
An Authoring Tool to Elicit Knowledge to be Taught without
Programming

Awa Diattara1,2, Nathalie Guin1, Vanda Luengo3 and Amélie Cordier1
1Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205, F-69622, France

2Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
3Sorbonne Université, UPMC Université Paris 6, F-75005, CNRS, UMR 7606, LIP6, F-75005, Paris, France

Keywords: Authoring Tool, Knowledge Acquisition, Problem Solving Methods, Intelligent Tutoring Systems.

Abstract: Knowledge acquisition is a crucial problem for the design of Intelligent Tutoring Systems (ITSs). To
overcome this problem, authoring tools have been proposed. Over two dozen of authoring tools have been
built since the earliest days of ITS, but each of them focuses on a particular kind of ITSs such as constraint-
based tutors or model-tracing tutors. In the context of the AMBRE project, we are interested in ITSs teaching
problem-solving methods. Such ITSs enable learners to acquire a specific method in problem-solving. Despite
of the variety of existing authoring tools, these tools do not meet our needs either because approach adopted
do not match to AMBRE principle or because they do not allow to represent all knowledge needed to design
an AMBRE ITS. We propose AMBRE-KB, an authoring tool to help authors to elicit knowledge needed for
the design of AMBRE ITSs. This tool supports the acquisition of knowledge to be taught, and the description
of problems to be solved. We present the authoring process and illustrate it using French verb conjugation
domain. A preliminary evaluation shows that AMBRE-KB is successful in producing domains models but
more thorough evaluation is planned.

1 INTRODUCTION

The work we present in this paper takes its origin in
the AMBRE project (Guin-Duclosson et al. 2002)
The purpose of this project is to design Intelligent
Tutoring Systems (ITSs) for teaching problem
solving methods (Schoenfeld, A. 1988; Schoenfeld
1985). Such ITSs enable the learner to acquire a
specific method in problem-solving. In each
application domain, a method is based on a
classification of problems and solving tools.
To assist the learner in building his/her own
classification, the AMBRE project proposes a
learning process based on reasoning by analogy,
called the AMBRE cycle (Nogry et al. 2008). The
AMBRE cycle consists in showing first solved
problems (serving as cases-base initialization) to the
learner and then encouraging him/her to apply
analogical reasoning to solve other problems.
AMBRE ITSs are based on a knowledge-based
system coded in Prolog, a programming language for
knowledge representation. This knowledge-based
system relies on a problem solver and uses two main
types of knowledge: knowledge about the method to

be taught and knowledge to guide the learner when
he/she solves problems, providing assistance and
diagnosing his/her answers.

Building an AMBRE ITS, like any other ITS, is a
labor-intensive process that requires expertise in the
domain application and in programming (Murray
2003; Woolf & Cunningham 1987). Our goal is to
reduce the effort of making AMBRE ITSs by building
an authoring tool that can generate the domain
models. This tool should provide assistance to the
authors during knowledge elicitation process. Our
intention is to enable authors with no Prolog
programming expertise to build their own ITS in the
domain they are interested in.

Many authoring tools have been proposed in the
literature (Blessing et al. 2007; Mitrovic et al.;
Murray 2003a), but as far as we know, none of these
tools meet our need, because either they do not match
to AMBRE principle or do not allow to represent all
knowledge needed for the design of an AMBRE ITS.
This is why we propose to design AMBRE-KB, an
authoring tool for the AMBRE project.

This paper presents AMBRE-KB, and illustrates
the process of creating an ITS using this tool. This

82
Diattara, A., Guin, N., Luengo, V. and Cordier, A.
An Authoring Tool to Elicit Knowledge to be Taught without Programming.
DOI: 10.5220/0006315100820091
In Proceedings of the 9th International Conference on Computer Supported Education (CSEDU 2017) - Volume 1, pages 82-91
ISBN: 978-989-758-239-4
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

authoring tool assists the author in the process of
knowledge acquisition and generates a Prolog version
of this knowledge which is directly usable by the ITS.

The paper starts with a brief introduction related
to knowledge acquisition methods and techniques
used within ITSs authoring tools. Section 3 details the
AMBRE-KB authoring tool and the knowledge
acquisition process proposed. We also include a
preliminary evaluation about how AMBRE-KB can
be used to elicit knowledge needed for a given
domain of learning. Section 4 presents conclusion and
directions of future work.

2 RELATED WORK

In the literature, ITSs authoring tools have been
classified into two main groups: pedagogy-oriented
and performance-oriented (Murray 2003a).
Pedagogy-oriented systems are those that focus on
instructional planning and teach relatively fixed
content. On the other hand, performance-oriented
tools focus on providing rich learning environments
in which students can learn skills by practicing them
and receiving feedback.

REDEEM (Ainsworth et al. 2003; Ainsworth &
Grimshaw 2003), ISD-Expert (Tennyson & Breuer
1994) and DNA (Shute et al. 1998) are examples of
the first category of authoring tool. To acquire
knowledge, these systems use an interactive dialogue
box. But, one of the notorious limits of these systems
is that generally, experts feel constrained by the fixed
sequence of data entry.

Further work focused on the acquisition of
procedural knowledge. Several systems have been
developed. We may mention for example DISCIPLE
(Tecuci & Keeling 1999), DEMONSTR8 (Murray
2003b). In DEMONSTR8, for example, the system
infers production rules using programming-by-
demonstration techniques, coupled with methods to
further abstract the generated production.

Nevertheless, these systems are limited to
domains where the knowledge can be represented
step by step.

ASPIRE (Mitrovic et al. 2006), an authoring that
enables the design of constraint-based tutors, belongs
to the category of performance-oriented tools. To
acquire knowledge in this system, the authors use
ontologies: (1) construction of the domain ontology,
(2) acquisition of syntactic constraints directly from
the ontology, and (3) use of a dialog box with the
expert in order to infer semantic constraints. But, this
tool is limited to models based on constraints.

CREAM-Tools (Nkambou et al., 2003) also

belongs to the category of performance-oriented tools
since it allows the connection between skills and how
to acquire them. For example, specific learning
materials are linked to specific skills to support their
learning. But approach adopted with this tool does not
match to AMBRE principle.

Another authoring tool in this category is CTAT
(Cognitive Tutor Authoring Tools). CTAT assists
authors in the creation and the delivery of two kinds
of tutors: cognitive tutors (Koedinger & Corbett
2006) and example-tracing tutors (Aleven et al. 2009;
Aleven et al. 2016). Cognitive tutors are based on a
cognitive model with rules of production, and
concern generally tasks of problem resolution. The
resolution is led step by step, and the behavior of the
student at each stage is analyzed and corrected if it
deviates from the planned procedure. However,
cognitive tutors are limited to domain where the task
of problem resolution is made step by step and where
all the knowledge of the domain can be represented
in the form of production rules. Moreover, the design
of such tutors requires programming skills. Example-
tracing tutors, the second type of tutors built by
CTAT, have the advantage to be quickly developed
without programming. To build an example-tracing
tutor, the author builds at first the student interface
using graphic tools, then he/she defines a graph of
resolution of the strategies of resolution of the
learners and their misconceptions. Example-tracing
tutors present the same inconvenient as model-tracing
tutors concerning the resolution of problems which is
led step by step.

ITSs designed within the AMBRE project
belongs also to the category of performance-oriented
tools, since they provide a learning environment in
which students can learn how to solve problems in
various domains and receive feedback about their
answers. In particular, AMBRE ITSs are based on a
knowledge-based system coded in Prolog. This
system relies on a solver which uses two categories of
knowledge: knowledge about the method to be taught
and knowledge to guide the learner providing him/her
assistance and diagnosis of his/her answers. The
knowledge to be taught is constituted by three types
of knowledge: classification knowledge,
reformulation knowledge and resolution knowledge.
Problems are given to the system as a model we call
descriptive model (presented in section in section
3.1). To solve a problem for a given domain of
learning, the solver uses the classification knowledge
and the reformulation knowledge to (i) determine the
class of the problem and (ii) to build a new model of
the problem called operational model. Then, the
resolution itself consists in applying to the operational

An Authoring Tool to Elicit Knowledge to be Taught without Programming

83

Figure 1: Functioning of AMBRE solver.

model the solving technique associated with the class,
to find the solution of the problem (Figure 1).

Classification knowledge is in the form of a
classification tree of problems to be solved.
Reformulation knowledge is constituted by a set of
rules. These rules enable, from the statement of the
problem, to identify the most specific class of the
classification tree to which the problem belongs.
Resolution knowledge is constituted by the solving
techniques associated to each specific class of the
classification tree. We considered existing authoring
tools defined below, but they do not meet our needs
either because they do not match to AMBRE
principle or because techniques used do not enable to
represent all knowledge needed by an AMBRE ITS.
That is why we propose to define AMBRE-KB.

3 OVERVIEW OF AMBRE-KB

The goal of AMBRE-KB (AMBRE-Knowledge
Builder) is to assist authors in the in creation of ITSs
teaching problem-solving methods in the domain they
are interested in. Our intention is specially to allow
the description of knowledge needed by the system
without any Prolog programming.

AMBRE-KB enables the author to explicit
knowledge needed by an ITS and generates a Prolog

version of this knowledge in order to constitute the
knowledge bases of the ITS.

The acquisition of knowledge in AMBRE-KB is an
automated process based on meta-models. In order to
do so, we defined a meta-model for each type of
knowledge to be acquired. These meta-models define
the form of knowledge to be defined and constrain the
design process enabling to do so.

3.1 Authoring Process

The authoring process in AMBRE-KB consists of
nine steps summarized on Table 1.

Table 1: Authoring process.

1. Choice of a domain of learning
2. Choice of the types of exercises to be solved
3. Definition of the vocabulary for the domain of

learning
4. Description of problems to be solved by the system

and the learner
5. Description of knowledge to be taught (classification

knowledge, reformulation knowledge and resolution
knowledge)

6. Design of the interface for students
7. Description of knowledge to guide the learner

(proving him/her help and diagnosing his/her
answers)

8. Generation of knowledge models by AMBRE-KB
9. Test of generated models by the solver

CSEDU 2017 - 9th International Conference on Computer Supported Education

84

Phase 1: Choice of a Domain of Learning

The first task to do when designing an AMBRE ITS
is to choose the application domain. AMBRE ITSs
are based on a classification of problems to be solved
and solving techniques. Thus, the author has to
choose a domain in which he/she can establish a
classification of problems and solving techniques.

Figure 2 shows an example of classification for the
domain: French verbs conjugation.

Phase 2: Choice of the Types of Exercises to
be Solved

It is important before beginning the knowledge
elicitation process, that the author think about the type
of problems to propose to the learner. This second
step will help him/her to define the vocabulary (phase
3) - which play a central role in definition of
knowledge - and the classification tree (phase 4).

Phase 3: Definition of the Vocabulary for the
Domain of Learning

The third step consists in the definition of the
vocabulary. We need a vocabulary because, in the
AMBRE project, problems are given to the system as
a model we call descriptive model. This model
describes a concrete situation which is the one
represented in the statement of the problem. Objects
that appear in the statement are concrete elements that
constitute the contextual aspect of the problem. For
example, in geometry, the objects can concern the
characteristics of the geometric figure (dimensions of
the segments, angles, and so on).

The objects are connected by relations to form a
concrete situation. There are properties and relations

on those objects. Each object is characterized by an
identifier and a set of characteristics. The vocabulary
is constituted by all the objects needed to describe
problems and the question to be answered.

Phase 4: Description of Problems to be
Solved by the System and the Learner

In the fourth step, the author uses the vocabulary to
define problems to be solved by the system and the
learner. For each problem, the author has to define:
● the statement of the problem in natural language,

so that the learner can understand what to do.
● the descriptive model of the problem, for the

system. For that, he/she chooses in the
vocabulary, objects concerned, he/she then
instantiates objects (giving a name and a type for

● each characteristic of the object). He/she finally
specifies the question to be answered.

Phase 5: Description of Knowledge to be
Taught

Using AMBRE-KB, the author defines the
knowledge to be taught: classification knowledge,
reformulation knowledge, and resolution
knowledge (Diattara et al. 2016)
Classification Knowledge is in the form of a
classification tree where a class C2 is subclass of a
class C1 if any problem of C2 is also a problem of C1.
The root class is defined as the most general class, and
the leaves, the most specific ones. For each class a
discriminating attribute is defined. This attribute
must have different values in each subclass. Non-
discriminating attributes - called problem attributes –
can also be defined if they make sense for problems

Figure 2: Conjugation domain classification.

An Authoring Tool to Elicit Knowledge to be Taught without Programming

85

of the class. Problem attributes are useful for the
resolution and their values depend on the problem to
solve. Classes that are specific enough so that we can
assign them a resolution technique are called
operational classes.

Figure 3 shows a part of the classification graph
for conjugation, defined with AMBRE-KB.

To define the classification tree, the author can
choose to build the tree from the root to the leaves or
vice-versa. He/she has the possibility to define all
classes, and then organize them as a hierarchy. He/she
can also organize the classes into a hierarchy as the
definition of classes progresses. Some classes can be
defined adapting other classes.

The system checks that all non-operational classes
have at least one subclass. Operational classes can
have subclasses which are more specific. When two
classes have the same discriminating attribute, the
system suggests to the author to define the attribute at
the level of their lowest common ancestor class.
Reformulation Knowledge. In order to solve a given
problem, the solver needs first to determine the class
this problem belongs to. For that, the solver needs
rules allowing to calculate the value of attributes
(discriminating or not), thus enabling to locate the
problem in the classification tree. All the rules
constitute the reformulation knowledge. A rule is
defined by its name, a set of premises related to the
elements of the statement (objects of the problems),
and a set of conclusions enabling to calculate or to
modify the values of the attributes.

For example, Rule 1 enables to conclude about the
value of the attribute group.

Rule 1:
If for a given problem
 - there is a verb V
 - the suffix of V is “er”
 - V is different from the verb “aller”
Then, the value of the attribute group is 1st group.

To define rules with AMBRE-KB, the author can
choose, for example, to define rules as the definition
of the classes progresses. In this case, for each class
defined in the tree, he/she has to define the attributes
(discriminating or not), and then the rules that enable
to first define the whole classification tree and then,
process to the definition of rules.

The system checks if the expert has associated
rules to each attribute defined in the classification tree
in order to calculate their value.

For each rule, the system also checks if the
conclusion part of the rule provides information about
the attribute.

Figure 4 is a representation with AMBRE-KB of
rule 1.

On (1) we have the list of attributes, and for each
of them the rules enabling to determine its different
values.

On (2), we have the premises of the rule.
(3) shows the conclusion of the rule which enable

to conclude about the value of the concerned attribute.
Resolution Knowledge. Each operational class in the
classification tree has an associated technique.

Figure 3: A part of conjugation tree defined with AMBRE-KB.

CSEDU 2017 - 9th International Conference on Computer Supported Education

86

Figure 4: Definition of rule 1 using AMBRE-KB.

These techniques constitute the resolution
knowledge. They are specific to each application
domain. For example, in the domain of arithmetic
problems, a resolution technique provides a plan for
solving an exercise and a formula for calculating its
numerical solution. For example, Technique 1 shows
the technique to apply to conjugate verbs of the class
C_present_1stG_Reg to which the problem P1
belongs.
Technique 1
- determine the radical of the verb by removing the
suffix “er” from the verb
- build a list of six elements with the [radical]
- build a list with the following elements [e, es, e, ons,
ez, ent]
- concatenate the two lists in order to find the solution.

To explicit resolution knowledge using AMBRE-
KB, the author has two possibilities: he/she can

directly associate to each operational class of the
classification tree the corresponding resolution
technique or, he/she can define all classes first, and
then define all resolution techniques, and finally
connect each resolution technique to corresponding
operational class (or classes).

Figure 5 is a representation with AMBRE-KB of
technique 1 defined on section 2.3.

Phase 6: Design of the Interface for Students

The sixth step consists in designing the interface of
the ITS, and especially the tasks the student must
perform to solve problems, based on the AMBRE
cycle. But, as AMBRE-KB does not yet support the
design of the interface, the development of this
interface must be implemented by an IT specialist.

An Authoring Tool to Elicit Knowledge to be Taught without Programming

87

Figure 5: Definition of Technique 1 using AMBRE-KB.

Phase 7: Description of Knowledge to Guide
the Learner

Using AMBRE-KB, and based on knowledge to be
taught defined in phase 5, and the steps of resolution
defined in phase 6, the author defines the knowledge
to guide the learner.

Phase 8: Generation of Knowledge Models
by AMBRE-KB

For each type of knowledge, AMBRE-KB generates
a Prolog version of this knowledge as a model. All the
knowledge models generated constitute the
knowledge bases of the ITS that the solver can use to
solve problems.

Phase 9: Test of Generated Knowledge
Models by the Solver

In the last phase (ninth step), the author tests if
knowledge generated by AMBRE-KB enable the
solver to solve the different problems. For each
problem, he/she tests the resolution with the solver; if
the solver is able to solve it, it gives the solution of

the problem. Otherwise, it sends an error message
which should enable the author to understand and to
correct the error.

4 PRELIMINARY EVALUATION

We conducted a first experiment to verify if AMBRE-
KB is apt to encode correctly knowledge to be taught
(classification knowledge, reformulation knowledge
and resolution knowledge) so that the solver can use
it to solve problems.

4.1 Evaluation Protocol

We choose to perform the experiment with two
existing AMBRE ITSs.

Two domains were tested: arithmetic problems
for seven-year-old to nine-year-old pupils and French
verb conjugation.

The experiment procedure consisted in three
stages. We began by describing all knowledges on
paper, independently from Prolog. For each of the
two domains, we first defined the different problems

CSEDU 2017 - 9th International Conference on Computer Supported Education

88

to be solved. We then proposed a vocabulary to
describe these problems. Next, we defined the
classification tree. For each problem, we defined rules
allowing to locate this problem in the classification
tree. Next, we defined the resolution technique for
each operational class of the classification tree.

In the second step, we used AMBRE-KB to elicit
these knowledges. Once we finished with knowledge
elicitation, the system generated the knowledge
models in a Prolog version. Finally, we tested each
problem with the solver. If the solver was able to
solve the problem, it showed the class the problem
belongs to, the lists of rules executed by the system
and the solution of the problem. When the solver was
not able to solve a problem, it sent an error message
enabling to know what did not work and how to
correct it.

4.2 Results and Discussion

For French verbs conjugation, we defined with
AMBRE-KB:
● 21 classes, among which 13 are operational,
● 15 rules,
● 13 solving techniques,
● 80 problems to solve.

At the end of the experiment, AMBRE-KB
generated the Prolog version of this knowledge. The
solver was able to solve 100% of the problems. We
can deduce that AMBRE-KB has correctly generated
knowledge models so that they can be used by the
solver to solve problems.

For arithmetic problems, we defined with
AMBRE-KB:
● 21 classes, among which 14 are operational,
● 18 rules,
● 14 solving techniques,
● 98 problems to solve.

For 93% of the problems, the solver was able to solve
problems correctly using generated knowledge
models. For 7% of problems, the solver first sent an
error message to explain what did not work. For 4%
of the problems, we made an error on the value of the
discriminating attribute. The solver was not able to
find a reformulation rule to use, thus it was not able
to locate the problem in the classification tree. For the
3% remaining problems, the solver sent an error
message because it failed in applying the solving
techniques, because of lack of knowledge.

Once the missed or erroneous knowledge were
fixed, the solver was able to solve the 7% remaining
problems.

The objective of this first experiment was to
ensure that AMBRE-KB was able to correctly

generate knowledge models that the solver can use to
solve problems. The next step, which is the most
important for us, is to test the utility and usability of
AMBRE-KB by authors who are not IT experts. For
this experiment, we plan to process in three steps:
● The first step will consist in presenting to the

author the principle of the AMBRE project, and
the meta-models of knowledge to be acquired
(classification knowledge, reformulation
knowledge and resolution knowledge). We will
also present the objective of AMBRE-KB. At the
end of this first step, we will invite the author to
think about the domain in which he/she wants to
design an AMBRE ITS.

● In the second step, we will ask him/her to choose
a domain. Next, based on knowledge models, we
will ask him/her to elicit all knowledge needed
on paper. He/she will begin by defining the types
of problems to be solved. Next, he/she will define
a vocabulary for the domain. He/she then will
define the problems using the vocabulary.
Finally, he/she will define the classification
knowledge, the reformulation knowledge and the
resolution knowledge. At the end of this step, the
author will have described all knowledge needed
to solve problems.

● Finally, the author will use AMBRE-KB to elicit
this knowledge. Once the knowledge elicitation
is complete, the system will generate the
knowledge models and the author will be able to
test each problem with the solver. For each of
them, the solver will send the solution if all
knowledge needed is correctly elicited,
otherwise, it will send an error message enabling
the author to understand what was wrong and to
correct or complete missed knowledge.

During the experiment, the author will be filmed and
the verbal exchanges will also be recorded. During
the third step, we will observe his/her interaction with
the software and take notes on the time passed on
every type of knowledge, the difficulties met during
the knowledge elicitation, gestures and non-verbal
behavior of the author, his/her remarks and questions.
When the questions asked by the author concern the
functioning of the tool, we will first orient him/her on
the help proposed by the system. However, if the help
proposed by the system is not sufficient, we will give
him/her the necessary information, so that he/she can
continue the process of knowledge elicitation.
If we notice that the author does not move forward in
knowledge elicitation, we will consider that he/she
feels difficulties about the functioning of the tool. In
this case, we will ask him/her a question to know what
he/she wants to do. If the answer of this question

An Authoring Tool to Elicit Knowledge to be Taught without Programming

89

corresponds to a feature taken into account by the
tool, we will guide him/her so that he/she can
continue the knowledge elicitation process.
Otherwise, when what he/she wants to do is not taken
into account by the tool, we will consider that the
concerned task cannot be finished, and he/she will
continue the elicitation with others types of
knowledges.

The experiment will end when the author finishes
testing all problems with the solver. He/she will
complete a questionnaire composed of many sections
about the functioning of AMBRE-KB, the proposed
interfaces, the assistance proposed during knowledge
elicitation, the feedback of the solver, and their
profile (how he/she frequently uses a computer for
example).

5 CONCLUSIONS

We provided in this article an overview of AMBRE-
KB, an authoring tool that assists authors in building
ITSs teaching problem solving methods. This tool
enables the user to elicit all knowledge needed by the
system. AMBRE-KB follows an automated process
based on knowledge meta-models. The paper presents
the knowledge acquisition process and how can
AMBRE-KB can be used to build an ITS in a given
application domain.

We conducted a first experiment to verify if
AMBRE-KB can correctly generate knowledge
models in a Prolog version, so that the solver can use
them to solve problems. The results of this
experiment were satisfactory, but thorough
evaluation is planned with non-IT experts in order to
test the usability and utility of AMBRE-KB.

This work focused on the acquisition of knowledge
about the method to be taught. The next stage will
concern the acquisition of knowledge intended to
guide the learner during his/her learning. This
knowledge will enable to propose to the learner help
and explanations of various natures according to the
step of its resolution or committed errors.

In addition, a relevant track in the continuation of
our work is the integration of features of
generalization of knowledge from cases. This feature
will enable users to define an example, rather than an
abstract knowledge, the system proposing them a
generalization of the knowledge that they can
validate. The SimStudent (Matsuda et al. 2010)
approach which is based on learning abstract
knowledge from examples would be appropriate in
the context of this work.

ACKNOWLEDGEMENTS

We thank the Auvergne-Rhône Alpes region for
granting the scholarship that supports this thesis
work.

REFERENCES

Ainsworth, S. et al., 2003. REDEEM: Simple Intelligent
Tutoring Systems From Usable Tools. In T. Murray, S.
B. Blessing, & S. Ainsworth, eds. Authoring Tools for
Advanced Technology Learning Environments: Toward
Cost-Effective Adaptive, Interactive and Intelligent
Educational Software. Dordrecht: Kluwer Academic,
pp. 205–232.

Ainsworth, S. E. & Grimshaw, S., 2003. Evaluating the
REDEEM Authoring Tool: Can Teachers Create
Effective Learning Environments? International
Journal of Artificial Intelligence in Education, 14(3/4),
pp.279–312.

Aleven, V. et al., 2009. A new paradigm for intelligent
tutoring systems: Example-tracing tutors. International
Journal of Artificial Intelligence in Education, 19(2),
pp.105–154.

Aleven, V. et al., 2016. Example-Tracing Tutors: Intelligent
Tutor Development for Non-programmers.
International Journal of Artificial Intelligence in
Education, 26(1), pp.224–269.

Blessing, S. B. et al., 2007. Authoring Model-Tracing
Cognitive Tutors. International Artificial Intelligence
in Education Society (IJAIED), 19(2), pp.189–210.

Diattara, A. et al., 2016. Towards an Authoring Tool to
Acquire Knowledge for ITSs Teaching Problem
Solving Methods. In EC-TEL, 2016, Lyon, France, pp.
575-578.

Guin-Duclosson, N., Jean-Daubias, S. & Nogry, S., 2002.
The Ambre ILE: How to Use Case-Based Reasoning to
Teach Methods. In Conference: Intelligent Tutoring
Systems, 6th International Conference, ITS 2002,
Biarritz, France and San Sebastian, Spain. Biarritz, pp.
782–791. Available at: http://link.springer.com/
10.1007/3-540-47987-2_78.

Koedinger, K. R. & Corbett, A. T., 2006. Cognitive tutors:
technology bringing learning science to the classroom.
In R. K. Sawyer, ed. The Cambridge Handbook of the
Learning Sciences. Cambridge Handbooks in
Psychology. Cambridge University Press, pp. 61–77.

Matsuda, N., Cohen, W. W. & Koedinger, K. R., 2010.
Learning by teaching SimStudent: technical
accomplishments and an initial use with students. In
Intelligent Tutoring Systems: 10th International
Conference, ITS 2010, Pittsburgh, PA, USA, June 14-
18, 2010, Proceedings, Part I. Pittsburgh, USA, pp.
317–326.

Mitrovic, A. et al., ASPIRE: An Authoring System and
Environment for Constraint-Based Tutors Deployment.
Available at: http://hdl.handle.net/10092/3478.

CSEDU 2017 - 9th International Conference on Computer Supported Education

90

Mitrovic, A. et al., 2006. Authoring Constraint-Based
Tutors in ASPIRE. In Springer Berlin Heidelberg, pp.
41–50.

Murray, T., 2003. An Overview of Intelligent Tutoring
System Authoring Tools: Updated analysis of the state
of the art. In Authoring tools for advanced technology
learning. Available at: http://link.springer.com/
chapter/10.1007/978-94-017-0819-7_17 [Accessed
December 12, 2014].

Murray, T., 2003a. An Overview of Intelligent Tutoring
System Authoring Tools: Updated analysis of the state
of the art. In T. Murray, S. B. Blessing, & S. Ainsworth,
eds. Authoring Tools for Advanced Technology
Learning Environments: Toward Cost-Effective
Adaptive, Interactive and Intelligent Educational
Software. Dordrecht: Springer Netherlands, pp. 491–
544. Available at: http://dx.doi.org/10.1007/978-94-
017-0819-7_17 [Accessed December 12, 2014].

Murray, T., 2003b. Authoring intelligent tutoring systems:
An analysis of the state of the art. In T. Murray, B.
Stephen, & A. Shaaron, eds. Authoring Tools for
Advanced Technology Learning Environments. Kluwer
Academic Publishers, pp. 98–129.

Nkambou, R., Frasson, C. & Gauthier, G., 2003. CREAM-
Tools: An authoring Environment for Knowledge
Engineering in Intelligent Tutoring Systems. In T.
Murray, S. B. Blessing, & S. Ainsworth, eds. Authoring
Tools for Advanced Technology Learning
Environments. Dordrecht: Springer Netherlands, pp.
269–308.

Nogry, S., Guin, N. & Jean-Daubias, S., 2008. AMBRE-
add: An ITS to Teach Solving Arithmetic Word
Problems. Technology, Instruction, Cognition and
Learning, 6(1), pp.53–61. Available at:
http://liris.cnrs.fr/publis/?id=3548.

Schoenfeld, A., H., 1988. Problem solving in context. In I.
Charles, R & A. Silver, E., eds. The teaching and
assessing of mathematical problem solving. Reston,
VA: The National Council of Teachers of
Mathematics., pp. 82–92.

Schoenfeld, A. H., 1985. Mathematical Problem Solving,
Academic Press.

Shute, V., Torreano, L. & Willis, R., 1998. DNA —
Uncorking the Bottleneck in Knowledge Elicitation and
Organization. In B. Goettl et al., eds. Intelligent
Tutoring Systems SE- 20. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 146–155.

Tecuci, G. & Keeling, H., 1999. Developing an intelligent
educational agent with disciple. International Journal
of Artificial Intelligence in Education, 10(3–4), pp.221–
237.

Tennyson, R. & Breuer, K., 1994. ISD EXPERT: An
Automated Approach to Instructional Design. In R.
Tennyson, ed. Automating Instructional Design,
Development, and Delivery SE - 9. NATO ASI Series.
Springer Berlin Heidelberg, pp. 139–161. Available at:
http://dx.doi.org/10.1007/978-3-642-78389-0_9.

Woolf, B. & Cunningham, P.A., 1987. Multiple Knowledge
Sources in Intelligent Teaching Systems. IEEE Expert,
2(2), pp.41–54.

An Authoring Tool to Elicit Knowledge to be Taught without Programming

91

