
Predictive Cognitive Modelling of Applications

Sabine Prezenski, Dominik Bruechner and Nele Russwinkel
Cognitive Modelling in Dynamic Human-Machine Systems, Technische Universität Berlin,

Marchstraße 23, Berlin, Germany

Keywords: Cognitive Modelling, Usability, ACT-R, Tool, Usability Criteria, Usability Test.

Abstract: This paper argues that important usability aspects of mobile applications can be automatically evaluated using
computational cognitive models based on the cognitive architecture ACT-R. A tool incorporating cognitive
models for specific tasks, users, applications and usability aspects is proposed. Explanations provided by
the tool for usability flaws are based on simulations of cognitive mechanisms. A use-case of the tool is
introduced, which is based on an ACT-R model that simulates how users search and select a specific target
in a hierarchical android application and predicts efficiency and learnability for average users. The model
has been empirically validated in four studies with two different applications. To fully automate the usability
evaluation of the use-case, two basic requirements need to be fulfilled. First, the application and the cognitive
model have to be connected. A tool called ACT-Droid acts as an interface between the Android application
and the cognitive model. Second, the models knowledge of the world, which is application specific, has to be
provided automatically by using an automated user interface analysation approach. Therefore, the open-source
tool AppCrawler was extended to allow the extraction of the required information.

1 INTRODUCTION

More than 2.2 Million applications are available at
Google Play store today in comparison to 1.7 Million
one year ago (AppBrain, 2016). Last year, the num-
ber of applications that were available for Android
increased by over half a million. Every day, over a
thousand new applications appear on the market with
some of them being successful. Upon other aspects,
such as marketing and visibility, very good usability
is a key to successful applications. It appears unfea-
sible that each newly launched app is tested in terms
of usability. Nevertheless, developers ask themselves
if users will like their app and if it is better than those
of their contestants. There are a lot of rivaling appli-
cations and good usability can be the critical factor of
success. Examples of relevant questions addressing
the usability of mobile applications are: How long do
users take to perform a task with a specific app? Does
user performance increase as users have more practice
with an app? Should an app adapt to the users’ pre-
selection? How should an adaption look like? Will an
update of the app irritate the user? Different methods
(e.g. user testing, expert interviews) provide answers
to these questions. However, these methods are both
time and money consuming, and the results often do
not provide a clear explanation of the findings. Fur-

thermore, changes in an app often require a new eval-
uation. We are currently developing a fully automated
approach for Android applications that will automati-
cally predict important usability aspects (such as effi-
ciency) based on cognitive models that simulate cog-
nitive processes of users. Our approach will further-
more offer insight into the cognitive reasons behind
usability flaws.

We want to present a prototype aimed on one spe-
cific use-case, namely the automated usability evalu-
ation of a hierarchical style Android application for
an average user (Prezenski and Russwinkel, 2016).
Therefore, it is required to extend an existing cog-
nitive model (Prezenski and Russwinkel, 2016) to
be applicable to a multitude of hierarchical list style
applications without any prior modification of the
model. Thus, any model aspects that are specific for
the application (such as relevant semantic knowledge)
should to be automatically extracted from the user in-
terface of the mobile application.

In this paper first a theoretical introduction about
usability and cognitive models in HCI is given. Sec-
ondly, a general automated usability evaluation ap-
proach based on ACT-R cognitive models is intro-
duced. This is followed by the definition of a more
specific use-case for hierarchical list style applica-
tions to base a working prototype on. Requirements

Prezenski S., Bruechner D. and Russwinkel N.
Predictive Cognitive Modelling of Applications.
DOI: 10.5220/0006273301650171
In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017), pages 165-171
ISBN: 978-989-758-229-5
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

165

on the approach are then defined to make it applicable
on our use-case. Finally, future steps are elaborated
followed by a discussion.

2 THEORY

2.1 Usability

The term usability defines how efficient, effective,
and satisfying the use of a technical system is (ISO-
9241-11). The PACMAD (People at the Centre of
Mobile Application Development) complements this
usability definition with aspect important for mobile
usability, namely learnability, memorability, users,
task, context, and mental load (Harrison et al., 2013).
Note that the usability of mobile applications should
not be seen as a smaller desktop, but different aspects
need to be considered.

While applications exist for almost every imagin-
able task, from selecting a recipe to planning a va-
cation, a single app mostly supports only one or two
main tasks (e.g. messenger applications are mainly
used for reading and sending messages or recipe ap-
plications for searching for recipes). And although
on the surface applications appear incredible divers
(e.g. different colors, font, framing of images), the
core principles (e.g. menu-structure, organization) are
similar for a large amount of applications. In our view
these underlying core structures have a strong influ-
ence on many usability criteria. This similarity of
structures in a wide range of applications and the fo-
cus on one or two core functions for most applications
is why we propose that usability of applications can
be analyzed using computational cognitive models.
We aim to develop cognitive models for all aspects of
PACMAD, but will begin developing models for the
usability aspects of efficiency and effectiveness and
learnability. In (Nielsen, 1994) a set of nine heuristics
for different usability aspects were presented which
can be applied during the application design process.
In the past these were not automated testable. For
some of those heuristics for good usability cognitive
models could be developed as well.

2.2 Cognitive Models

In our understanding, computational models are cog-
nitive models if they can simulate human behaviour
by simulating ongoing cognitive processes and mech-
anisms both on a symbolic and sub-symbolic level.
We want to simulate the process of humans in order
to understand and predict their behaviour.

2.2.1 ACT-R

Our cognitive modelling approach uses the cognitive
architecture ACT-R (Adaptive Control of Thought
Rational) (Anderson, 2007). In general terms, cog-
nitive architectures are computational platforms that
allow the creation of models on the basis of how hu-
mans process information. Cognitive architectures
constrain models in a way that only cognitively fea-
sible models are possible. More than simply repro-
ducing the behavioural output, cognitive architectures
reveal underlying cognitive mechanisms. ACT-R is
the most widely used cognitive architecture and it has
been applied in many domains from air traffic control
(Raufaste, 2006) to mathematical tutors (Ritter et al.,
2007). It is open source and used by an active com-
munity of researchers. The ACT-R approach aims to
achieve an unified theory of cognition in the future,
and is the most successful computational approach of
modelling human cognition on a symbolic level that
we are aware of.

The ACT-R architecture consists of different mod-
ules (representing the modular structure of the human
processing) and buffers (the communication inter-
faces of these modules). See Figure 1 for an overview
of the most important buffers (arrows) and modules
(boxes) of ACT-R. For example, there is a motor mod-
ule for motor processes such as key-presses and a vi-
sual module (for visual processing). ACT-R also has
a working memory module (imaginal module), which
is important for learning and combining information
and a declarative memory module where knowledge
(chunks) is stored and retrieved from.

Writing an ACT-R model normally requires the
modeler to specify the models’ fact knowledge man-
ually (declarative knowledge or chunks) and its rules
(production rules, procedural knowledge). These pro-
duction rules are the core part of the model. They
consist of an if and a then part. The if part refers to
the state and content of the buffers (e.g. if they are
used and if they hold specific chunks) and the then
part modifies the content and state of the buffers.

Next to the productions rules, the processing of
information is governed by numerous sub symbolic
processes, which have been added to the architec-
ture only after empirical studies have confirmed them.
For example, the retrieval of chunks from declarative
memory is determined by the sub-symbolic activation
value of the chunk, which depends on when the chunk
was last used.

2.2.2 Cognitive Models on HCI Aspects

A number of ACT-R models concern menu search or
mobile interaction: (Byrne et al., 1999) demonstrated

HUCAPP 2017 - International Conference on Human Computer Interaction Theory and Applications

166

Figure 1: Here a selection of the modules (boxes) and
buffers (arrows) of the ACT-R architecture is represented.
Note that some modules have two buffers (e.g. the visual
module).

that ACT-R models are capable of humanlike menu
search in a controlled study. In this study, perfor-
mance in a random menu selection task on a computer
was compared with eye tracking and behavioural data.
(Das and Stuerzlinger, 2007) modelled the learning
of mobile phone usage for elderly novice users. The
increase in performance in their model was real-
ized through remembering locations of keys. (Gal-
lagher and Byrne, 2015) investigated password en-
try on smartphones and offered model-based explana-
tions on how requirements for complex passwords on
smartphones should be designed to meet both users’
abilities and safety requirements. These studies indi-
cate that expert and novice behaviour, menu search,
as well as learning behaviour can be simulated using
cognitive architectures.

2.2.3 Modelling Approaches of Usability

The modelling approaches presented above show only
limited usability prediction based on existing cog-
nitive architectures. The most successful approach
is CogTool (John et al., 2004) and its’ successor
CogTool Explorer (Teo and John, 2008). These ap-
proaches can predict expert and novice search be-
haviour on websites. Some aspects of the approaches
are based on ACT-R, but they do not use the full
power of ACT-R due to a lack in memory and learning
mechanisms. Thus usability aspects based on learning
or related aspects, such as repeated usage, cannot be
addressed by the CogTool approaches. Furthermore,
much manual work (e.g. preselecting ideal paths) is
required when working with CogTool.

Other modelling approaches of user behaviour are
GOMS-based cognitive models. GOMS models are
often used in HCI since their implementation is ef-
fortless and simple. Modelers specify Goals, Opera-
tors, Methods and Selection Rules to simulate user be-
haviour. Many GOMS models provide an acceptable
prediction on the time that skilled users need for a pre-

defined task. The straightforward approach of GOMS
models makes them convenient to use; task are di-
vided into subsets of operators with assigned time
value. Although these models are declared ”cogni-
tive” they mainly consist of different motor and visual
operators. A single mental operator (with a specific
time value) represents the entire cognitive process of
”thinking”, which is oversimplifying for many evalu-
ation questions. GOMS models are a great approach
whenever the objective is to find out how much time a
skilled user will need for a task. Other (non-cognitive)
usability modelling tools exist as well, in that they use
different computational algorithms to analyze aspects
such as font-size, color, contrast (Amalfitano et al.,
2012; Choi et al., 2013).

Two major challenges have prevented modelers
from evaluating usability of mobile applications with
cognitive architectures and are the reasons why tools
with diminished explanatory power have been used
instead. The first challenge is the necessity to (re)-
construct an interface the model can interact with.
We have developed a new tool, ACT-Droid (Dörr
et al., 2016), that directly connects Android applica-
tions with an ACT-R environment, making mock-up
creations or translations obsolete. The second chal-
lenge is the high amount of expertise that is currently
required to construct cognitive models with cognitive
architectures. The more different the applications are
in terms of general interaction mode, the more effort
it takes for the modeler to transfer a model to another
app even if the cognitive mechanisms in the model
(e.g. learning mechanism) are the same. Therefore,
we are focusing the modelling work on transferable
cognitive models. These can be reused for other sim-
ilar applications without effort. Such a model exists
for hierarchical list style applications. It has success-
fully predicted empirical user behaviour (such as re-
peated application usage) for two different applica-
tions. The studies and results are described in more
detail in (Prezenski and Russwinkel, 2016) and are
summarized in the following: The two applications
were a shopping-list application, which allows users
to select items out of different stores and categories
and a real-estate application from which users can se-
lect search criteria (e.g. search for an apartment with
60m). Four empirical user studies, two with each ap-
plication, were conducted. The users were required
to repeatedly search for seven criteria with the same
version of the application twice, and then the applica-
tion was modified either due to an update (shopping-
list application) or due to adaptation to prior selected
search criteria (real estate application). Two different
versions of both applications existed – thus, in each
of the four studies, the participants started with a dif-

Predictive Cognitive Modelling of Applications

167

ferent application. The ACT-R model predicts mean
overall item selection time of users for first and sec-
ond time search. Furthermore it predicts search be-
haviour after updates accurately in terms of correla-
tion and mean standard deviation (see Figure 2, orig-
inally appeared in (Prezenski and Russwinkel, 2016,
p. 205).

!

"

#

$

%

&!

&"

& " ' #

se
le

ct
io

n
 t

im
e

(s
ec

)

house apartment

participants

model

r²=1.000

RSME=0.011

n=12

!

"

#

$

%

&!

&"

& " ' #

se
le

ct
io

n
 t

im
e

(s
ec

)

apartment house

participants

model

r²=0.888

RSME=1.660

n=10

!

"

#

$

%

&!

&"

&#

&$

& " ' #

se
le

ct
io

n
 t

im
e

(s
ec

)

shopping 3-4

participants

model

r²=0.799

RSME=1.489

n=17

!

"

#

$

%

&!

&"

&#

&$

& " ' #

se
le

ct
io

n
 t

im
e

(s
ec

)

shopping 4-3

participants

model

r²=0.999

RSME=0.843

n=12

run

run

run

run

house

house

house

house
apartment

apartment

apartment

apartment

4 layers

4 layers

4 layers

4 layers

3 layers 3 layers

3 layers

3 layers

update

update

adaptation

adaptation

Figure 2: Mean target selection time for the four different
studies for the modelled and empirical data (Prezenski and
Russwinkel, 2016).

3 PROPOSED USABILITY
EVALUATION APPROACH FOR
MOBILE APPLICATIONS

3.1 Overall Aim

Our longterm goal is to develop a toolset which can
automatically access important usability aspects of
mobile Android applications as defined in PACMAD.
In the development phase, features will be added sub-
sequently and evaluated empirically.

Our approach is aimed at helping developers eval-
uate design alternatives in terms of cognitive aspects
of usability. The toolset will output numerical val-
ues for different usability criteria such as efficiency
(mean time on task) and effectiveness (proportion of
successful attempts on whole attempts). Compara-
tive values will be incorporated in the future as well.
See Table 1 for an overview on the toolsets’ proposed
functionality. Testing an application will require the
tool-users to pre-select certain application properties
as shown in Table 1.

Table 1: Proposed functionality.

Application type text-style
menu type - hierarchical
icon-style
...

Usability criteria efficiency
effectiveness
learnability
cognitive load
satisfaction
...

Type of task search & select specific target
search & select unspecific target
...

Type of user average user
elderly user
initial use
second time use
context
...

The level of detail of the output will also depend
on the developers previous selections. The output will
consist of numerical values (such as mean and stan-
dard deviations, a comparative value in relation to
other similar applications) and a more cognitive out-
put, revealing potential cognitive causes of usability
flaws (e.g. retrieval failures for uncommon words).

For different applications (e.g. icon based vs. text
based), different tasks (e.g. search and selection of a
specific targets, search for an unspecific target), and
different usability concerns (e.g. efficiency, learnabil-
ity), the cognitive modelling community has come up

HUCAPP 2017 - International Conference on Human Computer Interaction Theory and Applications

168

with some solutions; however, much work is still re-
quired.

To move towards a fully automated usability eval-
uation approach based on cognitive models, we want
to present a prototype for a certain use-case in this
paper. Our use-case is the automated usability eval-
uation of a hierarchical list style Android application
(cf. (Prezenski and Russwinkel, 2016) model for an
average user). The model makes predictions for initial
and repeated use and can evaluate the usability crite-
ria efficiency (average time on task) and learnability
(comparing first and further time on task). The model
supports the selection of specific targets as a task.

3.2 Current State

3.2.1 ACT-Droid

ACT-R is written in the programming language LISP,
and mobile applications are mostly developed for ei-
ther iOS or Android. Enabling interaction between
ACT-R models and mobile applications is crucial.
To allow the model interaction for Android, ACT-
Droid was developed (Dörr et al., 2016). ACT-Droid
uses TCP/IP sockets to directly link ACT-R models
with Android applications. Currently, we are working
on integrating Touch-Commands for ACT-R (Greene
et al., 2013) into ACT-Droid. Touch-Commands, such
as swipe and peck, have been implemented in ACT-R
with the ACT-Touch approach.

Figure 3: Overview of the Shopping-List Application.

3.2.2 Android Demo Application

A model to automatically evaluate cognitive aspects
of usability in mobile applications has been devel-
oped (Prezenski and Russwinkel, 2016). We tested
the model with a shopping-list demo application (see
Figure 3). It allows searching for items which are or-
ganized in categories and subcategories. E.g. if a per-
son (or the model) wants to select alcohol-free beer

for their shopping list, they must first select shops,
then bottleshop and then beer before they can select
the target alcohol-free beer. Each subcategory is on a
different page of the app.

3.2.3 ACT-R Model

When the model searches for a target the first time
(initial use), it does not know which subcategory it
has to select in order to find its targets. Thus, ev-
ery item of each category is read and for each item
the model uses its knowledge of the world to check if
the target can be found under the current category. In
other words, if there is an association between the tar-
get and the current item. For example, the model sees
the word ”vegetables”. It will check its knowledge of
the world if there is connection between ”vegetables”
and its target ”alcohol-free beer”. If it can not find a
connection in its’ knowledge of the world, it will read
the next item ”beer” and search for a connection in its’
knowledge of the world. If it finds a connection, the
model will select the category, remembering the po-
sition of the category and build up a path (in working
memory) containing the categories leading to the tar-
get. Thus, it builds up experience and can later (e.g.
when it is looking for the same target again) use its
experience to navigate the target using the paths and
position chunks stored in its declarative memory. Sub
symbolic mechanisms, such as activation, influence
if the chunks (paths, position and associations from
world knowledge) can be retrieved.

Currently, the knowledge of the world chunks need
to be added by hand for every new app which needs
manual effort.

3.3 Towards a Fully Automated
Interface Evaluation Approach

In order to create a working prototype of our auto-
mated approach, it is required to extend the current
ACT-R model to be applicable to a multitude of hier-
archical list style applications without prior modifica-
tion. Furthermore, we need to supply the knowledge
of the world to the ACT-R model by automatically
extracting it from the user interface of the mobile ap-
plication. The data flow of our approach is presented
in Figure 4. ACT-Droid acts as an interface between

!"#$%!"#$&'()*

!"#$%&

'()$*+,-$

.'/0

122&

'()$*+,-$

3141

!+*'()*

!,,-)./0)(+

0*"#5-)6"(

75%$8

9(":%$#;$<

"+<)=$<>"*%#

123'$4+03'5/.36!+/-72)2

Figure 4: Data flow.

Predictive Cognitive Modelling of Applications

169

the Android application and ACT-R. Additionally an
UI analysis is executed beforehand (see 3.3.2).

3.3.1 Extension of the Current Model

As a next step we want to demonstrate that automati-
cally evaluating cognitive aspects of usability in mo-
bile applications is feasible using the (Prezenski and
Russwinkel, 2016) model. We will extend the model,
so that it will be applicable for all hierarchical list
style applications without any manual modification.
Thus, we can automatically predict efficiency, effec-
tiveness, and learnability for first and further time use
of these applications. In order to understand which
of the models’ aspects need to be modified, the main
model mechanism and an exemplary app which the
model processes will be explained briefly. For a more
detailed description of the model, see (Prezenski and
Russwinkel, 2016). The model is for menu-based
hierarchical applications that are text-based. It sim-
ulates search and specific target selection and can
model both initial and repeated use.

3.3.2 Automated UI Analyzation to Create
World Knowledge

Currently, the knowledge of the world chunks need to
be added by hand for every new app. We want to
automate this process using a program that automat-
ically enables the creation of new chunks in ACT-R
declarative memory module. The chunks will be the
connection nodes between all possible targets in an
app and the categories and subcategories leading to
the targets. The chunks will always contain only two
elements (e.g. the target and a category).

To acquire this knowledge of the world chunks
automatically, it is required to analyse the complete
user interface of the mobile app to evaluate before-
hand. For our first use-case, the analyzation of an
android app, an OpenSource approach to crawl user
interfaces called AppCrawler, was extended. This ap-
plication is an automatic UI testing tool for Android
based on UIAutomator, a UI testing framework suit-
able for cross-app functional UI testing across system
and installed Android applications.

AppCrawler uses a Depth-first search algorithm
(Cormen, 2009) to traverse through an apps interface.
DFS is an algorithm for traversing or searching tree or
graph data structures (Cormen, 2009). By using the
DFS for our use-case, every screen of the application
is traversed.

The existing implementation needed to be ex-
tended to extract the text value of each clickable menu
item. Additionally, it was necessary to extend the
AppCrawler to store all menu-item to target relations

which are then used to create the knowledge of the
world for the ACT-R model. Targets in this case are
the leaves of the search tree, e.g. alcohol-free beer,
menu-item to target relations would be bottle-shop -
alcohol-free beer and beer - alcohol-free beer. The
automatically extracted information can then be sup-
plied as knowledge of the world chunks to the ACT-R
model.

3.3.3 Pre-activation of Targets

In a further step, the pre-activation of these targets
will be weighted depending on how often they appear
in the same sentence in written language databases
(such as Wikipedia). Such an approach is used in
combination with ACT-R and described in more de-
tail in CogTool Explorer (Teo and John, 2008).

4 DISCUSSION

Some questions remain open and more work is re-
quired until a developers’ version of the tool can be
launched. For many aspects of the tool, cognitive
models still need to be developed and evaluated.

Currently, we are exploring possibilities to model
elderly users with ACT-R and incorporate such mech-
anism into the tool.

We would also like to extend the cognitive models
for different cultural backgrounds (e.g. reading direc-
tion in arabic).

Furthermore, the UI analyzation approach needs
to be extended to cover different kinds of app layouts
(e.g. text-style, icon-style) as well as different app
development platforms (e.g. iOS).

As a next step, we want to apply the modelling
approach of the use-case to a common used applica-
tion and compare the model results with user data. If
this is successful, this is a strong proof of concept that
ACT-R-based cognitive modelling is indeed useful for
usability testing.

We are often asked why we attempt to model with
ACT-R instead of using machine learning approaches
to simulate user behaviour. With enough training and
data, neural network approaches (e.g. machine learn-
ing algorithms) can probably predict user behaviour
as well; however they cannot offer any insight into
why these results are obtained. The cognitive pro-
cesses of users leading to the outcome are a black
box. Thus, no advice on cognitive aspects to design-
ers on how to change the applications can be given
by such an approach in comparison to an ACT-R ap-
proach. Given that the use-case is fully automated
(see 3.3.2) and pre-activation of the knowledge of

HUCAPP 2017 - International Conference on Human Computer Interaction Theory and Applications

170

the world chunks is available (see 3.3.3), an ACT-R
model can help with finding problems related to cog-
nitive aspects. Failures of a model related to a missing
knowledge of the world chunk for a target (e.g. the
model is searching for alcohol-free-beer, it looks at
bottle shop but can’t retrieve a knowledge of the world
chunk linking bottle shop to to alcohol-free beer) can
be interpreted to solve those problems. For example,
a retrieval failure of the knowledge of the world chunk
can occur because it had too low of an activation value
and this should be interpreted as a bad labeling choice
(rename bottle shop).

Furthermore, our approach (other than machine
learning approaches) does not require a large amount
of data to work. Once the ACT-R model has been
tested for smaller empirical sample sizes (e.g. 20 par-
ticipants) it is possible to estimate reliable usability
criteria if it predicts the main usability criteria accord-
ingly. If the fit to the empirical data is satisfying, the
model should be tested with another similar app, and
if it is successful again, it will be incorporated in the
tool.

5 LIMITATIONS

ACT-R’s level of detail on predicting visual processes
is not detailed enough to simulate how complex visual
information is processed and perceived, as is used in
map or game applications. Thus, deciphering usabil-
ity effects of such applications is out of the scope of
our tool. We are looking for cooperations with other
usability approaches that focus more on analyzing vi-
sual processing.

REFERENCES

Amalfitano, D., Fasolino, A. R., Tramontana, P.,
De Carmine, S., and Memon, A. M. (2012). Using gui
ripping for automated testing of android applications.
In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE
2012, pages 258–261, New York, NY, USA. ACM.

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? Oxford University Press, USA.

AppBrain (2016). Number of available android appli-
cations. https://www.appbrain.com/stats/number-of-
android-apps. Retrieved 2016-01.

Byrne, M. D., Anderson, J. R., Douglass, S., and Matessa,
M. (1999). Eye tracking the visual search of click-
down menus. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI
’99, pages 402–409, New York, NY, USA. ACM.

Choi, W., Necula, G., and Sen, K. (2013). Guided gui test-
ing of android apps with minimal restart and approxi-
mate learning. SIGPLAN Not., 48(10):623–640.

Cormen, T. H. (2009). Introduction to algorithms, chapter
22.3: Depth-first search, pages 540–549. MIT press.

Das, A. and Stuerzlinger, W. (2007). A cognitive simulation
model for novice text entry on cell phone keypads.
In Proceedings of the 14th European Conference on
Cognitive Ergonomics: Invent! Explore!, ECCE ’07,
pages 141–147, New York, NY, USA. ACM.

Dörr, L.-M., Russwinkel, N., and Prezenski, S. (2016). Act-
droid: Act-r interacting with android applications. In
Reiter, D. and Ritter, F. E., editors, Proceedings of the
14th International Conference on Cognitive Modeling
(ICCM 2016), pages 225–227, University Park, PA:
Penn State.

Gallagher, M. A. and Byrne, M. D. (2015). Modeling pass-
word entry on a mobile device. In Proceedings of the
2015 International Conference on Cognitive Model-
ing.

Greene, K. K., Tamborello, F. P., and Micheals, R. J. (2013).
Computational cognitive modeling of touch and ges-
ture on mobile multitouch devices: Applications and
challenges for existing theory. In International Con-
ference on Human-Computer Interaction, pages 449–
455. Springer.

Harrison, R., Flood, D., and Duce, D. (2013). Usability
of mobile applications: literature review and rationale
for a new usability model. Journal of Interaction Sci-
ence, 1(1):1.

John, B. E., Prevas, K., Salvucci, D. D., and Koedinger,
K. (2004). Predictive human performance modeling
made easy. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 455–
462. ACM.

Nielsen, J. (1994). Enhancing the explanatory power of
usability heuristics. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’94, pages 152–158, New York, NY, USA. ACM.

Prezenski, S. and Russwinkel, N. (2016). Towards a gen-
eral model of repeated app usage. In Reiter, D. and
Ritter, F. E., editors, Proceedings of the 14th Inter-
national Conference on Cognitive Modeling (ICCM
2016), pages 201–207, University Park, PA: Penn
State.

Raufaste, E. (2006). Air traffic control in act-r: A compu-
tational model of conflict detection between planes.
In Proceedings of the International Conference on
Human-Computer Interaction in Aeronautics (HCI-
Aero’06), pages 258–259.

Ritter, S., Anderson, J. R., Koedinger, K. R., and Corbett,
A. (2007). Cognitive tutor: Applied research in math-
ematics education. Psychonomic bulletin & re-
view, 14(2):249–255.

Teo, L. and John, B. E. (2008). Cogtool-explorer: to-
wards a tool for predicting user interaction. In CHI’08
Extended Abstracts on Human Factors in Computing
Systems, pages 2793–2798. ACM.

Predictive Cognitive Modelling of Applications

171

