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Abstract:  In object-oriented software, unit testing is a level of software testing where each individual class is tested by 
a dedicated unit test class. Unfortunately, due to time and resources constraints, this phase does not cover all 
classes. The testing efforts are often focused on particular classes. In this paper, we investigate an approach 
based on software information history to support the prioritization of classes to be tested. To achieve this 
goal, we first analyzed different attributes of ten open-source Java software systems for which JUnit test 
cases have been developed for several classes. We used the mean and the logistic regression analysis to 
characterize the classes for which JUnit test classes have been developed by testers. Second, we used two 
classifiers trained on metrics values and unit tests information collected from the selected systems. The 
classifiers provide, for each software, a set of classes on which unit testing efforts have to be focused. The 
obtained sets have been compared to the sets of classes for which JUnit test classes have been developed by 
testers. Results show that: (1) the metrics average values of tested classes are significantly different from the 
metrics average values of other classes, (2) there is a significant relationship between the fact that a JUnit 
test class has been developed for a class and its attributes, and (3) the sets of classes suggested by classifiers 
reflect the testers’ selection properly. 

1 INTRODUCTION 

Testing plays a crucial role in software quality 
assurance. It is, however, a time and resource-
consuming process. Unit testing is one of the main 
phases of the testing process where each software 
unit is early and individually tested using dedicated 
unit test cases. In object-oriented (OO) software 
systems, units are software classes and testers 
usually write a dedicated unit test class for each 
software class they decided to test. The main goal of 
unit testing is to early reveal the faults of software 
classes. In the case of large-scale OO software 
systems, because of resources limitation and time 
constraints, the unit testing efforts are often focused. 
Testers usually select a limited set of software 
classes for which they write dedicated unit tests. 
Knowing that it is often difficult and not realistic to 
test equally all software classes, it is important for 
testers to target the most critical and fault-prone 
ones. Unfortunately, the task is not obvious and 
requires a deep analysis of software. In this paper, 
we focus on unit testing of classes and particularly 

on how to automatically target suitable classes for 
unit testing using classifiers algorithms trained from 
unit tests information and source code metrics. 

A large number of OO metrics were proposed in 
literature (Chidamber and Kemerer, 1994; 
Henderson-Sellers, 1996). Some of these metrics, 
related to different OO internal class attributes, were 
already used in recent years to predict unit testability 
of classes in OO software systems (Gupta et al., 
2005; Bruntink and Van Deursen, 2006; Badri et al., 
2010; Badri and Toure, 2011; Badri and Toure, 
2012; Toure et al., 2014a; Toure et al., 2014b). 
These studies have analyzed various open source 
Java software systems and corresponding JUnit test 
classes. One of the observations that have been made 
in these studies is that unit test cases have been 
developed only for a subset of classes.  To the best 
of our knowledge, no study focused on how the 
selection of classes for which JUnit test cases have 
been developed is made by testers, which criteria 
have been considered for the selection of these 
classes and how to automate or improve the 
selection of classes on which unit testing efforts 
have to be focused using source code metrics. One 
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of the research questions we consider in this paper 
is: can the selection of these classes (made by 
testers) for unit tests be predicted or explained by 
software classes’ attributes? As far as we know, this 
issue has not been empirically investigated. 

Understanding the testers’ selection criteria using 
software metrics could help to: (1) know whether 
these criteria are similar (reproducible) or not (from 
one system to another), (2) characterize typical 
software classes that require unit test cases to be 
written, and (3) automate the selection of suitable 
classes for the unit testing phase. In this case, we 
could automatically determine the classes requiring 
a more unit testing effort on which testers have to 
focus to ensure software quality. We used, in this 
study, some OO metrics to characterize software 
classes. We considered three class attributes: size, 
complexity and coupling, which we believe to be 
determinative factors in the choice of testers. The 
objective is first to identify the metrics that best 
distinguish the classes for which unit test cases have 
been developed by testers from other classes. 
Software metrics will be used in a second step, in 
combination with test information history, to explore 
an automatic approach to prioritize the classes on 
which the unit testing efforts have to be focused. 

The rest of the paper is organized as follows. 
Section 2 presents some related works. Section 3 
presents the OO software metrics we used in our 
study. Section 4 describes the data collection 
procedure. Section 5 presents the empirical study 
that we conducted. Section 6 focuses on the main 
threats to validity related to the empirical 
experimentations. Finally, Section 7 concludes the 
paper, summarizes the contributions of this work 
and outlines several directions for future 
investigations. 

2 RELATED WORK 

Many researchers have proposed different tests 
prioritization techniques in the literature. Test cases 
prioritization has been widely discussed in the 
context of regression testing, and from different 
perspectives. The various proposed techniques are 
based on different criteria such as fault detection, 
coverage rates, software history information, and 
risk analysis. 

In fault detection based techniques, the main goal 
is to run test cases that target the most fault prone 
components. Since these components are not known 
in practice, the proposed techniques use different 
factors of fault exposure as proxies, which can be 
estimated in different ways from the software 

artifacts. In a controlled environment, Rothermel et 
al. (1999) showed that rescheduling test cases 
improve the fault detection rate during regression 
testing. The authors analyzed different test cases 
scheduling techniques and used the APFD (Average 
Percentage of Faults Detected) metric to compare 
models’ performance. Yu and Lau (2012) proposed 
a fault-based test cases prioritization that directly 
utilizes the theoretical knowledge of their fault-
detecting ability. The technique is based on the 
relationships between test cases and faults. 

In coverage based techniques, the main goal is to 
run test suites that cover most modified software 
artefacts during regression testing. This goal leads to 
fault detection rate improvement. Wong et al. (1997) 
suggest a first prioritization strategy for regression 
test case suites which optimizes the factor "cost 
coverage" (branches that have undergone the 
change). The authors focus on the prioritization of a 
subset of test cases of a test suite by using a "safe 
regression selection" technique. More complex 
algorithms will be proposed by Mirarab et al. 
(2007). The authors used Bayesian Networks to 
build a unified model based on information provided 
by CK metrics (Chidamber and Kemerer, 1994), 
changes, and coverage rates. The defined approach 
optimizes the coverage and, as a corollary, improves 
the fault detection rate when compared to the 
random test cases scheduling. The authors integrated 
later an information feedback mechanism in the 
Bayesian model in order to improve its 
performances. However, the feedback mechanism 
led to a relative slight improvement from the basic 
Bayesian approach. Walcott and Kapfhammer 
(2006) integrated time constraints in their 
prioritization technique and used genetic algorithms 
with artifact coverage rate as fitness function. The 
authors considered different levels of software 
artifacts granularity. Results showed a better APFD 
value when considering the source code block level 
of granularity. Rothermel et al. (1999) compared the 
performances of different techniques. They describe 
nine test cases prioritization techniques based on 
random prioritization, coverage prioritization and 
fault detection (using proxy) prioritization. They 
reported the empirical results by measuring the 
effectiveness of these techniques to improving fault 
detection rate (AFPD). Results provide insights into 
the tradeoffs among various techniques for test cases 
prioritization. 

The history based prioritization uses information 
from the previous regression testing of the same 
software system and current modification 
information in order to prioritize the new test suites. 
This makes the technique unsuitable for the first 
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regression testing of software. Porter and Kim 
(2002) used the historical execution data to prioritize 
test cases in a suite of regression tests. The authors 
investigated the long run performance of 
prioritization techniques based on data history 
within environment under time and resources 
constraints. The regression tests selection is driven 
by the probabilities that integrate model features and 
results of the previous test case execution. Lin et al. 
(2013) investigate the weight of used information 
between two versions of history based prioritization 
techniques. The authors propose an approach that 
mitigates the weight of information by integrating 
the source code history of faults. Results indicated 
that the approach provides a better fault detection 
rate. 

Some studies proposed mixing techniques based 
on the history of faults detection and coverage 
information. Carlson et al. (2011) conjectured that if 
test cases have common properties, then test cases 
within the same group may have similar fault 
detection ability. The authors proposed a clustering 
based prioritization technique that incorporates code 
complexity, code coverage and system data history 
of real faults. Applied to industrial software 
products, results show that the approach could 
improve the effectiveness of test cases prioritization 
techniques. 

Elbaum et al. (2004) analyzed the conditions into 
which techniques are relevant. The authors observed 
that the effectiveness of orientation techniques 
varies a lot depending on various attributes of the 
software and test suites. This makes difficult for a 
practitioner to choose an appropriate prioritization 
technique for a testing scenario. The problem has 
been addressed by analyzing the fault detection rates 
that result from applying several different 
prioritization techniques to different programs and 
their modified versions. Results provide insights and 
conditions into which types of prioritization 
techniques are or are not appropriate under specific 
testing scenarios. 

All previous techniques prioritize test suites in 
the context of regression testing. Some other 
techniques allow, upstream, the prioritizing of 
components to be tested. The main objective is to 
optimize the testing effort to target the most fault 
prone components. Boehm and Basili (2001) 
proposed a Pareto distribution in which 80% of all 
defects within software are found in 20% of the 
modules. Ray and Mohapatra (2012) rely on the 
Pareto distribution proposed by Boehm and Basili 
(2001) to address the question of components 
prioritization. The objective was to locate critical 
parts of software code that present high risks of 

faults (because of their complexity) and high impact 
(because of their severity). The authors conducted an 
empirical study on three small software systems. 
Results indicated that the proposed approach 
improves the test efficiency by targeting critical 
bugs on systems. Shihab et al. (2010) explored the 
prioritization for unit testing phase in the context of 
legacy systems. They presented an approach that 
assists testers with limited resources, to test legacy 
systems efficiently. The technique leverages the 
development history of a project to generate a 
prioritized list of functions that managers should 
focus their unit tests writing resources on. The 
approach has been evaluated on two software 
systems. The findings suggest that heuristics based 
on the function size, modification frequency and bug 
fixing frequency should be used to prioritize the unit 
tests writing efforts for legacy systems. 

The approach of Ray and Mohapatra (2012) 
ignores the history of the software, whereas the 
approach of Shihab et al. (2010) is not suitable for 
new software because it requires own software 
history information. Moreover, neither approach 
takes advantage of the large amounts of information 
available in software public repositories, coming 
from the tests of various open-source software 
systems. In this paper, we study the prioritization of 
software classes to be tested for OO software 
systems in the context of unit tests.  We conjecture 
that testers generally rely on class characteristics 
which are captured by source code metrics, in order 
to select the component for which they will write 
dedicated unit tests. Thus, we propose an approach 
that takes advantage of the experience of different 
software testers as well as objective attributes of 
software classes (metrics), in order to prioritize 
classes for which unit test cases should be written. 

3 SOFTWARE METRICS 

We present, in this section, the OO source code 
metrics we selected for the empirical study. These 
metrics have received considerable attention from 
researchers and are also being increasingly adopted 
by practitioners. In fact, several studies have shown 
that considered metrics are related to testability 
(Bruntink and Van Deursen, 2004; Gupta et al., 
2005; Bruntink and Van Deursen, 2006; Badri et al., 
2010; Badri and Toure, 2011; Badri and Toure, 
2012; Toure et al., 2014a; Toure et al., 2014b), 
maintainability (Li and Henry, 1993; Dagpinar and 
Jahnke, 2003; Zhou and Leung, 2007), and fault 
proneness (Basili et al., 1996; Zhou and Leung, 
2006; Aggarwal et al., 2009; Shatnawi, 2010). 
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Furthermore, these metrics have been incorporated 
into several development tools. Two of the selected 
metrics were proposed by Chidamber and Kemerer 
(1994). We also include in our study the well-known 
LOC metric. We give in what follows a brief 
definition of each metric. The selected source code 
metrics are related to three class attributes: coupling, 
complexity and size. 

Coupling between Objects: The CBO metric counts 
for a given class, the number of other classes to 
which it is coupled (and vice versa). 

Weighted Methods per Class: The WMC metric 
gives the sum of complexities of the methods of a 
given class, where each method is weighted by its 
cyclomatic complexity (McCabe, 1976). Only 
methods specified in the class are considered. 

Lines of Code per class: The LOC metric counts for 
a given class its number of source lines of code. 
The selected metrics have been computed using the 
Borland Together Tool (http://www.borland.com). 

4 DATA COLLECTION 

4.1 Data Collection Procedure  

The systems we selected for our study are of 
different sizes and from different domains. In 
addition, these systems have been developed by 
different teams in Java. The selected systems have 
been tested using JUnit framework. JUnit 
(http://www.junit.org/) is a simple Framework for 
writing and running automated unit tests for Java 
classes. The unit test cases in JUnit are written by 
testers in Java. JUnit gives testers some support so 
that they can write the test cases more conveniently. 
A typical usage of JUnit is to test each class Cs of 
the software by means of a dedicated test class Ct. 
To actually test a class Cs, we need to execute its test 
class Ct. This is done by calling JUnit’s test runner 
tool. JUnit will report how many of the test methods 
in Ct succeeded, and how many failed. 

By analyzing the code of the JUnit test cases of 
the selected systems, we noticed that developers 
usually name the JUnit dedicated test case classes by 
adding the prefix (suffix) “Test” (“TestCase”) into 
the name of the classes for which JUnit test cases 
were developed. This observation has been the basis 
for the identification of the link between classes and 
corresponding JUnit test classes in other previous 
studies (Bruntink and Van Deursen, 2006; Mockus 
et al., 2009; Rompaey and Demeyer, 2009). In our 
study, we adopted the same approach. The matching 

procedure has been performed on the subject 
systems by three research assistants separately in a 
first step. Results have been checked, discussed and 
validated in a second step. The software classes for 
which JUnit test classes have such naming 
mechanism are referred as tested classes. So, these 
classes are the classes on which (in each system) 
testers have deliberately focused while developing 
unit test cases. We assign the modality 1 to the set of 
tested classes and the modality 0 to the other classes. 
In what follows, we will characterize and analyze 
both categories of classes using statistics based on 
source code metrics. 

4.2 Selected Systems 

We extracted information from the repositories of 10 
open source OO software systems that were 
developed in Java. For each system, only a part of 
the classes has been tested using JUnit framework. 
The selected systems are: 
 ANT (http://www.apache.org/). ANT is a Java 
library and command-line tool that drives processes 
described in build files as target and extension points 
dependent upon each other. This system consists of 
713 classes with a total of roughly 64,000 lines of 
code. 
 DBU (http://dbunit.sourceforge.net/). DbUnit is a 
JUnit extension (also usable with Ant) used in 
database-driven projects that, among other things, 
put a database into a known state between test runs. 
This system consists of 238 classes with a total of 
roughly 12,300 lines of code. 
 IO 
(https://commons.apache.org/proper/commons-io/). 
Commons IO is a library of utilities for developing 
Input/Output functionalities. It is developed under 
Apache Software Foundation (ASF). This system 
consists of 104 classes with a total of roughly 7,600 
lines of code. 
 IVY (http://ant.apache.org/ivy/). The agile 
dependency manager known as IVY, is a popular 
dependency manager. It is characterized by 
flexibility, simplicity and tight integration with 
Apache Ant. This system consists of 610 classes 
with a total of roughly 50,080 lines of code. 
 LOG4J (http://wiki.apache.org/logging-log4j/). 
Log4j is a fast and flexible framework for logging 
applications debugging messages. This system 
consists of 252 classes with a total of roughly 20,300 
lines of code. 
 JFC (http://www.jfree.org/jfreechart/). JFreechart 
is a free chart library for Java platform. This system 
consists of 496 classes with a total of roughly 68,000 
lines of code. 
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 JODA (http://joda-time.sourceforge.net/). JODA-
Time is the de facto standard library for advanced 
date and time in Java. Joda-Time provides a quality 
replacement for the Java date and time classes. The 
design supports multiple calendar systems, while 
still providing a simple API. This system consists of 
225 classes with a total of roughly 31,000 lines of 
code. 
 POI (http://poi.apache.org/). POI is a Java APIs 
for manipulating various file formats based upon the 
Office Open XML standards (OOXML) and 
Microsoft's OLE 2 Compound Document format 
(OLE2). It can read and write MS Excel files using 
Java. This system consists of 1,539 classes with a 
total of roughly 136,000 lines of code. 
 MATH (http://commons.apache.org/proper/ 
commons-math/). Commons MATH is a library of 
lightweight, self-contained mathematics and 
statistics components addressing the most common 
problems not available in the Java programming 
language or Commons Lang. This system consists of 
125 classes with a total of roughly 8,106 lines of 
code. 
 LUCENE (http://lucene.apache.org/). LUCENE 
is a high-performance, full-featured text search 
engine library. It is a technology suitable for nearly 
any application that requires full-text search, 
especially cross-platform. This system consists of 
659 classes with a total of roughly 56,900 lines of 
code. 

4.3 Descriptive Statistics 

Table 1 summarizes the statistics of selected metrics 
for the 10 systems. Note that for our investigations, 
trivial artifacts like interfaces and pure abstract 
classes have been removed from the data.  

Table 1: Descriptive statistics of the source code metrics. 

ANT JFC 
 CBO LOC WMC CBO LOC WMC 

Obs. 663 663 663 411 411 411 

Min. 0 1 0 0 4 0 

Max. 41 1252 245 101 2041 470 

Sum 4613 63548 12034 4861 67481 13428 

µ 6.958 95.849 18.151 11.827 164.187 32.672 

σ 7.25 132.915 24.168 14.066 228.056 46.73 

Cv 1.042 1.387 1.332 1.189 1.389 1.43 

DBU JODA 

DBU CBO LOC WMC CBO LOC WMC 

Obs. 213 213 213 201 201 201 

Min. 0 4 1 0 5 1 

Max. 24 488 61 36 1760 176 

Sum 1316 12187 1989 1596 31339 6269 

µ 6.178 57.216 9.338 7.94 155.915 31.189 

σ 5.319 60.546 9.451 6.443 210.974 30.553 

Cv 0.861 1.058 1.012 0.811 1.353 0.98 

 

IO POI 

IO CBO LOC WMC CBO LOC WMC 

Obs. 100 100 100 1382 1382 1382 

Min. 0 7 1 0 2 0 

Max. 39 968 250 168 1686 374 

Sum 405 7604 1817 9660 130185 23810 

µ 4.05 76.04 18.17 6.99 94.2 17.229 

σ 5.702 121.565 31.751 10.782 154.282 28.319 

Cv 1.408 1.599 1.747 1.543 1.638 1.644 

IVY MATH 

IVY CBO LOC WMC CBO LOC WMC 

Obs. 610 610 610 94 94 94 

Min. 0 2 0 0 2 0 

Max. 92 1039 231 18 660 174 

Sum 5205 50080 9664 306 7779 1824 

µ 8.533 82.098 15.843 3.255 82.755 19.404 

σ 11.743 141.801 27.38 3.716 97.601 25.121 

Cv 1.376 1.727 1.728 1.141 1.179 1.295 

LOG4J LUCENE 

LOG4J CBO LOC WMC CBO LOC WMC 

Obs. 231 231 231 615 615 615 

Min. 0 5 1 0 1 0 

Max. 107 1103 207 55 2644 557 

Sum 1698 20150 3694 3793 56108 10803 

µ 7.351 87.229 15.991 6.167 91.233 17.566 

σ 10.119 130.419 25.7 7.243 192.874 35.704 

Cv 1.377 1.495 1.607 1.174 2.114 2.033 

Table 1 shows that the selected software systems 
are of different sizes. The lines of code vary from 
7,600 lines spread over 100 software classes for IO 
system, to more than 130,185 lines of code over 
1,382 software classes for POI system. The number 
of classes and their cyclomatic complexity follow 
the same trend. Descriptive statistics also show 4 
groups of systems according to the systems’ size: (1) 
the small-size systems, about 100 software classes 
such as IO and MATH, (2) the medium-size systems 
around 200 classes as LOG4J, DBU and JODA, (3) 
the large-size systems, between 400 and 600 classes 
as LUCENE, IVY, ANT and JFC, and (4) the very 
large-size systems over than 1,000 software classes 
as POIs. 

Note that the average cyclomatic complexity 
varies widely between systems with similar sizes. 
For example, JODA and DBU have a similar 
number of classes (around 200) but quite a different 
average of cyclomatic complexity (9.34 vs 31.18). 
The systems LUCENE and JFC also have this 
characteristic. In our data set, each observation 
(software class) has, in addition to the metrics CBO, 
LOC, and WMC, a binary attribute TESTED taking 
modalities 1 or 0 to indicate whether it has been 
tested (JUnit test class has been developed) or not. 

5 EMPIRICAL ANALYSIS 

5.1 Research Questions 

We investigated the following research questions: 
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Q1: Can the sets of tested classes (in comparison to 
the other classes) be characterized by source code 
attributes? 
Q2: Are there common criteria (in terms of class 
attributes) used by testers to select the classes for 
which they explicitly write unit test classes? 
Q3: Can we automatically learn from the history of 
the selection made by other testers on different 
software systems using a suitable set of class 
attributes to generate a set of classes similar to the 
set of tested classes given by the testers of a new 
system? 

5.2 Goals 

We investigate, in this section, the relationship 
between class attributes and the fact that the class is 
tested or not. We considered the source code metrics 
CBO, LOC and WMC described previously as 
observable (measurable) characteristics of software 
classes. In a first step, we performed a Z-Test to 
compare the mean values of the set of tested classes 
to the mean values of the set of not-tested classes 
(classes for which JUnit test classes have not been 
developed). In a second step, we performed a 
univariate binary logistic regression analysis. The 
objective was to study the significance level of these 
relationships with each metric. Finally, we used 
machine learning classifiers in a third step, to 
suggest a set of classes to be tested for a system 
from its source code metrics and history test 
information of other systems. The goal, in this case, 
is to investigate to what extent the selection criteria 
of classes to be tested in a given system are reusable 
to support the test prioritization of classes for 
another software system. 

5.3 Mean Analysis 

We relied on Z-Test of related samples to compare 
the set of tested classes to the other classes for each 
system. The Z-Test is typically used to compare the 
means values of two large samples (>32 
observations) of known variances. In our case, the 
test will determine whether the set of tested classes 
has a mean value of CBO, LOC and WMC 
significantly different from the set of other classes.  
We wanted to know whether the selected metrics 
could significantly characterize both sets of classes. 
We thus made the following null and alternative 
hypotheses for each given system s and metric ms: 

 H0: The ms mean value of tested classes 
(modality 1) is not significantly different from the 
ms mean value of other classes (modality 0). 

 H1: The ms mean value of tested-classes is 
significantly different from the ms mean value of 
other classes. 

The Z-Test determines a p-value that is 
compared with the typical significance level α = 5%. 
The p-value is the probability that the difference δ 
between the mean values (μ) of two sets is not equal 
to 0 by chance. The computed Z coefficient is 
compared to a reference threshold (Z/Cree = 1.96 in 
our case) for a normal distribution. We also 
determined the standard deviation σ of each set. 
Table 2 shows the results of the 10 analyzed 
systems. The modalities 1 and 0 indicate 
respectively the set of tested and not-tested classes. 
We note that for almost all systems (except MATH), 
the WMC and LOC mean values of tested classes 
are significantly higher than those of not-tested 
classes. For only MATH system, the difference of 
WMC and LOC mean values of the two sets was not 
significant: p-value of 0.092 and 0.143 (≥ 0.05). We 
can generally, in the case of WMC and LOC, reject 
the null hypothesis. The CBO metric seems to be 
less discriminating between the two sets of classes. 
Indeed, the mean differences between the sets are 
not significant for LOG4J, MATH and IO systems. 
This is not surprising and can be explained, among 
other, by the level of observability of the software 
source code attributes. Indeed, the lines of code 
(LOC) and the high cyclomatic complexity (WMC) 
are directly and more visible in the source code than 
the level of coupling between classes. The incoming 
coupling, captured by CBO, is not easily visible in a 
single class source code. Indeed, identifying 
coupling between classes requires global and deep 
analysis of the system architecture. These 
preliminary results suggest that the mean values of 
software metrics of both sets of classes are 
significantly different. The considered software 
metrics (especially LOC and WMC) can distinguish 
the set of tested classes from the set of not-tested 
classes. This suggests the existence of relationship 
between the software attributes captured by metrics 
and the selection criteria considered by testers when 
selecting software classes for which unit tests will be 
written. We explore these relationships individually 
in the following section. 

5.4 Univariate Logistic Regression 
Analysis 

After characterizing the metrics mean values of 
tested classes and not-tested classes sets, we present 
in this section the empirical study we conducted to 
evaluate individual relationship between each of 
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source code metrics (LOC, WMC and CBO) and the 
status (tested or not) of software classes. We used 
univariated logistic regression to analyze the 
relationship between the considered OO metrics and 
TESTED binary variable. Logistic Regression (LR) 
is a standard statistical modelling method in which 
the dependent variable can take on only one of two 
different values. It is suitable for building software 
quality classification models. It is used to predict the 
dependent variable from a set of independent 
variables to determine the percent of variance in the 
dependent variable explained by the independent 
variables. This technique has been widely applied to 
the prediction of fault-prone classes (Basili et al., 
1996; Zhou and Leung, 2006; Aggarwal et al., 2009; 
Shatnawi, 2010). LR is of two types: Univariate LR 
and Multivariate LR. A multivariate LR model is 
based on the following equation: 

 ܲሺ ଵܺ, ଵܺ, …	ܺ௡ሻ ൌ 	
௘൫ೌశ∑ ್೔೉೔

೙
೔సభ ൯

ଵା௘ቀೌశ
∑ ್೔೉೔
೙
೔సభ ቁ

  

The Xis are the independent variables and the 
(normalized) bis are the estimated regression 
coefficients (approximated contributions) 
corresponding to the independent variables Xis. The 
larger the absolute value of the coefficient, the 
stronger the impact of the independent variable on 
the probability P. In our case, P is the probability of 
a class to be tested. The univariate regression 
analysis we used is, in fact, a special case of the 
multivariate regression analysis, where there is only 
one independent variable (one OO metric). The p-
value related to the statistical hypothesis is the 
probability of the coefficient being different from 
zero by chance and is also an indicator of the 
accuracy of the estimated coefficient. To decide 
whether a metric is a statistically significant 
predictor of tested classes, we compared the 
obtained p-value to α = 0.05. Nagelkerke R2 is 
defined as the proportion of the total variance in the 
dependent variable that is explained by the model. 
The higher R2 is, the higher the effect of the 
independent variables, and the more accurate the 
model. We also calculated the area under ROC 
(Hosmer and Lemeshow, 2000) curve (AUC) to 
evaluate the model adjustment level with data. A 
model is considered to be well-adjusted if the AUC 
value is greater than 0.70 (Hosmer and Lemeshow, 
2000). The results are summarized in Table 3. The 
results indicate that ANT and JODA have a 
significant R2 values for all metrics (p-values <5%), 
with an AUC value < 70%. The significant value of 
R2 suggests that the information provided by metrics 
has significantly improved the baseline model. 

Baseline model is the prediction model in which 
probabilities are based on the distribution of 
dependent variable modalities. The b coefficients are 
all significant according to their p-values. However, 
the models are not good predictors (AUC < 0.70) of 
TESTED variable. For ANT system, this result may 
be explained by the low unit test class coverage 
(about 16.9%). For JODA, the explanation may lie 
in the low rate of tested classes among the complex 
classes. Indeed, the average WMC complexity of 
JODA’s not-tested classes is of 22.94 vs 15.52 for 
ANT. Finally, for both systems, a key factor of 
classes that have been tested is related to their 
cyclomatic complexity (WMC).  

Logistic models derived from that metric have 
the highest R2 value (7.7% for ANT and 16% for 
JODA). For the most of models, the IO and MATH 
systems present a no-significant R2  and b values and 
a low predictive ability (AUC < 70%). For IO 
system, the size factor (LOC), is an exception and 
has a good performance (significant R2 of 15.4%, 
significant b of 1.053 and significant AUC of 0.710 
> 0.7). The size seems to be one of the main factors 
that explain the choice of the software classes to be 
tested by testers. 

The positive sign of the b coefficients indicates 
that large classes were tested while the small classes 
were not. The AUC greater than 0.70 suggests that 
the model derived from LOC fits the data, which 
means that obtained model could be a good predictor 
of TESTED variable. The average size ratio of tested 
over not-tested classes is of 2.55 with the absolute 
highest Z value (3.08) according to Table 2. This 
confirms the performance of the size (LOC) factor.  

For JFC, DBU, POI, IVY, LOG4J and LUCENE 
systems, we observe a significant b, and R2 
coefficients with higher AUC scores (> 0.70). In 
these systems, the selection criteria of classes to be 
tested are significantly explained by the considered 
software metrics. We also note, when considering 
previous results in Table 2, that the Z scores of these 
systems are particularly high. This result can be 
explained by the multiplicity of selection criteria for 
unit testing or the existence of a strong correlation 
between software metrics of the systems. JFC and 
IVY have significant performance for all metrics. In 
both systems, all the metrics appear to have been 
considered during the selection of classes to be 
tested (at least the attributes they capture). Note that 
the coupling is the worst performing metric. 
Coupling seems to be the least considered factor 
when selecting classes to be tested. 
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Table 2: Results of Z-Test. 

ANT Obs. µ σ δ Z p-value JFC Obs. µ σ δ Z p-value 

CBO | 1 112 10.41 8.6 
-4.15 4.82 < 0.0001 

CBO | 1 229 15.98 15.29 
-0.4 -2.88 0.004 

CBO | 0 551 6.26 6.75 CBO | 0 182 6.6 10.27 

LOC | 1 112 157.45 154.72 
-74.12 4.77 < 0.0001 

LOC | 1 229 232 273.2 
-74.12 -4.77 < 0.0001 

LOC | 0 551 83.33 124.64 LOC | 0 182 78.86 104.61 

WMC | 1 112 31.11 31.18 
-15.59 5.05 < 0.0001 

WMC | 1 229 46.28 57.17 
-15.59 -5.05 < 0.0001 

WMC | 0 551 15.52 21.61 WMC | 0 182 15.55 17.7 

DBU Obs. µ σ δ Z p-value JODA Obs. µ σ δ Z p-value 

CBO | 1 86 8.78 5.48 
-4.36 -6.14 < 0.0001 

CBO | 1 76 10.62 7.34 
-4.31 -4.47 < 0.0001 

CBO | 0 127 4.42 4.46 CBO | 0 125 6.31 5.26 

LOC | 1 86 72.93 49.08 
-26.36 -3.35 0.001 

LOC | 1 76 231.89 279.65 
-122.17 -3.55 0 

LOC | 0 127 46.57 65.49 LOC | 0 125 109.72 138.41 

WMC | 1 86 11.41 7.17 
-3.47 -2.86 0.004 

WMC | 1 76 44.75 39.98 
-21.81 -4.46 < 0.0001 

WMC | 0 127 7.94 10.56 WMC | 0 125 22.94 19.11 

IO Obs. µ σ δ Z p-value POI Obs. µ σ δ Z p-value 

CBO | 1 66 4.68 6.27 
-1.86 -1.73 0.083 

CBO | 1 387 10.76 13.72 
-5.24 -6.96 < 0.0001 

CBO | 0 34 2.82 4.34 CBO | 0 995 5.52 8.99 

LOC | 1 66 95.85 144.34 
-58.26 -3.08 0.002 

LOC | 1 387 150.89 200.23 
-78.74 -7.2 < 0.0001 

LOC | 0 34 37.59 37.88 LOC | 0 995 72.15 125.65 

WMC | 1 66 22.45 37.82 
-12.6 -2.5 0.013 

WMC | 1 387 29.08 37.94 
-16.46 -8.03 < 0.0001 

WMC | 0 34 9.85 11.37 WMC | 0 995 12.62 21.91 

IVY Obs. µ σ δ Z p-value MATHS Obs. µ σ δ Z p-value 

CBO | 1 95 18.23 16.1 
-11.49 -6.73 < 0.0001 

CBO | 1 58 3.24 3.82 
-0.04 -0.05 0.963 

CBO | 0 515 6.74 9.78 CBO | 0 36 3.28 3.65 

LOC | 1 95 189.97 209.36 
-127.77 -5.79 < 0.0001 

LOC | 1 58 92.95 114.66 
-26.61 -1.46 0.143 

LOC | 0 515 62.2 115.33 LOC | 0 36 66.33 61.02 

WMC | 1 95 34.47 38.66 
-22.07 -5.39 < 0.0001 

WMC | 1 58 22.31 30.35 
-7.59 -1.69 0.092 

WMC | 0 515 12.41 23.24 WMC | 0 36 14.72 12.56 

LOG4J Obs. µ σ δ Z p-value LUCENE Obs. µ σ δ Z p-value 

CBO | 1 44 8.41 8.1 
-1.31 -0.9 0.366 

CBO | 1 114 9.9 10.72 
-4.59 -4.42 < 0.0001 

CBO | 0 187 7.1 10.57 CBO | 0 501 5.32 5.89 

LOC | 1 44 175.27 176.85 
-108.76 -3.91 < 0.0001 

LOC | 1 114 193.84 340.65 
-125.96 -3.89 0 

LOC | 0 187 66.51 107.84 LOC | 0 501 67.88 128.78 

WMC | 1 44 34.16 43.04 
-22.44 -3.4 0.001 

WMC | 1 114 35.89 61.18 
-22.49 -3.85 0 

WMC | 0 187 11.72 17.19 WMC | 0 501 13.4 25.06 

Table 3: Univariate logistic regression results. 

  
CBO LOC WMC 

values p-value values p-value values p-value 

ANT 

R² 0.066 < 0.0001 0.057 < 0.0001 0.077 < 0.0001 

b 0.264 < 0.0001 0.238 < 0.0001 0.284 < 0.0001 

AUC 0.667 0.684 0.694 

JFC 

R² 0.168 < 0.0001 0.235 < 0.0001 0.253 < 0.0001 

b 0.532 < 0.0001 0.999 < 0.0001 1.124 < 0.0001 

AUC 0.723 0.768 0.771 

DBU 

R² 0.214 < 0.0001 0.062 0.002 0.043 0.009 

b 0.533 < 0.0001 0.266 0.004 0.207 0.012 

AUC 0.762 0.756 0.755 

JODA 

R² 0.138 < 0.0001 0.116 < 0.0001 0.160 < 0.0001 

b 0.392 < 0.0001 0.430 0.001 0.456 < 0.0001 

AUC 0.670 0.690 0.679 

IO 

R² 0.041 0.083 0.154 0.001 0.095 0.008 

b 0.269 0.145 1.053 0.010 0.762 0.049 

AUC 0.620 0.710 0.684 

POI 

R² 0.065 < 0.0001 0.071 < 0.0001 0.097 < 0.0001 

b 0.284 < 0.0001 0.307 < 0.0001 0.389 < 0.0001 

AUC 0.686 0.739 0.756 

IVY 

R² 0.160 < 0.0001 0.131 < 0.0001 0.105 < 0.0001 

b 0.417 < 0.0001 0.369 < 0.0001 0.332 < 0.0001 

AUC 0.792 0.805 0.779 

MATH 

R² 0.000 0.963 0.027 0.167 0.035 0.115 

b -0.005 0.963 0.193 0.221 0.241 0.187 

AUC 0.533 0.557 0.546 

LOG4J 

R² 0.004 0.465 0.136 < 0.0001 0.149 < 0.0001 

b 0.061 0.450 0.419 0.000 0.471 0.000 

AUC 0.599 0.786 0.799 

LUCENE 

R² 0.079 < 0.0001 0.086 < 0.0001 0.085 < 0.0001 

b 0.284 < 0.0001 0.366 < 0.0001 0.391 < 0.0001 

AUC 0.657 0.749 0.750 
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Overall, the logistic regression analysis 
suggests that the criteria that guide the testers when 
selecting software classes to be tested can be, in 
most cases, well explained by cyclomatic 
complexity, size and coupling. 

5.5 Classifiers and Cross-System 
Validation 

We used machine learning classifiers trained on a 
system’s test information data to provide a set of 
classes to be tested for other software systems. The 
objective of this experiment is to see to what extent 
the criteria used by the testers to decide which 
software classes they will test can be reused on 
different systems. The hypothesis is the following: 

Considering the values of CBO, LOC and WMC 
metrics for all classes of a system Si for which 
testers have already provided a set of tested classes, 
is it possible to build a learner automatically which 
is able to suggest, for another system Sj, a set of 
classes (to be tested) "similar" to the set of tested 
classes that would have been proposed by Sj testers? 

Validating this hypothesis would indicate the 
existence of class attributes that determine the 
testers’ selection. From these attributes, it will then 
be possible to build an automated tool that could 
help to prioritize software classes during unit testing. 
Such tool could rely on tests information and 
associated class metrics automatically gathered from 
different open source software repositories to 
support automatic unit tests orientation. 

We chose multivariate logistic (LR) regression 
and Naive Bayesian (NB) classifier. Multivariate LR 
is particularly suitable for the binary variables 
prediction. It allows analyzing multiple output 
parameters that may explain the classifier model 
performance. Even if the NB classifier assumes a 
strong hypothesis on sample data, the classifier is 
particularly efficient and fast for large observations 
size such as in our case. Furthermore, it requires a 
relatively small training set, which is an advantage 
when trainings are done on small systems. For both 
classifiers, data collected from each of the 10 
systems will be used in turn as training set and the 
derived model will be cross-validated on the 9 
remaining systems. In Table 4, LR and NB represent 
the Multivariate Logistic Regression and Naïve 
Bayes classifiers. The table presents, in each box, 
the accuracy (1-error) of classifications obtained for 
both classifiers, trained on the system dataset of 
rows i, validated on the dataset’s system on column 
j. The boxes in the diagonal (k, k) present the 
adjustment (1 – optimistic error) of classifiers on the 
dataset of system k. We interpret the performance of 

classifiers by analyzing the results obtained 
according to the training data (rows) and validating 
data (columns). We consider the models with 
accuracy values greater than 0.70 (error < 0.30) as 
good classifiers. From Table 4, the analysis of 
training and test data shows 4 groups of systems. 

IO and MATH compose the first group. Both 
systems have unpredictable testing information. 
Furthermore, the unit test information from these 
systems forms bad training sets. Indeed, the 
classifiers trained from these datasets have no 
predictive ability on the sets of tested classes of 
other systems. Overfitting problems may explain the 
low performances. Indeed, both classifiers provide a 
good adjustment (LR: 0.74, NB: 0.71 for IO, LR: 
0.745, NB: 0.723 for MATH), but cannot predict 
any dataset from other systems (rows 4 and 9). 
Furthermore, the small size of both systems reduces 
the training data set (100 observations for IO and 
125 for MATH) and may also explain the poor 
performances observed on the 4th and 9th rows. In 
software testing perspective, the overfitting results 
of IO and MATH as training sets indicate that the 
testers took into account specific criteria of the 
systems when selecting the classes to be tested. 
Those specific criteria are captured by our metrics 
(Good adjustment values of classifiers) but are not 
considered by testers of other systems. The fact that 
no classifier trained on other systems were able to 
accurately predict the test information of both 
systems (columns 4 and 9) confirms the specificity 
of the criteria used by IO and MATH testers. 

In the second group, we find DBU system. The 
trained classifiers have a little predictive ability on 
other systems. LR and NB classifiers do not have the 
same performances depending on the validating 
systems. The LR classifier predicts IVY and 
LUCENE test information accurately when NB 
classifier provides good adjustment on DBU test set 
(0.756). NB seems to overfitting DBU dataset as in 
first group systems, but LR classifier does not over 
fit the training data, according to the adjustment 
values (0.664). The selection made by testers seems 
to consider some of common and DBU specific 
criteria captured by considered metrics. 

The third group is composed of JFC and JODA 
systems. The classifiers trained on the group have a 
good predictive ability on other systems but their 
testing information is not well predicted by other 
groups (<0.7). The result may be obtained when the 
selection made by testers mix common criteria 
captured by metrics for some selected classes with a 
random or different criteria that are not captured by 
LOC, WMC and CBO for other classes.  
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The last group is formed of ANT, IVY, LOG4J, 
LUCENE and POI. The classifiers trained on the 
data from the fourth group of systems can accurately 
predict test information of the other systems of the 
group. This result indicates that the testers of 
different systems used similar criteria that are 
captured by the considered metrics. LR and NB 
classifiers trained on JFC and JODA (from the third 
group of systems) accurately predicted the unit test 
information of this group, even if they are not well-
adjusted on their dataset. 

The learning algorithms and cross-validation 
results, especially for systems of the 4th group, show 
that it is possible, based on only several metrics, to 
construct classifier models from existing software 
datasets that automatically suggest, for another 
software system, a set of classes to be tested. For the 
last group, the suggested set is more than 70% 
similar to the set of tested classes that would have 
proposed a tester knowing the system. Results also 
indicate that the criteria for selecting tested classes 
are relatively the same (consistent) and significantly 
captured by CBO, LOC and WMC metrics. 

6 THREATS TO VALIDITY 

The study we conducted in this paper was performed 
on 10 open-source systems containing almost a half 
million of lines of code (453K). The sample is large 
to allow obtaining significant results, but the 
measuring methods and approaches have limitations 
that can restrict the generalization of certain 
conclusions. We have identified external validity 

threats that can prevent the generalization of results 
and construct validity threats which can skew the 
measurements. 

For external validity, the threats are mainly 
related to the type and the domain of considered 
systems. The application domains (Calculus, Code 
Parsers, Graphic Charts, etc.) and types (Standalone 
application, libraries, plugins etc.) of analyzed 
systems may impact the selected metrics and reduce 
the classifier performances during the cross system 
validation. Indeed, some analyzed systems are 
mathematical algorithms libraries (IO), while others 
have more complex architectures and involve many 
OO-technology specific artifacts such as inheritance 
and polymorphism (JFC). Thus, the learning 
algorithms that trained on some types of systems can 
greatly adjust to validation datasets from systems of 
similar domain and not able to suggest a good set of 
classes (to be tested) for other types and domain 
systems. It would be interesting, in this context, to 
include the domain and the type of systems as 
classifier parameters to take into account this bias. 

On the other hand, the data we analyzed from the 
different repositories does not provide any 
information on selection criteria of tested classes. It 
may be that, for some systems, tested classes were 
randomly selected. In these cases, obtained models 
and results cannot be generalized, even for software 
systems in the same domain and type. 
For construct validity, the main threat lies in the 
technique used for matching JUnit test suites to 
software classes to identifying the tested classes. 
Indeed, unpaired software classes that are tested by 
transitive method calls, are ignored by our approach.  

Table 4: Cross-System Validations. 

    ANT JFC DBU JODA IO POI IVY MATH LOG4J LUCENE 

ANT 
LR 0.833 0.513 0.596 0.692 0.360 0.728 0.820 0.404 0.823 0.816 

NB 0.778 0.628 0.629 0.692 0.390 0.735 0.814 0.394 0.779 0.813 

JFC 
LR 0.697 0.698 0.601 0.602 0.500 0.724 0.766 0.511 0.736 0.771 

NB 0.632 0.689 0.685 0.597 0.530 0.707 0.730 0.511 0.701 0.736 

DBU 
LR 0.677 0.664 0.671 0.622 0.490 0.681 0.743 0.457 0.645 0.725 

NB 0.511 0.684 0.756 0.448 0.600 0.627 0.617 0.489 0.589 0.571 

JODA 
LR 0.796 0.620 0.620 0.711 0.390 0.721 0.814 0.415 0.779 0.807 

NB 0.742 0.681 0.620 0.692 0.420 0.721 0.799 0.457 0.771 0.800 

IO 
LR 0.359 0.623 0.624 0.458 0.740 0.395 0.418 0.617 0.329 0.403 

NB 0.403 0.652 0.667 0.413 0.710 0.505 0.454 0.628 0.494 0.433 

POI 
LR 0.837 0.582 0.596 0.682 0.370 0.728 0.822 0.415 0.823 0.816 

NB 0.605 0.681 0.709 0.527 0.540 0.718 0.725 0.511 0.714 0.712 

IVY 
LR 0.828 0.511 0.596 0.622 0.340 0.726 0.822 0.383 0.801 0.820 

NB 0.707 0.696 0.634 0.667 0.480 0.728 0.786 0.479 0.749 0.772 

MATH 
LR 0.193 0.414 0.404 0.338 0.590 0.295 0.188 0.745 0.160 0.184 

NB 0.363 0.606 0.521 0.478 0.620 0.418 0.400 0.723 0.411 0.405 

LOG4J 
LR 0.804 0.577 0.554 0.647 0.440 0.728 0.818 0.436 0.840 0.816 

NB 0.692 0.672 0.629 0.637 0.490 0.744 0.783 0.468 0.758 0.774 

LUCENE 
LR 0.706 0.533 0.596 0.657 0.360 0.730 0.823 0.394 0.814 0.820 

NB 0.706 0.689 0.615 0.662 0.500 0.736 0.784 0.468 0.753 0.777 
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It would be possible to reduce this bias if we 
consider a larger set formed by the union of classes 
for which JUnit test classes have been written and 
the classes that have been implicitly tested by 
methods transitive calls. 

7 CONCLUSIONS 

We analyzed 10 open source software systems 
containing more than 4400 classes for which testers 
developed dedicated unit test classes using JUnit for 
several classes of each system. The selection criteria 
of classes that have been tested are not known. We 
explored the possibility of explaining and reusing 
these criteria for different systems through three 
experiments using three source code metrics. We 
first analyzed, for each system, the set of tested 
classes and not-tested classes using the Z-Test. 
Results show that for all metrics except CBO, the 
mean values are significantly different and 
consistent (the tested sets have higher average values 
for LOC and WMC). Secondly, we performed a 
binary univariate logistic regression analysis to 
determine the individual effect of each metric on the 
tested classes’ selection made by testers. Results 
show a significant relationship with the considered 
software metrics. We finally used multivariate LR 
and NB classifiers to build models that support unit 
tests prioritization. The goal was to compare classes 
suggested by classifiers and the set of tested classes 
provided by systems’ testers. The classifiers were 
trained on each system dataset taken individually 
and validated on the 9 remaining systems. Results 
suggest that more than 70% of classes provided by 
testers (tested classes) can be automatically 
suggested by the classifiers. The results of this 
experiment suggest the viability of a unit tests 
prioritization automation technique using classifiers 
trained on different software source code metrics 
and history of the unit tests information. It would be 
interesting to group systems according to their 
domains, types and include other software source 
code metrics such as RFC (Response For Class) to 
observe the changes on results. It would also be 
interesting to apply an adapted Leave-One-Out-
Validation technique (LOOV) by validating one 
system with a classifier trained on the test 
information of the remaining systems. We could 
improve classifier performances, prevent overfitting 
problems and be able to use more classifiers that 
require a larger training datasets. Moreover, since 
the proposed prioritization technique suggests a 
slightly different (30%) set of classes from the 
testers set of tested classes, it would be pertinent to 

analyze and compare their actual performance on 
covering faulty classes. This topic will be the next 
direction of our investigations. 
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