When a new requirement is introduced, to the effect that
water temperature be kept stable, the scenario STABILITY
is added, enforcing the interleaving of ADDHOT and ADD-
COLD events by using event blocking. The execution trace
of the resulting model is depicted in the event log.

all of them with respect to the same event set Σ. De-
noting the individual b-threads as

BT i = 〈Qi,qi
0,δ

i,Ri,Bi〉,
an execution of model M starts at the initial state
〈q1

0, . . . ,q
n
0〉. Then, at every state 〈q1, . . . ,qn〉, the

model progresses to the next state 〈q̄1, . . . , q̄n〉 by:
1. selecting an event e ∈ Σ that is enabled, i.e. re-

quested by at least one b-thread and blocked by
none:

e ∈
(

n⋃

i=1

Ri(qi)

)
\
(

n⋃

i=1

Bi(qi)

)

2. triggering event e and advancing the individual b-
threads according to their transition systems:

∀i, q̄i = δi(qi,e)

For reactive systems, executions are often infinite —
although BP can also be used to model systems with
finite executions.

The BP definitions above are abstract, and make
it easier to reason about behavioral models. How-
ever, for practical purposes, the BP modeling princi-
ples have been integrated into a variety of high-level
languages such as Java, C++, Erlang and Javascript
(see the BP website at http://www.b-prog.org/).
These frameworks allow engineers to integrate re-
active scenarios into their favorite programming or

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

184



modeling environments. Further, the same principles
as underly BP, play a significant role in several pop-
ular modeling frameworks such as publish-subscribe
architectures (Eugster et al., 2003) and supervisory
control (Ramadge and Wonham, 1987).

3 DISTRIBUTION VIA
REPLICATE-AND-PROJECT

The execution of a classical BP model, as described
in Section 2, is highly synchronized and central-
ized by nature: at every step along the execution,
the ESM gathers the sets of requested and blocked
events from each individual b-thread, selects an en-
abled event, and then broadcasts it back to the b-
threads. While this underlies some of the benefits
of BP (Harel et al., 2012b), it also results in limited
scalability and distributability. Excessive synchro-
nization tends to add unnecessary complexity, impact
performance, and create inter-component dependen-
cies which reduce robustness. For example, having a
scenario wait for an event that is supposed to be re-
quested by a scenario running on a separate, failed
component might result in a deadlock. Furthermore,
synchronization forces b-threads to execute in lock-
step, which can be undesirable if they are to model
phenomena that occur at different timescales.

In this section we propose a distribution process
that transforms a centralized (undistributed) behav-
ioral model into a distributed one: it generates mul-
tiple component models — subsets of the original,
centralized behavioral model — each designed to be
run on a separate machine. When run simultaneously,
however, these component models mimic the behav-
ior of the original system, but require much less syn-
chronization. Below we elaborate on the abstract con-
cepts and formal definitions of the proposed process.
An example showing how these concepts apply in the
setting of a particular distributed application appears
in Section 5.

Each of the component models produced by our
distribution process is a behavioral model in its own
right, intended to be responsible for a certain subset of
the events of the original model, which are uniquely
owned and controlled by it — meaning that no other
component can request or block them. The compo-
nent models are intended to be executed in an asyn-
chronous manner in a distributed system, resulting in
a natural, robust and simple extension of the scenario-
based paradigm.

The main difficulty in this approach is to ensure
that the distributed components behave in the same
way as the original model although they are not syn-

chronized at every step. In order to resolve this diffi-
culty, the crux of our distribution process is the repli-
cation of the entire set of original scenarios in each of
the distributed components, granting the components
the ability to follow what other components are do-
ing, but avoiding synchronization when possible. By
default, every component runs a local ESM, which
performs local event selection without synchroniz-
ing with other components. However, at every syn-
chronization point where multiple components have
to agree on the particular event to select, the ESMs of
these components do synchronize.

The communication between components is asyn-
chronous, and they notify each other about chosen
events as they progress through the scenarios. Keep-
ing track of each scenario state is simply a matter of
listening to incoming broadcasts and updating the cur-
rent state.

The classical problem of multicasting or broad-
casting a message efficiently in a distributed network
is well studied (e.g. (Miller and Poellabauer, 2009)
presents an approach for minimum-energy-broadcasts
in distributed networks with limited resources and un-
known topology), however it is beyond the scope of
this paper. For simplicity we assume that the cost
of those boradcasts and bookkeeping is small. Note
that even in systems with a large number of compo-
nents and scenarios, a component often needs to keep
track of only a small subset of the other components;
for example, an autonomous car considers other cars
only when they are in its immediate vicinity, and does
not keep track of all vehicles in the world. Still, this
dynamic registering and unregistering of components
is also beyond the scope of this paper and is left for
future work.

In the remainder of the section we formalize these
notions and the distribution process itself.

3.1 Event Components

Let M denote a behavioral model over event set Σ. An
event component E is a subset of the global event set,
E ⊆ Σ. An event e ∈ E is said to be a local event of
E; otherwise, if e /∈ E then e is external to E.

A collection of event components {E1, . . . ,Ek} is
an event separation of Σ if

⋃k
i=1 Ei = Σ. An event

separation is strict if it also forms a partition of Σ:

∀ i, j, 1≤ i 6= j ≤ k =⇒ Ei∩E j = /0.
In the remainder of the paper we will only deal with
strict event separations and assume that they are pro-
vided by the user to reflect the physical layout of the
system and the responsibility of each distributed com-
ponent. Automated ways of generating an event sep-
aration are discussed in section 7.

Distributing Scenario-based Models: A Replicate-and-Project Approach

185



3.2 Component Models

Given a behavioral model M = {BT 1, . . . ,BT n}, each
event component E gives rise to a component model
C, in the following way. C is the behavioral model
C = {BT 1

E , . . . ,BT n
E }, obtained by projecting each

of the original b-threads along event component E,
denoted C = project(M,E). Formally, if BT i =
〈Qi,qi

0,δ
i,Ri,Bi〉 then

BT i
E = 〈Qi,qi

0,δ
i,Ri

E ,B
i
E〉

The state set Qi, initial state qi
0 and transition function

δi are unchanged; whereas the labeling functions Ri

and Bi are changed into:

Ri
E(q) = Ri(q)∩E

Bi
E(q) = Bi(q)∩E

Intuitively, the projected b-threads are modified to
only request and block events that are in E; but be-
cause δi is unchanged they continue to respond in
the same way to the triggering of all events, includ-
ing those not in E. Consequently, requested external
events effectively become waited-for events.

Now, given a strict event separation {E1, . . . ,Ek},
our distribution process entails projecting the model
M along each of the event components, producing a
set of component models {C1, . . . ,Ck} such that

∀ 1≤ i≤ k, Ci = project(M,Ei)

By treating each component Ci as a separate be-
havioral model that performs event selection locally,
the components can be run independently and in a dis-
tributed manner. The following useful corollary is a
direct conclusion that arises from the definition of the
distribution process.

Corollary 1. An event e ∈ Σ can be selected by one
component only.

Proof. {E1, . . . ,Ek} is a strict event separation, hence
there is only one value of i such that e ∈ Ei. By def-
inition only Ci can request e. Therefore only Ci can
select e.

In order to keep the execution consistent between
components, occasionally two or more components
may need to synchronize, as we discuss in the next
section.

3.3 Executing Component Models

The following definition is useful in identifying the
points during the execution in which multiple compo-
nents need to synchronize:

Definition 1. Observe a component model C j =
project(M,E j), a b-thread BT i and some state q ∈Qi.
We say that BT i is controlled by C j at state q if one or
more of E j’s local events is requested or waited-for in
q; i.e., if ∃e ∈ E j such that δi(q,e) 6= q or e ∈ Ri(q).

Whenever a scenario reaches a state that is con-
trolled by multiple components, these components
synchronize with each other and together select an
event for triggering, while the other components only
track the progress passively and need not synchro-
nize. We refer to these situations, where at some state
a single b-thread is controlled by multiple compo-
nents, as inter-component decision points. For exam-
ple, an inter-component decision point occurs when
two robot-controlled cars (each operated by a sepa-
rate component) arrive at an intersection exactly at
the same time and attempt to decide on which car
should yield to the other. Because the scenario con-
trolling the intersection waits for movement events
that are controlled by both components, the two car
components are forced to synchronize, mutually agree
on a single triggered event, and then broadcast it —
informing all interested threads, in all components,
about the selection.

In order to support this sort of distributed execu-
tion, each of the component models runs an ESM that
is slightly different from the one described in Sec-
tion 2. Specifically, the ESM from Section 2 is a tool
for picking one event for triggering from among the
set of all enabled events. In contrast, each of our dis-
tributed ESMs is capable of broadcasting events that
were triggered locally by “its” component to all other
model components, and, dually, to process external
events broadcast by the ESMs of other components.

The distributed version of the ESM operates as
follows:

• When a local event is triggered by a component’s
ESM, that event is broadcast to all other running
components.

• When a component’s ESM receives an event e that
was broadcast by another component’s ESM, e is
added to a dedicated event queue within the ESM.

• When choosing an event for triggering, an ESM
first checks its event queue for external events.
If the queue is not empty, it pops an event from
the queue and declares it to be the triggered event
to its local b-threads. If the queue has multi-
ple stored events, this process repeats until the
queue becomes empty. Once the queue is empty
the ESM resumes normal event selection, as de-
scribed in Section 2: it selects a local event that is
requested and not blocked.

• Inter-component synchronizations: Whenever a

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

186



b-thread arrives at a state that requires synchro-
nization with one or more other components, the
ESMs of these threads synchronize and mutually
agree upon a triggered event. This event is then
broadcast to all ESMs.

Event selection is performed precisely as in the case
of a centralized ESM, by choosing a requested but not
blocked event.

The actual inter-component decision between
multiple ESMs can be performed, e.g., via a dis-
tributed leader election protocol (Ghosh and Gupta,
1996). Once a specific ESM has been selected as the
leader, it chooses the next triggered event based on
the requested and blocked events in the current state.

We observe that deadlocks need to be treated dif-
ferently in the distributed case than in the centralized
case. According to the semantics given in Section 2,
the system deadlocks if the ESM determines at some
point that there all requested events are blocked, so
that none can be selected. However, in the distributed
case this is no longer the case if one of the local b-
threads has an external waited-for event, since there
is yet hope that another component might broadcast
this event later. Thus, the component is stalled until
such a broadcast arrives.

3.4 Equivalence to Centralized
Executions

Given a centralized behavioral model M over an
event set Σ and a strict event separation {E1, . . . ,Ek},
our distribution process produces a set of component
models {C1, . . . ,Ck}. These components have the fol-
lowing property:
Lemma 1. Assuming that communication between
component models is instantaneous, the set of all pos-
sible executions (the language) of M is identical to the
set of all possible executions produced by the compo-
nent models {C1, . . . ,Ck} when run jointly in a dis-
tributed fashion.

This lemma, which is the main proven result of
this work, is of practical importance, as it implies that
the distribution process will not cause the model to
behave in unexpected ways (note that this lemma is
about the collection of all runs, and does not claim
that if the distributed and centralized models are run
side-by-side, they will produce the same run). In other
words, one can study and analyze the centralized ver-
sion of the model (which is far easier for humans
to grasp and comprehend, and for tools to analyze)
and the conclusions will apply to the distributed set-
ting too. We will discuss some of the implications of
this result in Section 6. The lemma is proved in Ap-
pendix 8.

At first glance, the requirement that communica-
tion be instantaneous might seem unrealistic. How-
ever, in practice we make no such assumptions and
our technique can also be used where communication
is delayed due to various reasons, as discussed in the
next section.

3.5 Dealing with Latency

Once we relax our assumption that communication la-
tency and external-event processing is instantaneous,
the distributed system’s behavior may diverge from
that of the centralized case in a number of ways.

1. Inter-component Decisions: In section 3.3 we
described how multiple components may need to
synchronize in order to proceed in a state that
they all control. As a simple example, consider
a model with a single b-thread and a single syn-
chronization point, in which two events, a and b,
are simultaneously requested. Clearly, executing
this model will result in either a or b getting trig-
gered.
Now, suppose that we distribute this program with
the strict event separation {E1 = {a},E2 = {b}}.
The projection process results in two component
models, C1 and C2. In C1 the projected single
thread will request a while waiting for b, and in
C2 the projected thread will request b while wait-
ing for a.
In a no-latency situation, this is acceptable: no
matter which component performs event selection
first, it will notify the second component immedi-
ately, resulting in either a or b getting triggered,
but not both. However, if communication is not
immediate, it is possible that component C1 will
trigger a and component C2 will trigger b, result-
ing in a behavior that the original model did not
have.
As each component knows at each state which
components control the b-thread, the solution
is simply to synchronize with them. Inter-
component decisions are handled entirely by our
distribution framework as outlined in Section 3.3
above.

2. Maintaining Order: It is possible for broad-
cast events to arrive at different components in
different orders, resulting in these components
having different views of the execution. Conse-
quently, projections of the same b-thread within
these components may be in different states. As
with inter-component decisions, this would create
inconsistent behavior.
Observe that this situation can only arise at system

Distributing Scenario-based Models: A Replicate-and-Project Approach

187



states where event-selection decisions that differ
across components result in transitions to differ-
ent successor states. Detecting these instances can
be performed offline by a model checker, or by an
online look-ahead mechanism. Once the poten-
tially problematic states are identified, the prob-
lem can be circumvented by having the distributed
components treat them as inter-component deci-
sion points, and perform inter-component syn-
chronization. Note that we assume that between
any two components, communications arrive or-
dered correctly. This can be guaranteed by TCP
or PGM, but not by protocols that allow out-of-
order delivery, such as UDP.
Another proposed solution is to synchronize the
clocks of the different components, and add a
time-stamp to each selected event. By delaying
the announcement of received external events and
selected local events to a component’s b-threads,
the ESM can interweave the events in the correct
order.

3. Accommodating Delays: Consider the following
example: a robot-driven car is approaching an in-
tersection, and in order to avoid collisions it must
communicate with other cars. However, if the
communication happens just before entering the
intersection, any delay or missed messages could
cause an accident.
In order to avoid this kind of issues, programs de-
signed for distribution should employ design pat-
terns and methods that take a realistic commu-
nication delay into account. E.g., checking for
other cars early, while approaching the intersec-
tion, rather than, say, relying on scenarios to block
all events of cars entering the intersection follow-
ing the occurrence of an event reporting that one
car already entered that intersection. We feel that
this is a valid assumption in designing distributed
systems and does not contradict or make redun-
dant the advantages of BP.

4 PER-COMPONENT
TIMESCALES

As explained earlier, in a centralized behavioral
model, all b-threads must synchronize in order for
the ESM to announce the selected event. The b-
thread that takes the longest to reach its synchroniza-
tion point (e.g., because it performs slow local cal-
culations or writes to a file) forces the rest of the b-
threads to wait until it synchronizes. This lockstep
execution thus results in the slowest b-thread dictat-

ing the timescale for the whole system. This is a com-
mon issue in behavioral models that involve multiple
scenarios operating on different timescales (see, e.g.,
(Harel et al., 2015a)), and it also applies to our dis-
tributed variant of BP: for example, a slower com-
ponent might experience delays before broadcasting
events that a faster component depends on, forcing the
latter to wait. Furthermore, external events can “pile
up”, increasing the processing time of future event se-
lections and delaying the selection of potentially cru-
cial events.

In this section we discuss how to allow the gen-
erated components to operate efficiently on different
timescales.

Previous work (Harel et al., 2015a) has tackled
this difficulty in a variety of ways. One approach
in (Harel et al., 2015a) introduced an eager execu-
tion mechanism for behavioral models. This tech-
nique lessened the severity of the problem by some-
times allowing the ESM to trigger an event even when
some of the b-threads have not yet synchronized. Our
distribution technique lends itself naturally to this
kind of idea, because within a given component, we
know that b-threads controlled by other components,
which have not synchonized yet, cannot block local
requested events. Thus, by applying a method similar
to eager execution, the ESM does not have to wait for
b-threads which wait only for external events (such b-
threads may be in the original specification, or they
may be the projected version of b-threads with event
requests changed to waiting for events).

In our distributed setting, eager execution can be
applied as follows. Given a behavioral model M =
{BT 1, . . . ,BT n} and its distributed component mod-
els {C1, . . . ,Ck}, let q∈Qi be a state in which b-thread
BT i is not controlled by component C j. Observe BT i

j ,
i.e., the copy of BT i that is running in component C j.
Because BT i

j is not controlled by C j, it does not re-
quest or wait for any local events and must be waiting
for an external event e controlled by some other com-
ponent Cm. In other words, until such time as e is
triggered by Cm, thread BT i

j will not affect local event
selection in component C j. In such situations we pro-
pose to temporarily detach thread BT i

j from its local
ESM, effectively allowing event selection in compo-
nent C j without considering BT i

j . This allows com-
ponent C j to operate in its own pace, while BT i

j can
be regarded as temporarily operating in the same time
scale as Cm. Whenever e is finally triggered and BT i

j
reaches a new state q̄ in which it is controlled by C j, it
is reattached to the local ESM. This technique readily
enables different components to simultaneously oper-
ate at different timescales.

To support eager execution within our distributed

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

188



framework, the external event queue within each com-
ponent model needs to be decoupled from the dis-
tributed ESM. Instead, each b-thread in the compo-
nent receives its own external-event queue, and at
each synchronization point pops all external events
and selects them one at a time. The changes in the
BP execution engine are summarized as follows:

• Each b-thread should flag itself as synchronized
or unsynchronized at each bSync, depending on
the state.

• A separate event queue is created in each b-thread,
thus allowing b-threads to process external events
independently of the local ESM. A b-thread that
arrives at a bSync first empties its event queue by
repeatedly popping and selecting an event.

• External events received at a given component are
injected into all the b-thread event queues by the
component’s BP execution engine. B-threads that
are already awaiting the local ESM are notified to
handle the external events.

5 EXAMPLE AND EVALUATION

In many situations, participants, be they mechanical
entities or people, have to carry out actions “in turns”,
one participant after the other. A typical example is
the all-way-stop traffic intersection (a.k.a. four-way
stop). When there are long queues in each of the in-
tersecting roads, the cars cross the intersection one
at a time, from each of the roads, in a round-robin
fashion. Another example is an audience in a packed
stadium “doing the wave”, where groups of people
stand up briefly and then sit down, in sequential or-
der. These behaviors are very easily described using
scenario-based specifications, where the most basic
behavior can be described with one scenario show-
ing all the relevant entities performing their required
actions in turn (additional scenarios for, e.g., starting
such a wave, are beyond the scope of our discussion).

More specifically, we consider a simple drone-
based light show (see elaborate shows by Disney in
www.youtube.com/watch?v=gYr-PO9meHY, and by Intel
in www.youtube.com/watch?v=teQwViKMnxw): each of
four drones has a green light and a red light. Initially,
the drones “do the wave”, each flashing its green light
briefly, in turn. This is implemented by the scenario in
Algorithm 1. The scenario in Algorithm 2 shows the
projection of the scenario in Algorithm 1 to Drone1.

Our example is a slightly richer scenario, coded
as a behavioral program written in C++. The four
drones (labeled Drone0 through Drone3) participate
in “a green wave”, starting with Drone0. After the

i=0;
while true do

bSync(R = {FlashGreen((0+ i)%4)});
bSync(R = {FlashGreen((1+ i)%4)});
bSync(R = {FlashGreen((2+ i)%4)});
bSync(R = {FlashGreen((3+ i)%4)});
nextEvent =

bSync(R = {NW0,NW1,NW2,NW3});
i = indexOfWave(nextEvent);

end
Algorithm 1: Pseudocode of a BP scenario demonstrating
a simple undistributed wave example. For each bSync syn-
chronization point, R is set requested events. The events
NW0 through NW3 indicate a request the start a new wave
at the corresponding component. These events are re-
quested after each full cycle, and BP event selection then
decides which component starts the new wave. The method
indexOfWave translates an event NWi to the index i.

i=0;
while true do

bSync(W = {FlashGreen((0+ i)%4)});
bSync(R = {FlashGreen((1+ i)%4)});
bSync(W = {FlashGreen((2+ i)%4)});
bSync(W = {FlashGreen((3+ i)%4)});
nextEvent = bSync(R = {NW1},W =
{NW0,NW2,NW3});

i = indexOfWave(nextEvent);
end

Algorithm 2: Projection of the scenario of Algorithm 1
onto the component Drone1. Notice that requested events
controlled by other components become waited-for (repre-
sented by the W sets).

conclusion of two full cycles, the drones jointly de-
cide which of the drones will start the next wave. The
next wave will, again, last for two full cycles, and the
entire process repeats five times. For now, the entire
specification consists of a single scenario. In this im-
plementation, the light-flashing events are labeled as
FlashGreen0 through FlashGreen3, each representing
the flashing of the light in the respective drone, in ei-
ther a centralized or distributed implementation. The
selection of the drone that will start the next wave
is carried out by the scenarios requesting four “new
wave” events, NW0 through NW3, and the BP event-
selection mechanism arbitrarily selecting one of these
events. We then associate each of the FlashGreen and
the NW events with the corresponding component. In
this simplified example the duration of the flashing of
each light is implemented in a delay (sleep) of 250
msec in the b-thread that is about the request a Flash-
Green event.

For simplicity, this implementation uses a cen-
tralizer component and does not implement a leader-
election mechanism. The centralizer is an infrastruc-

Distributing Scenario-based Models: A Replicate-and-Project Approach

189



ture component which is responsbile for: (i) receiv-
ing notifications of events triggered in any behavior
components, and broadcasting this information to all
other components, and (ii) managing joint decisions,
by receiving notices from any component ESM that
wishes to synchronize, which include the sets of re-
quested and blocked events, waiting for all other com-
ponents to reach their corresponding state, selecting
an event which is requested and not blocked, and no-
tifying all components of the selection. Note that the
centralizer serves only in simulations and studies of
the approach, and that in real distributed implementa-
tions broadcasting can be performed by a vartiety of
techniques (including the above), and joint decisions
can be reached by classical distributed-processing so-
lutions, such as leader election.

At this point it is important to distinguish between
the concepts of classes and objects and the concept
of components as used here. Events may be self-
standing entities, or they may be associated with ob-
jects. In our example, each drone is a component,
and objects may reside within a component, or may
span multiple component. Such objects can be, e.g.,
a drone controller, a drone light, a wave effect (which
can have a beginning and end events, or a color prop-
erty) or an entire light show. As can be seen in the
example given in Algorithm 2, each component exe-
cutes “the entire specification”, in this case, this one
scenario. In the distributed implementation, when
scenarios request or wait for FlashGreen events, they
do not synchronize, but when they request the four
new wave events, they all synchronize. This results
in a partially synchronized execution, which mimics
the centralized execution but does so with less inter-
component synchronization.

We compare our target, partially synchronized ex-
ecution of a specification created with the replicate-
and-project implementation (abbr. R&P), with a fully
synchronized distributed execution (abbr. FS), where
each component executes the same specification, and
they synchronize with every event selection. The de-
cision in each component whether to actually turn
on its own light following its respective FlashGreen
event is left as a small implementation detail, i.e., the
light-switch actuation method skips the operation if
there is no direct connection with the device. Both
implementations execute the same one-scenario spec-
ification, replicated over four components. The to-
tal number of events that occurred, all of which were
broadcast to all components, is 44 — the same for FS
and for R&P (five repetitions of two four-event cycles,
and four joint decisions). In the R&P however, only
four of these required synchronization. The total ex-
ecution time was the same in both cases, dominated

by the duration of the light flashes, but if synchro-
nization delay is artificially increased, total execution
time is increased accordingly (e.g., a 100 msec delay
purely due to synchronization, in addition to any or-
dinary communication delay, would add 400 msec to
the duration of each cycle of this single wave).

We now extend our mini-light-show example with
another wave of flashing lights. We add a scenario
in which, starting with Drone2, each of the drones
briefly flashes a red light, in its turn. This multi-cycle
wave continues uninterrupted and with no change un-
til the ten cycles of the green wave terminate. The
delay (sleep) before requesting a FlashRed event is
1000 msec. When multiple events are requested e.g.,
both a FlashRed together with FlashGreen or NW, the
ESM selects an event at random. The forty Flash-
Green events in the ten-cycles determine the begin-
ning and end of the run, and the number of FlashRed
events selected during this time varies. Since we are
presently more interested in understanding the under-
lying effects than in measuring improvements over a
large number of runs, we suffice with this artificial ex-
ample. To highlight these effects we show in Table 1
a comparison of the two cases when in both FS and
R&P, 44 FlashGreen events were triggered.

The basic communication delay in these experi-
ments is set to 50 msec, resulting in 100 msec delay
for broadcasting an event occurence via the central-
izer.

Some interesting explanations and observations
include:

• In FS, at every synhcronization point, both a
FlashRed event, and, either a FlashGreen or NW
events are enabled. This is true regardless of
sleep delays and number of components. Hence
in such runs, on average, half of the events will
be FlashRed. By contrast in R&P, FlashRed is
enabled in a component together with one of the
other two events in a way that depends on lengths
of sleep delays and on the number of components
in the cycle, yielding, in our case fewer FlashRed
events during the run.

• Common to all runs is a 40∗250 msec taken by the
FlashGreen events, plus 4 ∗ 100 msec minimum
number of joint decisions, plus about 3 seconds
of overhead (total of 13-14 seconds).

• The 41 seconds duration of R&P is the result of
adding to the above ~13 seconds 28 ∗ 1000 msec
FlashRed events.

• The 67 seconds duration of FS is the result of
adding to the above 41 seconds of R&P 17∗1000
msec of additional FlashRed events and 85 ∗ 100
msec communication delays due the additional

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

190



synchronizations, all of which had to occur dur-
ing the same ten cycles of the green wave.

• Even though the total number of events triggered
in R&P is less than in FS, the per-second event
rate is higher.

While the above examples illustrate and quantify the
kind of savings resulting from reduced synchroniza-
tion, we must note that the synchronization delay it-
self is sometimes not the main issue. For exam-
ple, if we were to replace the FlashGreen event(s)
in our design with, e.g., pairs of TurnGreenLightOn
and TurnGreenLightOff events, all scenarios might
have had enough time to synchronize with each other
following the event TurnGreenLightOn, in parallel
to waiting for the time ticks that would signal the
end of the shining of the light. A relaxed synchro-
nization approach, separating the scenarios of the
two waves into separate modules within each com-
ponent, would further streamline an otherwise fully
synchronized implementation. Nevertheless, the re-
duced inter-component synchronization still helps in
simplifying the designs, and in enhancing system ro-
bustness. For example, consider recovering from loss
of a drone, due to battery running out, while “the show
must go on”. It is much easier for all drones to ob-
serve and react to delays in other drones’ behavior,
when they are fully functional as opposed to waiting
in a global synchronization point (even when the lat-
ter is enhanced with timeout facilities as in (Harel and
Katz, 2014)).

6 FORMAL ANALYSIS AND
FUTURE WORK

Previous research on scenario based programming has
shown the great importance of formal methods and
tools in ensuring that the resulting models, composed
of many individual scenarios, perform as intended as
a whole. Past efforts have yielded a large portfolio
of tools for model checking (Harel et al., 2011a), au-
tomatic repair (Harel et al., 2012a; Katz, 2013) and
compositional verification (Katz et al., 2015; Harel
et al., 2013b), and have even indicated that scenario-
based programming may be more amenable to formal
analysis than other modeling approaches (Harel et al.,
2015c; Harel et al., 2015b).

Given the above, applying formal analysis in
the distributed case seems even more vital, as dis-
tributed models are inherently more difficult for hu-
mans to comprehend than centralized ones. Fortu-
nately, Lemma 1 enables us to immediately apply ex-
isting tools in our setting. Because the centralized

and distributed models present the same behavior, it
is possible to apply existing approaches to the cen-
tralized version and use them to draw conclusions re-
garding the distributed case.

Nonetheless, in a distributed environment there
are some hazards that do not appear in the fully-
synchronized model, and may thus be overlooked by
existing tools:

• Inter-component Deadlock: An inter-
component deadlock occurs when a component
C has no enabled local events that it can trigger,
and is thus waiting for certain external event(s).
However due to various reasons, these external
events may never arrive. For example, the reason
might be that another component is actually
waiting for an event that C needs to trigger. Note
that a situation where a component is waiting on
events local to a crashed component is not an
inter-component deadlock, but a soft deadlock, as
restarting the failed component might resolve the
issue.

• External Event Queue Overflow: When a com-
ponent repeatedly takes longer to process exter-
nal events than it takes the other components to
trigger and broadcast these events, could result in
exceeding the memory available for the external
event queue. An example of this could be a log-
ger component that takes too long to post its log
entries to a remote location.

• Latency: Communication delays can cause
poorly-designed systems to exhibit undesired be-
havior. As we discussed in Section 3.4, Lemma 1
does not hold when latency is too high, and so
such errors cannot be detected by existing tools.

We are working on extending the presently avail-
able techniques to handle the issues listed above.
For instance, in the latency case an improved model
checking algorithm might simulate a realistic latency
for external event communication, depending on the
communication method used (e.g., wired communi-
cations over a local network will have a much lower
latency than a satellite connection). We are also ex-
ploring the use of quantitative approaches to formal
verification to attempt and derive bounds on the max-
imal size a queue can reach, given certain constraints
on the broadcast and processing times of system com-
ponents.

In the context of inter-component deadlock, one
approach for recovering from component failure or
missed messages could be adding state information
to the external events, permitting components that
missed a transition to “fast-forward” to the correct
state in a scenario. Another direction could involve

Distributing Scenario-based Models: A Replicate-and-Project Approach

191



Table 1: Comparing an execution of a fully synchronized (FS) implementation of a two-scenario specification in a four-
component configuration, to an execution of the partially synchronized replicate-and-project implementation (R&P). See
discussion in the Section 5.

Measure: FS R&P
Number of FlashGreen event notification broadcast 40 40
Number of FlashRed event notification broadcast∗ 45 28
Number of “new wave” event notification broadcast 4 4
Total number of events 89 72
Total number of Inter-component synchronizations 89 4
Run duration (in seconds) 67 41
Events per second 1.32 1.75

having multiple instances of critical components, for
redundancy.

As an additional future work direction, we would
like to study approaches to choosing a strict event sep-
aration. While the components are usually derived
manually from physical system requirements, at times
it might be desired to delineate their boundaries auto-
matically based on other criteria. One approach is to
use clustering algorithms that take as input a func-
tion f that assigns, for every two events e1,e2 ∈ Σ
a correlation value f (e1,e2) ∈ [−1,+1]. The clus-
tering algorithms then attempt to partition the events
into a strict separation into k components (with k ei-
ther known or unknown beforehand), such that two
events are in the same component if their correlation
is high and are in separate components if their cor-
relation is low. While this problem is known to be
NP-Complete, it can be approximated up to a log-
factor (Bansal et al., 2004).

7 RELATED WORK

A different framework for the distributed execution
of scenarios is presented in (Greenyer et al., 2015).
Their approach is similar to ours in that the distributed
components can each choose to execute events that
they are responsible for, and selected events are
broadcast to all other components. The main issues
with this implementation relative to R&P are that (i)
it requires that scenarios are written to not have states
where events of multiple components are enabled, and
(ii) it relies on the fact (enforced by a central coor-
dinator) that all components observe all event occu-
urrences in the same order. By contrast, R&P au-
tomatically coordinates all components when reach-
ing a state where a joint decision is required, and it
allows components to advance asynchronously when
possible, and in particular, after locally selecting an
event. An advantage, though, of the enforced event
order in (Greenyer et al., 2015) is that it avoids the
risk of sensivity to different event orders. In R&P,

automatic handling of the latter is left for future re-
search, e.g. using formal methods, as discussed in
Section 3.5.

The research in (Greenyer et al., 2016b) describes
(though without an implementation) a mechanism for
the distributed execution of scenarios with dynamic
role bindings. There, synchronization is done only
among relevant components, as determined dynami-
cally.

An orthogonal approach proposed for distributing
BP models (Harel et al., 2013a) is by partitioning the
b-threads into modules, where each module runs its
set of b-threads and synchronizes with other modules
upon choosing events that might matter to other mod-
ules. However, in (Harel et al., 2013a), the component
structure is dynamic and is implied by the specifica-
tion, in contrast to the present paper where the com-
ponent structure is dictated by the physical structure
of the system.

Yet another alternative approach is suggested in
(Harel et al., 2011b), where the distributed system
consists of multiple independent programs, called be-
havior nodes (b-nodes), each with its own set of inter-
nal events. Such b-nodes never synchronize with each
other. Similar to our approach the b-nodes communi-
cate by external events, however those events require
manual translation to and from internal events. By
contrast, in our approach external events emerge natu-
rally and automatically from internal events. Further-
more our approach supports more general designs,
inter-component scenarios and fine-grained synchro-
nizations when scenarios give rise to inter-component
decisions.

There has also been work on synthesizing
scarcely-synchronizing distributed controllers from
scenario-based specifications (Brenner et al., 2015).
Distributed finite automaton controllers can be syn-
thesized from scenario specifications in a way that
greatly reduces communication overhead compared
to previous approaches, especially compared to the
the broadcasts of events as also suggested in this
work. However, the synthesis procedure is computa-

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

192



tionally complex and does not scale well as specifica-
tion and system size increase. In (Fahland and Kantor,
2013), the authors study a similar problem and present
an approach for synthesizing executable implementa-
tions from specifications given in a distributed variant
of LSC, termed dLSC.

Outside the scope of scenario-based modeling,
the trade-off between performance optimization and
communication minimization in parallel and dis-
tributed settings has been studied extensively. These
two conflicting goals are discussed in (Cheng and
Robertazii, 1988; Yook et al., 2002). In (van Gemund,
1997) the author suggests imposing certain limita-
tions on the communication between the components,
thus allowing for execution-time optimization to be
performed during compilation.

8 CONCLUSION

We presented an approach towards transforming a
scenario-based model so that it can be executed in
a distributed configuration, by creating component-
specific variations, or projections, based on each com-
ponent’s scope of responsibility. This replicate-and-
project approach allows us to distribute any central-
ized model based on specifications which can be de-
rived from practical physical requirements, such as
number of processors and the specific hardware con-
trolled by each of them. We have shown that the
resulting distributed models behave similarly to the
centralized model from which they originated. This
important property allows us to carry out most of
the modeling work, including testing and analysis,
in the centralized setting, which is easier to model-
check and reason about. The projected models retain
the naturalness and incrementality traits of behavioral
programming. In their avoidance of excessive syn-
chronization, they improve robustness and the ability
to model systems with multiple time scales. To the list
of future research avenues which this direction opens,
one may add the possibility that replicate-and-project
approaches may be applicable in software develop-
ment contexts other than scenario-based / behavioral
programming.

ACKNOWLEDGEMENTS

This work is funded by grants from the German-
Israeli Foundation for Scientific Research and Devel-
opment (GIF) and from the Israel Science Foundation
(ISF).

REFERENCES

Alexandron, G., Armoni, M., Gordon, M., and Harel, D.
(2014). Scenario-Based Programming: Reducing the
Cognitive Load, Fostering Abstract Thinking. In Proc.
36th Int. Conf. on Software Engineering (ICSE), pages
311–320.

Bansal, N., Blum, A., and Chawla, S. (2004). Correlation
Clustering. Machine Learning, 56(1–3):89–113.

Brenner, C., Greenyer, J., and Schäfer, W. (2015). On-the-
Fly Synthesis of Scarcely Synchronizing Distributed
Controllers from Scenario-Based Specifications. In
Proc. 18th Int. Conf. on Fundamental Approaches to
Software Engineering (FASE), pages 51–65.

Cheng, Y. and Robertazii, T. (1988). Distributed Com-
putation with Communication Delay [Distributed In-
telligent Sensor Networks]. IEEE Transactions on
Aerospace and Electronic Systems, 24(6):700–712.

Damm, W. and Harel, D. (2001). LSCs: Breathing Life into
Message Sequence Charts. J. on Formal Methods in
System Design, 19(1):45–80.

Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, A.
(2003). The Many Faces of Publish/Subscribe. ACM
Computing Surveys (CSUR), 35(2):114–131.

Fahland, D. and Kantor, A. (2013). Synthesizing Decen-
tralized Components from a Variant of Live Sequence
Charts. In Proc. 1st Int. Conf. on Model-Driven
Engineering and Software Development (MODEL-
SWARD), pages 25–38.

Ghosh, S. and Gupta, A. (1996). An Exercise in Fault-
containment: Self-stabilizing Leader Election. Inf.
Process. Lett., 59(5):281–288.

Gordon, M., Marron, A., and Meerbaum-Salant, O. (2012).
Spaghetti for the Main Course? Observations on
the Naturalness of Scenario-Based Programming. In
Proc. 17th Conf. on Innovation and Technology in
Computer Science Education (ITICSE), pages 198–
203.

Greenyer, J., Gritzner, D., Gutjahr, T., Duente, T., Dulle,
S., Deppe, F.-D., Glade, N., Hilbich, M., Koenig,
F., Luennemann, J., Prenner, N., Raetz, K., Schnelle,
T., Singer, M., Tempelmeier, N., and Voges, R.
(2015). Scenarios@run.time — Distributed Execution
of Specifications on IoT-Connected Robots. In Proc.
10th Int. Workshop on Models@Run.Time (MRT),
pages 71–80.

Greenyer, J., Gritzner, D., Katz, G., and Marron, A.
(2016a). Scenario-Based Modeling and Synthesis for
Reactive Systems with Dynamic System Structure in
ScenarioTools. In Proc. 19th Int. Conf. on Model
Driven Engineering Languages and Systems (MOD-
ELS), pages 16–32.

Greenyer, J., Gritzner, D., Katz, G., Marron, A., Glade,
N., Gutjahr, T., and König, F. (2016b). Distributed
Execution of Scenario-based Specifications of Struc-
turally Dynamic Cyber-Physical Systems. In Proc.
3rd Int. Conf. on System-Integrated Intelligence: New
Challenges for Product and Production Engineering
(SYSINT), pages 552–559.

Distributing Scenario-based Models: A Replicate-and-Project Approach

193



Harel, D., Kantor, A., and Katz, G. (2013a). Relaxing Syn-
chronization Constraints in Behavioral Programs. In
Proc. 19th Int. Conf. on Logic for Programming, Arti-
ficial Intelligence and Reasoning (LPAR), pages 355–
372.

Harel, D., Kantor, A., Katz, G., Marron, A., Mizrahi, L.,
and Weiss, G. (2013b). On Composing and Proving
the Correctness of Reactive Behavior. In Proc. 13th
Int. Conf. on Embedded Software (EMSOFT), pages
1–10.

Harel, D., Kantor, A., Katz, G., Marron, A., Weiss, G., and
Wiener, G. (2015a). Towards Behavioral Program-
ming in Distributed Architectures. Science of Com-
puter Programming, 98(2):233–267.

Harel, D. and Katz, G. (2014). Scaling-Up Behavioral Pro-
gramming: Steps from Basic Principles to Applica-
tion Architectures. In Proc. 4th Int. Workshop on Pro-
gramming based on Actors, Agents, and Decentral-
ized Control (AGERE!), pages 95–108.

Harel, D., Katz, G., Lampert, R., Marron, A., and Weiss, G.
(2015b). On the Succinctness of Idioms for Concur-
rent Programming. In Proc. 26th Int. Conf. on Con-
currency Theory (CONCUR), pages 85–99.

Harel, D., Katz, G., Marelly, R., and Marron, A. (2016).
An Initial Wise Development Environment for Behav-
ioral Models. In Proc. 4th Int. Conf. on Model-Driven
Engineering and Software Development (MODEL-
SWARD), pages 600–612.

Harel, D., Katz, G., Marron, A., and Weiss, G. (2012a).
Non-Intrusive Repair of Reactive Programs. In Proc.
17th IEEE Int. Conf. on Engineering of Complex Com-
puter Systems (ICECCS), pages 3–12.

Harel, D., Katz, G., Marron, A., and Weiss, G. (2015c). The
Effect of Concurrent Programming Idioms on Veri-
fication. In Proc. 3rd Int. Conf. on Model-Driven
Engineering and Software Development (MODEL-
SWARD), pages 363–369.

Harel, D., Kugler, H., Marelly, R., and Pnueli, A. (2002).
Smart Play-Out of Behavioral Requirements. In Proc.
4th Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD), pages 378–398.

Harel, D., Lampert, R., Marron, A., and Weiss, G. (2011a).
Model-Checking Behavioral Programs. In Proc. 11th
Int. Conf. on Embedded Software (EMSOFT), pages
279–288.

Harel, D. and Marelly, R. (2003a). Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine. Springer.

Harel, D. and Marelly, R. (2003b). Specifying and Execut-
ing Behavioral Requirements: The Play In/Play-Out
Approach. Software and System Modeling (SoSyM),
2:82–107.

Harel, D., Marron, A., and Weiss, G. (2012b). Behav-
ioral Programming. Communications of the ACM,
55(7):90–100.

Harel, D., Marron, A., Weiss, G., and Wiener, G. (2011b).
Behavioral Programming, Decentralized Control, and
Multiple Time Scales. In Proc. 1st SPLASH Work-
shop on Programming Systems, Languages, and Ap-

plications based on Agents, Actors, and Decentralized
Control (AGERE!), pages 171–182.

Harel, D. and Segall, I. (2011). Synthesis from live se-
quence chart specifications. Computer System Sci-
ences. To appear.

Katz, G. (2013). On Module-Based Abstraction and Re-
pair of Behavioral Programs. In Proc. 19th Int. Conf.
on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR), pages 518–535.

Katz, G., Barrett, C., and Harel, D. (2015). Theory-Aided
Model Checking of Concurrent Transition Systems. In
Proc. 15th Int. Conf. on Formal Methods in Computer-
Aided Design (FMCAD), pages 81–88.

Miller, C. and Poellabauer, C. (2009). A Decentralized Ap-
proach to Minimum-Energy Broadcasting in Static Ad
Hoc Networks. In Proc. 8th Int. Conf. on Ad-Hoc, Mo-
bile and Wireless Networks (ADHOC-NOW), pages
298–311.

Ramadge, P. and Wonham, W. (1987). Supervisory Control
of a Class of Discrete Event Processes. SIAM J. on
Control and Optimization, 25(1):206–230.

Stefanescu, A., Esparza, J., and Muscholl, A. (2003). Syn-
thesis of Distributed Algorithms Using Asynchronous
Automata. In Proc. 14th Int. Conf. on Concurrency
Theory (CONCUR), pages 27–41.

van Gemund, A. (1997). The Importance of Synchroniza-
tion Structure in Parallel Program Optimization. In
Proc. 11th Int. Conf. on Supercomputing (ICS), pages
164–171.

Yook, J., Tilbury, D., and Soparkar, N. (2002). Trading
Computation for Bandwidth: Reducing Communica-
tion in Distributed Control Systems Using State Esti-
mators. IEEE Transactions on Control Systems Tech-
nology, 10(4):503–518.

Appendix: Proof for Lemma 1

Here we discuss the execution semantics of our dis-
tributed model, show that they produce runs that are
compatible with the BP semantics, and prove an im-
portant property: assuming communication is instan-
taneous, the distributed system behaves identically to
the undistributed one.

Definition 2. A distributed model produced from a
behavioral model M, with respect to a strict event sep-
aration, S = {C1, . . . ,Ck}, denoted as D (M,S), is de-
fined to be the set of projections of M along the com-
ponents of the event separation:

D (M) = {project(M,C1), . . . ,project(M,Ck)}.
Executing a distributed model means executing the
component models (i.e., the projections) according to
the operational semantics defined in Section 3.3.

Next we formally define the global state (the cut)
of a behavioral model that is being executed:

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

194



Definition 3. Given a behavioral model M =
{BT 1, . . . ,BT n}, the program cut r ∈Q1×·· ·×Qn is
defined to be the current model state: r = 〈q1, . . . ,qn〉
where qi is the current state of b-thread BT i.

For the remainder of this section we assume that
the inter-component communication latency is negli-
gible, and that external-event processing is instanta-
neous. This allows us to assume that selected events
can be ordered serially. Given these conditions, we
can make the following observation:

Claim 1. In a distributed execution of D(M,S), the
cuts of all component models are identical at every
point in time.

Proof. The proof is by induction. For the basis of the
induction, observe that in the execution of D(M,S)
all components begin at the same initial program cut
〈q1

0, . . . ,q
n
0〉. Next, for the inductive step, suppose that

all components are currently in cut 〈q1, . . . ,qn〉. Once
any component selects an events e ∈ Σ, that event is
instantly broadcasted and processed by the rest of the
components. Each projected b-thread BT i

j in compo-
nent C j transitions to state δi(qi,e). By definition of
the projection process, the δi functions are identical
across components, and hence all projections of each
thread proceed to the same successor state. The claim
follows.

As the component programs cuts are identical
across all components, we can extend the definition
and refer to program cut of a distributed system as
the program cut of any of the components.

Definition 4. An enabled event at some program cut
of behavioral model M is an event that is requested
by some b-thread and is not blocked by any of the b-
threads of M. Analogically, for a distributed system
D (M) an enabled event is an event requested by some
b-thread of some component, and not blocked by any
b-thread of any component.

Definition 5. Let ∆(r,e) denote the program cut
transition function, where r is a program cut and
e ∈ Σ is an event. ∆ is fully defined by the b-
threads state transition function δi as follows: for
r = 〈q1, . . . ,qn〉,∆(r,e) = 〈δi(q1,e), . . . ,δi(qn,e)〉.

We can now define what the formal language gen-
erated by a behavioral model is and prove that the lan-
guages of the undistributed model and the distributed
one are the same.

Definition 6. The language L of a behavioral model
M denoted L(M) is a set of words defined over the
alphabet Σ. A word w = e1e2 . . .el . . . is in L(M) if its
letters constitute a legal run of M; i.e., if we begin in
the initial cut and apply ∆ according to the sequence

of events in w, the next event is always enabled in the
current cut. The language of the distributed model
D(M,S) is defined similarly.

The equality between L(M) and L(D(M,S)) will
follow from the following claim:

Claim 2. At any given program cut r = 〈q1, . . . ,qn〉,
the sets of all enabled events of M and of D(M,S) are
equal.

Proof. By definition, the set of enabled events of M
is (

⋃
i Ri(qi)) \ (⋃i Bi(qi)). In the distributed model

D(M,S), as components cannot block external events,
the set of enabled events is the union of sets of enabled
events of each component:

⋃

k

[(
⋃

i

Ri
k(q

i)

)
\
(
⋃

i

Bi
k(q

i)

)]
=

⋃

k

[[(
⋃

i

Ri(qi)

)
\
(
⋃

i

Bi(qi)

)]
∩Ck

]
=

(
⋃

i

Ri(qi)

)
\
(
⋃

i

Bi(qi)

)

which is identical to the set of enabled events of M.

Claim 3. The language of a behavioral model L(M)
is equal to the language of its distributed version
L(D(M,S)).

Proof. As the thread transition functions are un-
changed by the projection, it immediately follows
that, for any cut r and event e, ∆(r,e) is equal in M
and in D(M,S). Furthermore we saw in claim 2 that
the enabled events of M and D(M,S) are equal at any
given program cut. Finally, as the initial cuts for M
and D(M,S) are identical, it follows by induction that
both models generate the same language.

Thus, when ignoring communication latency, the
distributed system operates indistinguishably from
the original undistributed one. This also implies that
the distributed model behaves correctly, i.e., produces
executions that are allowed under BP semantics.

Distributing Scenario-based Models: A Replicate-and-Project Approach

195


