
An Automatic Tool for Benchmark Testing of Cloud Applications

Valentina Casola1, Alessandra De Benedictis1, Massimiliano Rak2 and Umberto Villano3

1Università “Federico II” di Napoli, Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione, Napoli, Italy
2University of Campania Luigi Vanvitelli, Dipartimento di Ingegneria dell’Informazione, Aversa, Italy

3University of Sannio, Department of Engineering, Benevento, Italy

Keywords: Cloud, Cloud Security, Security SLA, Performance.

Abstract: The performance testing of cloud applications is a challenging research topic, due to the multiplicity of differ-
ent possibilities to allocate application services to Cloud Service Providers (CSPs). Currently available bench-
marks mainly focus on evaluating specific services or infrastructural resources offered by different CSPs, but
are not always useful to evaluate complete cloud applications and to discover performance bugs. This paper
proposes a methodology to define an evaluation performance process, particularly suited for cloud applica-
tions, and an automatic procedure to set up and to execute benchmark tests. The methodology is based on the
evaluations of two performance indexes, and is validated by presenting a complete case study application, de-
veloped within the FP7-EU-SPECS project. The analysis of the measurement results, produced automatically,
can help the developer to discover possible bottlenecks and to take actions to improve both the usability and
the performance of a cloud application.

1 INTRODUCTION

The use of virtualized resources hosted in large scale
data centers, which is one of the main features of the
cloud computing paradigm, has the side effect that the
performance of cloud applications, i.e., of the soft-
ware that runs orchestrating services offered in the
cloud, is often very hard to predict. It is well known
(Dejun et al., 2009) that infrastructure resources ob-
tained in the cloud may have very different perfor-
mance behaviors, even if they belong to the same
instance type offered by the Cloud Service Provider
(CSP). For example, inside the CSP data center, vir-
tual machines (VMs) of the same instance type can
be assigned to different physical machines, in differ-
ent physical locations and under different computing
and network load. From the Cloud Service Customer
(CSC) point of view, such performance differences
are an issue, which may have even an economical im-
pact, due to the pay-per-use paradigm (longer running
times may lead to higher leasing costs).

As a consequence, the adoption of benchmarking
services, like Cloud Harmony (Gartner, 2017), which
regularly execute standard benchmarks and provide
customers with average performance figures collected
over many different CSPs, is very useful for a coarse-
grain comparison of CSPs. However, these services

are of little use to predict and to optimize the perfor-
mance of a specific cloud application.

When the objective is to get insight on the perfor-
mance behavior of a given application, a possible so-
lution is to perform its benchmark testing (Aversano
et al., 2013). The results of the application bench-
mark testing often feed performance prediction tools,
based on simulation or analytic models, which make
it possible to predict the final effect of multiple con-
figuration and deployment options (Rak et al., 2015;
Cuomo et al., 2015; Li et al., 2011; Sharma et al.,
2011; Liew and Su, 2012) and to perform effective
application performance tuning.

Even if such benchmark-based approach has
proven to be fruitful, the complete benchmark test-
ing process can be costly and complex to be executed.
Setting up a complete benchmarking procedure for
each component of a complex cloud application can
be a long and stressing procedure. Moreover, exe-
cuting the benchmarks and collecting results is both
lengthy and expensive, due to the large amount of
cloud resources required for the execution in the cloud
of the benchmark applications.

In this paper, we propose a technique that makes
it possible to automate as much as possible the set-
up procedure and the execution of the benchmarks,
in order to reduce both the time spent in collect-

Casola, V., Benedictis, A., Rak, M. and Villano, U.
An Automatic Tool for Benchmark Testing of Cloud Applications.
DOI: 10.5220/0006379507290736
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 701-708
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

701



ing the measurements and the complexity of bench-
mark devising. To demonstrate the feasibility of
the approach, we have applied it to evaluate the
SPECS web container application (SPECS Consor-
tium, 2017d), which is a very complex cloud appli-
cation that brokers cloud services and automatically
configures them according to security Service Level
Agreements (SLA), exploiting the SPECS framework
(SPECS Consortium, 2017b; Casola et al., 2014).

The reminder of this paper is organized as fol-
lows. Section 2 summarizes the methodology adopted
to carry out performance tests on a cloud application.
Section 3 sketches the structure and high-level behav-
ior of the case study SPECS web container applica-
tion and summarizes the testing conditions and the re-
sults collected. Section 4 briefly presents the state of
the art and the existing techniques adopted to bench-
mark and to evaluate the performance of cloud appli-
cations, illustrating the main differences compared to
the proposed approach. The paper closes with Section
5, where the conclusions are drawn and the future re-
search directions are discussed.

2 THE BENCHMARKING
METHODOLOGY

The benchmarking methodology we propose in this
paper aims at evaluating the performance of a spe-
cific cloud application deployment, as perceived by
the application customers, and the overall resource
consumption, as resulting from the actual cloud ap-
plication deployment. Since the cloud computing ter-
minology is still confusing, and even existing stan-
dards such as those proposed by ISO (International
Organization for Standardization, 2014), NIST (Mell
and Grance, 2011), and ETSI (ETSI, 2013) are some-
times contradictory, we briefly introduce here the
main terms we will use throughout this paper.

We will use the locution cloud application to de-
scribe a collection of cooperating software compo-
nents (simply components, in what follows) offered
as-a-service. A component can be directly offered as-
a-service by a CSP, or by deploying a suitable soft-
ware artifact over a cloud service of infrastructure ca-
pability type (i.e., over a virtual machine).

We will use the locution cloud application de-
ployment to identify the mapping of components to
resources that leads to a running cloud application
by acquiring pre-deployed components provided by
a CSP, and/or by deploying custom components over
a set of leased virtual machines. As an example, let
us consider an application made up of a web applica-
tion W (i.e., a software that offers an HTTP interface)

Figure 1: Deployment examples.

which uses a mySQL database DB. According to the
above-defined terminology, W and DB are cloud ap-
plication components. As shown in Figure 1, a possi-
ble cloud application deployment can involve a single
virtual machine that executes both W and DB; an al-
ternative deployment requires two virtual machines,
hosting W and DB, respectively; a third alternative
can rely on a virtual machine hosting W, while the DB
is offered directly by the CSP (in this case, the num-
ber and location of the VM(s) used for running the
database service are usually unknown). Further de-
ployment options are linked to the possible tuning of
VM parameters (e.g., amount of available memory).

In general, we will assume that a running cloud
application has a single access point for its own cus-
tomers. Moreover, for simplicity’s sake we will as-
sume that all components interact through an HTTP
interface using RESTful APIs. Hence, in practice, all
components can be regarded as web applications. In
fact, this assumption allows to exploit an available
tool for stressing HTTP-driven components. How-
ever, this entails no loss of generality, as the bench-
marking method that will be proposed could also be
used in different contexts. We are simply interested
in identifying the limits in terms of performance of
each component of the cloud application. This will
make it possible for the application developer to iden-
tify possible bottlenecks and to compare different de-
ployments.

In the following subsections, we will discuss the
considered performance indexes and illustrate the
proposed benchmarking process.

2.1 Performance Indexes

As far as performance indexes are concerned, we can
roughly distinguish between two types of cloud appli-
cations. The first type has the typical behavior of sci-
entific applications: their execution is launched after

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

702



the deployment phase, and ends after the production
of results. In the second case, instead, applications
are in continuous execution and offer services to cus-
tomers. The focus of our work is on the second type
of applications, which is by far the most common case
in the cloud computing context.

According to such considerations, in the following
we will consider two main performance indexes:

• Throughput: measured in requests/s, it is the
number of requests completed per second. In fact,
throughput is a measure of the ability of a system
to complete the assigned tasks given the amount
of available resources.

• Response Time: measured in milliseconds (ms),
it is the time elapsed between the request of a ser-
vice up to the end of the service (production of the
result). This index is directly related to the perfor-
mance perceived by end-users, and includes the
overhead introduced by the API adopted.

As shown in the next subsection, for each compo-
nent of the cloud application we will measure an in-
dex directly related to throughput (the MAR, defined
later) and the response time, in order to discover pos-
sible performance-related criticalities. These may be
due, for example, to the particular deployment con-
figuration that has been chosen for the application, or
even to bugs in its implementation. The analysis of
these parameters can help the developer to identify
where to operate, in order to improve both the usabil-
ity and the performance of the application.

2.2 Performance Evaluation Process
and Workload Modeling

The performance evaluation process is carried out by
injecting suitable workloads for the application, try-
ing to capture the behavior of the application in a
real operating environment. In order to automate the
performance analysis, we need to build up a set of
reusable benchmark tests that can be used to evaluate
a generic cloud application deployment. These should
suitably model the typical workload the target appli-
cation and its components are subject to, by means of
a set of synthetic workloads that can be possibly hard-
wired in a benchmarking script. As mentioned above,
we assume that cloud applications offer their service
through dedicated HTTP-based REST APIs exposed
by the involved components. As a consequence, all
performance tests will stress HTTP layers and will
have a request/response behavior.

The synthetic workloads have to stress the whole
application. In order to do so, we define a set of load
profiles for each REST API offered by the application

Figure 2: Definition of synthetic workloads.

components. A load profile represents a way to stress
the component offering a specific API through the in-
vocation of an API call or through a sequence of API
call invocations that characterize the common behav-
ior of the component. Each load profile includes all
the inputs needed for its execution. Once all the load
profiles have been built, each component is stressed in
isolation and the performance results collected. This
last step can be easily automated through a tool with
graphical interface, freeing the application developer
from the obligation of boring performance testing ses-
sions and data collection.

As an example, let us consider a component that
offers a REST API with two calls, which are com-
monly called in sequence: the first one retrieves a list
of endpoints to objects, and the second one retrieves
a single object. A complete service involves the fol-
lowing sequence of requests:

1. Get the list of endpoints to objects.

2. Get one of the objects.

Such sequence of calls constitutes a load profile
for the component API, and is a building block for the
associated workloads. A workload is represented by a
set of concurrent executions of a specific load profile,
and is characterized by the number of load profiles
launched per second.

Figure 2 illustrates the process adopted to define
the synthetic workloads. In particular, we first stress
the target component with an increasing workload
represented by a number of concurrent profile execu-
tions per second that grows based on a ramp function
model (from one to ten thousand concurrent requests,
in our experiments), until the limit of correct behav-
ior of the target component is reached. Such limit is
reached when the rate of failure1 for the requests ex-
ceeds a given threshold (the default threshold of 20%
can be changed through a configuration parameter).

1No response or HTTP response 5xx.

An Automatic Tool for Benchmark Testing of Cloud Applications

703



The ramp function adopted in this phase has a low
slope, to let the workload increase slowly. The request
rate that makes the component to reach the failure rate
threshold is the maximum allowed rate (MAR) of load
profiles per second. The actual rate of requests during
the normal operation of the component should never
exceed the MAR, as it would lead to a severe degra-
dation of performance. So, the MAR should be con-
sidered a limit load for the component; the response
time measured under this load rate correspond to the
worst performance in “acceptable” system behavior.
If request rates exceeding the MAR are foreseen in
the actual operating conditions of the component, a
deployment with multiple instances of the component
should be chosen.

In light of the above, it makes sense to measure
the response time under a load corresponding to the
MAR, which corresponds to the worst operating con-
ditions. So, in the second step, we stress the compo-
nent with a constant workload represented by a num-
ber of concurrent load profiles per second equal to the
MAR, submitted continuously to the component for a
given period of time. The component response time is
measured in these conditions.

Following this two-step procedure, we will obtain
two values per profile (MAR and response time) for
each component. The final performance indexes as-
sociated to the component will be the worst values
(i.e., the highest response time and the lowest MAR)
measured among all tests. As will be discussed in
the next section dealing with a complex case study
application, the knowledge of these two performance
values for each component of the application enables
a developer to compare different deployments and to
identify the application bottlenecks.

3 CASE STUDY: THE SPECS WEB
CONTAINER APPLICATION

In order to validate the proposed methodology, we
applied it to evaluate the performance of a complex
application developed in the context of the European
FP7 project SPECS (SPECS Consortium, 2017b).
The application is the SPECS web container (SPECS
Consortium, 2017d; Casola et al., 2015), available on
BitBucket at (SPECS Consortium, 2017c).

The SPECS web container application enables a
web developer to acquire a cloud-based web con-
tainer service for web application deployment. The
container service ensures the fulfillment of the appli-
cation developer’s security requirements, expressed
through a (security) Service Level Agreement (SLA).
The web container delivered through the application

is built by exploiting the services and tools offered by
the SPECS platform. It allows to automatically ac-
quire a web server, which is configured according to
security best practices thanks to the adoption of a set
of security mechanisms able to grant the requested se-
curity SLA.

A comprehensive presentation of the SPECS web
container application and the SPECS platform is out
of the scope of this paper. The interested reader is
referred to (Casola et al., 2014) and (Rak et al., 2013)
for the related details. However, in the following we
will briefly summarize the basic concepts related to
the SPECS web container as a cloud application, in
order to understand how the automated benchmarking
process proposed in this paper works.

The SPECS cloud application is made up of five
modules, as shown in Figure 3: the Negotiation, En-
forcement and Monitoring modules are devoted to
manage the corresponding phases of the SLA life-
cycle (as defined in the WS-Agreement standard (An-
dreieux, 2007)), the SLA Platform offers the func-
tionalities that enable the inter-operation of the three
above modules and to manage the SLA life-cycle, and
the Enabling Platform is responsible for the execution
of all the framework components on a cloud infras-
tructure.

Figure 3: SPECS platform modules.

Each module offers services in the form of REST
APIs, and these services are orchestrated by the
SPECS web container application to provide the se-
cure web container to the end-users. The high-level
interactions involving the SPECS application, the
SLA Platform, and the Negotiation and Enforcement
modules are sketched in Figure 4 (we neglect here the
Monitoring module for simplicity’s sake).

The behavior described in the flow represented in
Figure 4 is characterized by all the issues discussed
in the previous sections, as each module affects both
the usage of cloud resources (virtual machines hosting
the SPECS modules) and the performance perceived
by the end-users. Performing an evaluation of a given
SPECS deployment, in order to compare it with other

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

704



Figure 4: SPECS platform high-level module interactions.

possible distributions of components and/or to min-
imize the costs in terms of services acquired by a
CSP, is a very complex task. In fact, it should be also
considered that acquiring two virtual machines of the
same type may result in different performance due to
their actual distribution on physical resources.

It is worth noting that, independently of the spe-
cific behavior of the application under analysis and
of its complexity, the methodology proposed in the
previous section allows to get insight on the final per-
ceived performance and the load each component is
actually able to manage. Moreover, the whole bench-
marking process can be easily automated. This can
help the developer, for example, to understand if the
performance offered to the customer is satisfactory,
or whether it is advisable to choose an alternative de-
ployment.

3.1 Performance Testing Environment

To perform the performance testing, we devised a
set of scripts to implement the benchmarking pro-
cedure described above and to collect its output in-
dexes. These scripts rely on Gatling (Gatling Corp,
2017), a load testing tool particularly suited to per-
form load testing on HTTP servers. Gatling supports
the generation of test scripts by means of a Recorder,
which makes it quite straightforward to build the test
sequences (i.e., our load profiles) through a graphi-
cal interface. The scripts generated for the SPECS
platform performance evaluation, representing the
SPECS benchmark, are available online in the SPECS
Bitbucket repository at (SPECS Consortium, 2017a).
All scripts have been executed on the SPECS Testbed,
a small-sized Eucalyptus cluster that emulates well a
typical private cloud or a small CSP.

Figure 5 illustrates the execution environment
adopted for the performance tests. It includes (i) the
Testing Terminal Node, based on the Gatling tool, and
the (ii) SPECS Node, which includes all the compo-

Figure 5: Benchmarking testbed organization.

Figure 6: The SPECS cloud application deployment model.

nents of the cloud application under test (the SPECS
web container application). As for the cloud applica-
tion deployment, we assume that all cloud application
components (i.e., the SPECS modules and the web
container application) run on the same CSP and on
a single VM, according to the deployment scenario
shown in Figure 6. The Testing Terminal Node runs
on a separate VM. The features of the VMs used for
the testing environment deployment are summarized
in Table 1.

Table 1: The VM characteristics.

Node VM features
Testing Terminal Node VMtype=1.1xlarge,

Core=1,
RAM=1024MB,
HDD=20GB

SPECS Platform Node VMtype=1.1xlarge,
Core=1,
RAM=1024MB,
HDD=20GB

The main results obtained for the application are
presented in the next section. The complete report
of results is available on the Bitbucket repository
(SPECS Consortium, 2017a).

An Automatic Tool for Benchmark Testing of Cloud Applications

705



3.2 Benchmarking Set-up and
Execution

The load profiles for the SPECS web container appli-
cation were built by exploiting the Gatling tool for
all components exposed to the end-users (the web-
container and its web interface), and manually for the
other REST APIs (in fact, even this step could be fully
automated). It should also be pointed out that, due to
the limitations of the adopted testbed, it was not pos-
sible to include in the profiles the steps of the SLA
implementation process that involve the acquisition
(brokering) of virtual machines.

Figure 7 shows as an example the test results for
one of the profiles built for the SLA Platform module
(in this case, the load profile stresses the API to get
SLAs from the platform). As was to be expected, the
throughput grows linearly with the rate of profiles un-
til requests start to fail. From the knee of the curve
onward, the throughput still grows, but slowly, due
to the high ratio of failure responses. The MAR for
the default rate of faults (20%) is reached at about
110 profiles/s. Accordingly, the response time mea-
sured stressing the component at MAR for few min-
utes turns out to be about 95 ms.

Figure 7: SLA Platform Run Results.

This test was repeated for all the profiles devised
for each module. For example, Figure 8 shows the
results obtained for a second profile of the SLA Plat-
form module, stressing its API calls for service man-
agement. Table 2 summarizes the cumulative results
obtained for all the tested modules, reporting only the
worst values obtained (our benchmark indexes). Ac-
cording to such results, the application can manage
about 3 user requests per second (i.e., about 180 re-
quests per minute). It should be noted that this ap-
parently low value is mostly acceptable for the man-
agement of a cluster able to deliver few hundreds of
VMs.

The measurements presented above make it possi-

Figure 8: Service Manager Run Results.

Table 2: Single-VM deployment benchmark results.

Component MAR
(reqs/s)

Response
Time (ms)

SLA Platform module 9 73
Negotiation module 50 215
Enforcement module 130 180
Web Container module 3 3891

ble to discuss how the proposed benchmarking pro-
cess can be used in practice. The examination of
Table 2 induces the suspect of the presence of two
bottlenecks, namely in the SLA Platform and in the
Web Container module (their MARs are much lower
than those of the Negotiation and Enforcement mod-
ules). The information of the unexpectedly low per-
formance of the SLA Platform proved to be very use-
ful. It turned out that it was due to a (performance)
bug, linked to the use of a list method (long queries
due to a missing cut on the number of results returned
in a single listing). This implementation issue was
easily corrected, aligning the SLA Platform module
performance to that of the other modules.

As for the second suspected bottleneck, our suc-
cessive analyses showed that in the tested deployment
the Web Container module, due to its complexity, is
intrinsically slower that the other application mod-
ules. As these are orchestrated by the “slow” Web
Container, they will be never stressed near to their
limits. This issue strongly suggests to adopt an al-
ternative different deployment model, where the Web
Container can profit from additional resources. For
example, it can simply be hosted on a dedicated VM.
Due to space constraints, the measurements relative to
this second deployment are not reported in this paper.

4 RELATED WORK

As already mentioned in Section 1, the problem of
benchmarking cloud services is a well-known open

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

706



research topic. A fine-grained performance evalu-
ation of cloud services can enable a cost-reduction
policy, but it is hard to perform, due to the elastic-
ity that is a characteristic feature of cloud environ-
ments. At the state of the art, most of existing work
focuses on infrastructure-as-a-service (IaaS) bench-
marking, finalized at the comparison of the infrastruc-
ture resources to be leased to execute the applications.

In 2009, the authors of (Binnig et al., 2009) ad-
dressed the problem of benchmarking in the cloud by
focusing on database services. The paper main goal
was to demonstrate the limits of existing benchmarks
when applied to the cloud environment. In particu-
lar, the paper proposed to adopt new metrics (scala-
bility, cost, peaks, fault tolerance) as indexes for the
benchmarks, in order to address the limits of existing
solutions.

The work presented in (Li et al., 2010) was one
of the first attempts of building cloud benchmarks.
The authors proposed a cloud-specific benchmark
aimed at comparing performance and cost of different
CSPs, called CloudCmp. CloudCmp collects a set of
standard benchmarks and automates their execution,
which is carried out in user-space (i.e. the customer
acquires the resources and executes the benchmarks).

In order to manage the different choices, (Haak
and Menzel, 2011) presented an approach based on
the theory of optimal stopping that enables an auto-
mated search for an optimal infrastructure service as
for performance-per-price-ratio, while reducing costs
for benchmarking. The performance indexes they
considered are network latency and CPU and RAM
usage.

The authors of (Scheuner et al., 2014) proposed
Cloud Work Bench (CWB), a web-service-based tool
providing support for the definition of reusable and
representative benchmarks, enabling the automatic
execution of these benchmarks for comparing IaaS
services. In (Scheuner et al., 2015), Cloud Work
Bench was used to demonstrate the complete cycle
of benchmarking an IaaS service with SysBench, a
cross-platform standard benchmark suite for the eval-
uation of several OS parameters.

(Kunde and Mukherjee, 2015) proposed to bench-
mark the performance of big-data analytics applica-
tions by using Hadoop. The paper focused on param-
eters of interest such as turnaround time and through-
put. The main goal was to offer a support for the
choice of the infrastructure services best suited for
a particular application. For what concerns perfor-
mance indexes, the paper focused on job execution
time and throughput, computed by using a simple
workload model based on the map-reduce approach.

(Uhlir et al., 2016) proposed a novel methodology

for benchmarking CSPs, based on latency measure-
ments collected via active probing, that could be tai-
lored to specific application needs. The benchmark
focuses mainly on the latency measured to access the
CSPs. The mentioned paper also proposes a proce-
dure to collect and rank the measurements and, ac-
cordingly, the CSPs.

From the analysis of the existing literature on
cloud benchmarking, two main aspects emerge as fun-
damental issues, namely the automation of the bench-
marking execution (which must be repeatable in order
to address cloud unpredictability and elasticity fea-
tures) and the capability of defining custom bench-
marks based on the target application to be run. The
approach presented in this paper addresses both as-
pects. Moreover, at the best of the authors’ knowl-
edge, no other currently available solution allows to
define dynamically and to execute benchmarks which
are both simple (we propose the measurement of just
two indexes per application component) and effective
to help identify bottlenecks and to compare different
deployments for a generic application.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we have illustrated a methodology to
devise custom benchmarks aimed at evaluating the
performance of a cloud application with different de-
ployment configurations of its components. Under
the assumption that the application components of-
fer RESTful APIs and communicate with one another
by the HTTP protocol, the benchmarking process can
be easily automated and can take advantage of exist-
ing testing tools for the generation and submission of
workloads. As a matter of fact, a tool with graphi-
cal interface has been implemented to drive the tests
and to collect the results. The main advantage of the
proposed benchmarking methodology is that it relies
on the evaluation of just two indexes (MAR and re-
sponse time) for each component and does not re-
quire extensive testing. Such indexes are measured
by stressing the components with suitable synthetic
workloads that take into account their common usage
patterns. As demonstrated for a case study applica-
tion, the collected results can allow to identify possi-
ble bottlenecks, so as to take actions in order to im-
prove performance and usability.

As a future development, we plan to validate our
methodology under more complex deployments and
by exploiting multiple (public and private) providers.
Moreover, inspired by the ongoing work on the
MUSA project, we plan to extend the benchmark-

An Automatic Tool for Benchmark Testing of Cloud Applications

707



ing methodology to evaluate multiple providers si-
multaneously, in accordance with the multi-cloud
paradigm.

ACKNOWLEDGEMENTS

This research is partially supported by the EC FP7
project SPECS (Grant Agrmt. no. 610795) and
H2020 project MUSA (Grant Agrmt. no. 644429).

REFERENCES

Andreieux, A. (2007). Web services agreement specifica-
tion. https://www.ogf.org/documents/GFD.107.pdf.

Aversano, G., Rak, M., and Villano, U. (2013). The mO-
SAIC benchmarking framework: Development and
execution of custom cloud benchmarks. Scalable
Computing: Practice and Experience, 14(1).

Binnig, C., Kossmann, D., Kraska, T., and Loesing, S.
(2009). How is the weather tomorrow? Proceed-
ings of the Second International Workshop on Testing
Database Systems - DBTest ’09.

Casola, V., A. De Benedictis, Rak, M., and Villano,
U. (2014). Preliminary Design of a Platform-as-a-
Service to Provide Security in Cloud. In Proceedings
of CLOSER 2014, Barcelona, Spain, April 3-5, 2014,
pages 752–757.

Casola, V., De Benedictis, A., Rak, M., and Villano, U.
(2015). SLA-based secure cloud application devel-
opment: The SPECS framework. In Proceedings of
SYNASC 2015, pages 337–344.

Cuomo, A., Rak, M., and Villano, U. (2015). Performance
prediction of cloud applications through benchmark-
ing and simulation. International Journal of Compu-
tational Science and Engineering, 11(1):46–55.

Dejun, J., Pierre, G., and Chi, C.-H. (2009). EC2 perfor-
mance analysis for resource provisioning of service-
oriented applications. In Proceedings of the 2009 Int.
Conf. on Service-oriented Computing, pages 197–207.

ETSI (2013). Cloud standards coordination. Technical re-
port.

Gartner (2017). Cloud Harmony Web Site.
https://cloudharmony.com/.

Gatling Corp (2017). Gatling documentation.
http://gatling.io/docs/2.2.3/.

Haak, S. and Menzel, M. (2011). Autonomic benchmark-
ing for cloud infrastructures. Proceedings of the
1st ACM/IEEE workshop on Autonomic computing in
economics - ACE ’11, pages 27–32.

International Organization for Standardization (2014).
ISO/IEC 17788:2014. Information Technology–
Cloud computing–Overview and vocabulary.

Kunde, S. and Mukherjee, T. (2015). Workload characteri-
zation model for optimal resource allocation in cloud
middleware. Proceedings of the 30th Annual ACM
Symposium on Applied Computing - SAC ’15, pages
442–447.

Li, A., Yang, X., Kandula, S., and Zhang, M. (2010). Cloud-
Cmp: Comparing Public Cloud Providers. In Pro-
ceedings of the 10th annual conference on Internet
measurement - IMC ’10, pages 1–14.

Li, A., Zong, X., Kandula, S., Yang, X., and Zhang, M.
(2011). Cloudprophet: towards application perfor-
mance prediction in cloud. In Proceedings of the ACM
SIGCOMM 2011 conference, pages 426–427.

Liew, S. H. and Su, Y.-Y. (2012). Cloudguide: Help-
ing users estimate cloud deployment cost and perfor-
mance for legacy web applications. In Cloud Comput-
ing Technology and Science (CloudCom), 2012 IEEE
4th Int. Conf. on, pages 90–98.

Mell, P. M. and Grance, T. (2011). Sp 800-145. the
NIST definition of cloud computing. Technical report,
Gaithersburg, MD, United States.

Rak, M., Suri, N., Luna, J., Petcu, D., Casola, V., and
Villano, U. (2013). Security as a service using an
SLA-based approach via SPECS. In Cloud Comput-
ing Technology and Science (CloudCom), 2013 IEEE
5th Int. Conf. on, volume 2, pages 1–6.

Rak, M., Turtur, M., and Villano, U. (2015). Early predic-
tion of the cost of HPC application execution in the
cloud. In Proceedings of SYNASC 2014, pages 409–
416.

Scheuner, J., Cito, J., Leitner, P., and Gall, H. (2015). Cloud
workbench: Benchmarking IaaS providers based on
Infrastructure-as-Code. In Proc. of the 24th Int. Conf.
on World Wide Web, pages 239–242.

Scheuner, J., Leitner, P., Cito, J., and Gall, H. (2014).
Cloud work bench–infrastructure-as-code based cloud
benchmarking. In Cloud Computing Technology and
Science (CloudCom), 2014 IEEE 6th International
Conference on, pages 246–253.

Sharma, U., Shenoy, P., Sahu, S., and Shaikh, A. (2011).
Kingfisher: Cost-aware elasticity in the cloud. In 2011
Proceedings IEEE INFOCOM, pages 206–210.

SPECS Consortium (2017a). SPECS Performance tests.
https://bitbucket.org/specs-team/specs-performance-
benchmark.

SPECS Consortium (2017b). The SPECS project web site.
http://specs-project.eu/.

SPECS Consortium (2017c). The SPECS Secure
Web Container Application - Bitbucket Repos-
itory. https://bitbucket.org/specs-team/specs-app-
webcontainer-rev2.

SPECS Consortium (2017d). The SPECS Secure Web
Container Application Description. http://www.specs-
project.eu/solutions-portofolio/secure-web-
container/.

Uhlir, V., Tomanek, O., and Kencl, L. (2016). Latency-
based benchmarking of cloud service providers. In
Proceedings of the 9th Int. Conf, on Utility and Cloud
Computing, UCC ’16, pages 263–268.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

708


