
Not ACID, not BASE, but SALT
A Transaction Processing Perspective on Blockchains

Stefan Tai, Jacob Eberhardt and Markus Klems
Information Systems Engineering, Technische Universität Berlin, Germany

Keywords: SALT, Blockchain, Decentralized, ACID, BASE, Transaction Processing.

Abstract: Traditional ACID transactions, typically supported by relational database management systems, emphasize
database consistency. BASE provides a model that trades some consistency for availability, and is typically
favored by cloud systems and NoSQL data stores. With the increasing popularity of blockchain technology,
another alternative to both ACID and BASE is introduced: SALT. In this keynote paper, we present SALT
as a model to explain blockchains and their use in application architecture. We take both, a transaction and
a transaction processing systems perspective on the SALT model. From a transactions perspective, SALT is
about Sequential, Agreed-on, Ledgered, and Tamper-resistant transaction processing. From a systems perspec-
tive, SALT is about decentralized transaction processing systems being Symmetric, Admin-free, Ledgered and
Time-consensual. We discuss the importance of these dual perspectives, both, when comparing SALT with
ACID and BASE, and when engineering blockchain-based applications. We expect the next-generation of
decentralized transactional applications to leverage combinations of all three transaction models.

1 INTRODUCTION

There is a common belief that blockchains have the
potential to fundamentally disrupt entire industries.
Whether we are talking about financial services, the
sharing economy, the Internet of Things, or future en-
ergy markets – any application where some form of
trade and agreement among different parties occurs is
deemed a candidate for blockchains. And when us-
ing blockchains, so the promise, trustless interactions
– in the sense that trust no longer must be managed
by some central or intermediating party – and hence
lowered transaction costs and other benefits of decen-
tralization are introduced.

Is this considerable interest in blockchain technol-
ogy justified? What are blockchain-based transac-
tions? How do blockchain-based transactions com-
pare to traditional database and distributed systems
transactions? Do blockchains replace other database
technology and systems or should they be used as a
complement?

In this keynote paper, we take a transaction pro-
cessing perspective on blockchains. With relational
database management systems that implement ACID
transactions, and cloud systems and NoSQL stores
that favor the BASE model, we have two established
models to compare blockchain-based transactions

against. Using the admittedly contrived acronym of
SALT, we characterize blockchain-based transactions
– from a transactions perspective – as Sequential,
Agreed, Ledgered, and Tamper-resistant, and – from
a systems perspective – as Symmetric, Admin-free,
Ledgered, and Time-consensual.

Following either ACID, BASE, or SALT naturally
results in different notions of transactions and dif-
ferent transactional system architectures. Using two
real-world application examples that use blockchains
we illustrate how different business transactions map
to a combination of these three transaction models
and corresponding data management components.

2 BLOCKCHAINS

Since its inception in 2008 as the technology behind
Bitcoin (Nakamoto, 2008), blockchains are discussed
in a diversity of communities in research and practice.
These include cryptocurrency and security, databases
and distributed systems, IT law, entrepreneurship, and
many more. In addition, blockchain developer com-
munities exist, focusing on specific blockchain tech-
nologies such as Bitcoin, Ethereum, Hyperledger, and
other. Out of the many views on blockchains and cor-
responding definitions that exist, we like to emphasize

Tai S., Eberhardt J. and Klems M.
Not ACID, not BASE, but SALT - A Transaction Processing Perspective on Blockchains.
DOI: 10.5220/0006408207550764
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 755-764
ISBN: 978-989-758-243-1
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

755



the following three:

1. A blockchain is a peer-to-peer protocol for trust-
less execution and recording of transactions se-
cured by asymmetric cryptography in a consistent
and immutable chain of blocks – the blockchain
developers and technology view.

2. A blockchain is a shared append-only distributed
database with full replication and a cryptographic
transaction permissioning model – the IT architect
and data management view.

3. A blockchain is a shared decentralized ledger, en-
abling business disintermediation and trustless in-
teractions, thereby lowering transaction costs –
the business executive and applications view.

With each of these three definitions, a different
emphasis is set, focusing either on the protocol aspect,
the data management aspect, or the decentralization
aspect of blockchains. Yet, all three definitions make
use of the term transaction. In the following, we thus
take a closer look at what a transaction is and how
such transactions traditionally have been supported by
transaction processing systems.

3 TRADITIONAL
TRANSACTIONS AND TP
SYSTEMS

A (business) transaction, in its most generic sense and
as used in commerce, is an instance of buying or sell-
ing something. In computer science, a transaction is
a logical unit of work performed within a transaction
processing system (TP system). A TP system, in turn,
refers to an information processing system that di-
vides all processing work into transactions, in a way
that each transaction can be guaranteed a set of prop-
erties by the system.

3.1 Understanding ACID

In the 1980s, relational database management sys-
tems (RDBMS) based on Codd’s relational model
were first introduced. With the addition of TP tech-
nologies to RDBMS a few years later, originally pro-
posed by Jim Gray, the acronym “ACID transaction”
was born (Gray and Reuter, 1992). ACID refers to a
set of guarantees for each transaction to be processed
by the TP system: Atomicity, Consistency, Isolation,
and Durability.

ACID has since been understood as a very conve-
nient model:

• A transaction consisting of multiple operations is
executed as a whole or not at all (“all or nothing”).

• Each transaction transforms the database from
one consistent, valid state to another, adhering
to all validation rules and database integrity con-
straints.

• Concurrent transactions are executed by maintain-
ing isolation, that is, by executing them as if they
were sequential.

• Once a transaction has been committed, the re-
sults become permanent.

The responsibilities to achieve the ACID proper-
ties are spread across different components of a TP
system (Bernstein and Newcomer, 2009). A transac-
tion manager component typically is required to drive
coordination protocols among the resource managers,
for example, the 2PC completion protocol. Consis-
tency is a responsibility of components that perform
validation checks, for example, by using the rules
of the database itself. Isolation requires some con-
currency control, which typically relies upon locking
protocols such as the 2PL. And durability typically is
a responsibility of the database itself.

Figure 1 illustrates a TP system in support of
ACID transactions. An application interacts with
the transaction manager to begin (1) and end (3) a
transaction as a logical unit-of-work. Each transac-
tion groups a set of operations (2) on one or more
databases (resources). For each resource involved
in a transaction, a resource manager component ex-
ists. The resource managers must be registered with
the transaction manager and must understand proto-
cols and provide interfaces in support of transaction
processing, e.g., the X/Open XA interface, so that
the transaction manager can run completion protocols
when committing the transaction (4).

Resource 
Manager

Resource 
Manager

Transaction 
Manager

Application

Resource Resource

1 3

Tx 
interface

4

XA 
interface

XA 
interface

RM2 
interface

RM1 
interface

2

Figure 1: Architecture of a TP system supporting ACID
transactions.

Guaranteeing the ACID properties implies that

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

756



whenever things do go wrong, the TP system will
detect the failure and rollback any intermediate steps
taken, if necessary.

3.2 Understanding BASE

With the emergence of unprecedented scalability
needs of modern Web applications, an alternative to
the rather expensive and consistency-focused ACID
model was introduced: BASE – Basically Avail-
able, Soft state, Eventually consistent. The term was
coined around the year 2000, deliberately constructed
to describe a model that is diametrically opposed to
ACID (Brewer, 2000).

Today, BASE is a model commonly favored by
cloud systems and NoSQL stores. BASE captures the
following properties (Pritchett, 2008):

• A system is basically available when supporting
partial failures without total system failure.

• The state of the system is ‘soft’ in that it can
change over time even if no further updates are
made.

• The system will eventually become consistent, if
no new updates are made to the system.

Generally, BASE systems follow a peer-to-peer
architecture, where each peer is equally responsible
for a subset of the overall data, a so-called shard. An
incoming client request is forwarded to a responsible
node based on a sharding function, e.g., a distributed
hashtable. No notion of a transaction manager exists
with BASE systems; all nodes can instead process in-
coming requests, which dramatically increases scala-
bility and throughput. Shards themselves are usually
replicated for increased fault tolerance. Hence, not
only the data itself, but also the control over it is dis-
tributed.

BASE systems typically use optimistic replication
techniques and thereby trade some consistency for
availability. Instead of requiring availability of all
components that are participating in a logical transac-
tion (and thereby coupling all components when pro-
cessing the transaction), a BASE design encourages
interaction only with select nodes and components,
thereby tolerating partial failures (of other nodes and
components) and accepting that the overall consis-
tency will be in a state of flux. Read and write oper-
ations by different clients can be performed by differ-
ent nodes in the system, thereby ensuring high avail-
ability. Updates written to a node typically are prop-
agated asynchronously to other required nodes after
returning to the client – the system therefore is in soft
state and, if no new updates are made to a given data

item, will only eventually converge to a consistent
state.

Figure 2 illustrates a system that follows the
BASE model. An application interacts either directly
with a resource managing component (1.b), or, more
typically, through some load balancer (1.a) that dis-
tributes incoming requests to peers of nodes with
symmetrical responsibilities and capabilities. Re-
quests are served by one or more resource managers
directly, and changes are propagated (2) to other re-
quired nodes subsequently. The number of resource
managers required depends on the sharding model
and the system configuration chosen, ranging from a
single node (single replica) to a quorum of nodes to,
theoretically, all replicas of a given data record.

Resource 
Manager

Resource 
Manager

Load 
BalancerApplication

Resource Resource

RM interface

sync

RM2 
interface

RM1 
interface

1a

sync

1b

2

Figure 2: Architecture of a System following the BASE
model.

Notice that BASE refers to properties of the TP
system more so than of an individual transaction, and
that BASE hardly describes any guarantee: being ba-
sically available, soft-state and eventually consistent
are very weak guarantees, if any. In comparison to
ACID, BASE does not address atomicity and does not
support isolation. BASE compromises consistency
to eventual consistency. Durability (persistence) of
changes to the system is the only property common to
both models.

In the context of BASE systems, the term trans-
action (and transaction processing, correspondingly)
is misleading. A “BASE transaction” – if at all –
probably is best understood as the unit of work com-
prising an initial client request to one system node
and all subsequent steps to propagate the effects of
that request to all other required nodes. However, we
prefer referring to “ACID transactions” (rather than
“ACID systems”) and to “BASE systems” (rather than
“BASE transactions”) instead, reflecting the focus of
each of the acronyms.

Not ACID, not BASE, but SALTNot ACID, not BASE, but SALT - A Transaction Processing Perspective on Blockchains

757



4 SALT: THE BLOCKCHAIN
ALTERNATIVE TO ACID AND
BASE

While ACID transactions provide convenient consis-
tency guarantees and BASE systems scale to meet the
demands of the largest of applications, they both re-
quire the users’ trust. A blackbox to the clients, the
correct execution of transactions can rarely be con-
trolled. For example, when you send money to a bank
account, you cannot be sure that this account was ac-
tually credited. You rather trust your bank to play by
the rules and to keep balances correct.

Turning to blockchains now, an alternative to
ACID and BASE is introduced. Blockchains address
this trust concern and propose a system design that
enables transactions which do not involve trust in a
central party (therefore, the interactions become trust-
less). These transactions neither fit the ACID nor the
BASE model, which is why we introduce SALT as
a new acronym to describe the unique properties of
blockchain-based transactions and systems.

Whereas ACID compromises availability in favor
of consistency, and BASE compromises consistency
in favor of availability, blockchains compromise scal-
ability in favor of trustless interactions (Tai, 2017).

As explained before, ACID focuses on properties
of transactions while BASE focuses on properties of
the system. Hence, we provide two SALT perspec-
tives: a transactions perspective, and a systems per-
spective.

4.1 SALT – The Transactions
Perspective

Blockchain-based transactions can be character-
ized as Sequential, Agreed, Ledgered, and Tamper-
resistant.

Notice that blockchains use two main types of data
records: transactions and blocks. A block groups a set
of transactions. The SALT transaction properties also
apply to blocks, however, for now, we will concen-
trate on transactions and discuss blocks in section 4.2
when defining the SALT systems properties.

Sequential
All transactions are processed sequentially. Unlike
with ACID transactions, there is no parallel process-
ing of transactions in the SALT model. However, just
like the isolation property in ACID, all transactions
are processed in a sequential order.

Agreed
A transaction is accepted when the majority of the

network agrees on its validity. Essentially, commu-
nity consensus determines the system state – unlike
in ACID and BASE, where it is solely controlled by a
central authority.

Ledgered
All agreed-on transactions are added to an append-
only transaction ledger and cannot be revoked. State
changes cannot be undone; compensating transac-
tions can be processed, however.

Note, though, that the ledgered property is a bit
weaker than the durability property in ACID. Due to
the majority-based agreement process, a part of the
ledger may be overwritten by another, later version.
The likeliness of this happening for a given transac-
tion quickly diminishes with the number of transac-
tions succeeding said transaction.

Tamper-Resistant
A transaction cannot be manipulated or censored.
This has two dimensions: Pending and agreed-on
transactions.

Unlike with ACID and BASE, there is no cen-
tral access management. The access control model
is completely decentralized and tied to asymmetric
cryptography. Pending transactions contain a signa-
ture that only the original sender can create. There are
no privileged users which could alter or block pend-
ing transactions. Furthermore, the ledger data struc-
ture is designed in a way that any alteration to an
agreed-on transaction would invalidate the data struc-
tures. Hence, other nodes in the network could never
be convinced of such an invalid history.

4.2 SALT – The Systems Perspective

Blockchain-basesd systems supporting transactions
can be characterized as Symmetric, Admin-free,
Ledgered, and Time-consensual.

Symmetric
All nodes in the peer-to-peer network symmetrically
share their responsibilities. This does not only refer
to transaction processing, but also to state storage and
propagation of information.

Admin-free
As a fully peer-to-peer system, there is no concept of
a system administrator who is responsible for main-
tenance, infrastructure provisioning or access control.
Updates of peers happen on an individual basis and
by that are subject to community consensus.

Ledgered
All peers in the system maintain an append-only data
structure of transactions which we refer to as the

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

758



Tx 
interface

Transaction 
Manager

Resource 
Manager

Resource

Block 
interface

Tx 
validation

Block 
validation

Block 
mining

Append 
block

Tx 
interface

Transaction 
Manager

Resource 
Manager

Resource

Block 
interface

Tx 
validation

Block 
validation

Block 
mining

Append 
block

Tx 
interface

Transaction 
Manager

Resource 
Manager

Resource

Block 
interface

Tx 
validation

Block 
validation

Block 
mining

Append 
block

96

8

5

4

3

2

1

4

7

8

9

Application
Legend

internal 
interface

external 
interface

Miner

Figure 3: Transaction-oriented Architecture of the SALT system perspective.

ledger. Before transactions can be appended to that
ledger, all nodes in the network need to agree on an
order to maintain the ledgers consistency.

Since finding consensus is expensive, blockchains
introduce blocks, a data structure that groups a set of
transactions. Blocks are then used as the unit of con-
sensus, thus reducing the number of consensus rounds
relative to the number of transactions. When consen-
sus is found, the agreed-on block is appended to the
ledger and with it the contained transactions.

Time-consensual To ensure timely processing of
transactions while tolerating network latencies due to
geo-distribution of the networks’ peers, the consensus
algorithm targets a defined average time between the
creation of two blocks. This is called the block inter-
val. Hence, while not guaranteed, a transaction is on
average processed and included into the ledger within
half the block interval.

4.3 Understanding SALT

Figure 3 illustrates a TP system in support of SALT
transactions. An application can begin a transaction
with any of the peers in the system (1). Each peer
maintains a local copy of the entire blockchain. The
transaction is validated locally at the chosen node and
– if valid – added to its list of ”pending transactions”
(2). Furthermore, the node propagates the validated
transaction to other nodes in the network (3). The
receiving nodes perform the same steps themselves
(4), which together leads to a gossip-like spread of
valid transactions and them being in pending state on

many nodes.
Some of the nodes – called the miners – group

their pending transactions into candidate blocks, the
unit of consensus. This happens in parallel on many
nodes and a consensus algorithm, (e.g., Proof-of-
Work, Proof-of-Stake) is used to decide which node’s
candidate block becomes a valid block accepted by
the network without communication between peers.
This is referred to as mining (5). This agreed-on block
is then appended to the miner’s blockchain (6) and
broadcast (7) so it spreads to all nodes in the network
in a gossip-like way. The receiving nodes check the
validity of the block (8) by validating all contained
transactions as well as the contained proof, that the
block was actually selected in the consensus process.
A valid block is then appended to the node’s local
blockchain. As this happens on all nodes in the net-
work, the contained transactions are now reflected in
the overall system state.

4.4 Comparing SALT, ACID and BASE

A SALT transaction conceptually is simpler than an
ACID transaction; there is no concept of grouping
multiple operations into an atomic unit-of-work from
a client perspective. Hence, no SALT property di-
rectly relates to the atomicity property of ACID. Note,
however, that grouping multiple operations is possible
inside a SALT system by creating stored procedures.
We expand on this idea in section 4.5. Neither of both
approaches is commonly supported in BASE systems.

The isolation property of ACID is closely related
to the sequential processing of transactions in the

Not ACID, not BASE, but SALTNot ACID, not BASE, but SALT - A Transaction Processing Perspective on Blockchains

759



SALT model. In both models, transactions have a
well-defined order that is consistent within the net-
work. In BASE systems, in contrast, a defined global
order of transactions is not enforced by the system
and does not have to exist, which is why BASE sys-
tems are soft-state.

Both, the agreed-on property of SALT and the
consistency property of ACID, refer to the validity
of transactions and are thus closely related. While
essentially the same guarantee, the parties enforcing
the guraranee differ: In the ACID case, specific com-
ponents of the TP system check the post transaction
database state for integrity and reject transactions in
case of violations. In the SALT case, all nodes in the
network independently validate transactions based on
an agreed-on ruleset and acknowledge them depend-
ing on the result.

Note, that this notion of consistency in ACID and
SALT is different from the system-centric consistency
notion in BASE. With BASE systems, consistency
refers to (reaching) equivalence of state across repli-
cas. This notion of consistency is a pre-requisite for
distributed systems in support of ACID transactions,
also. Yet, ACID makes no direct statement about
replica consistency. In systems supporting BASE,
replicas can be in conflicting state because they each
process a different set of transactions. The same can
happen in systems supporting SALT, when two nodes
mine different blocks and hence temporarily maintain
different state. Whereas systems supporting BASE
are guaranteed to converge in the absence of new
transactions, in SALT systems the conflict is resolved
by deciding for exactly one block to be agreed-on by
all peers.

Another interesting relation exists between the
ledgered property of SALT and the durability prop-
erty of ACID, as already briefly discussed in 4.1. Not
considering factors external to the system, a trans-
action written to a TP system supporting ACID or
BASE is guaranteed to be persistent and cannot be
lost. This guarantee is weakened to a probabilis-
tic version in the SALT model. It can happen, that
a transaction is no longer represented in the system
state although it has been processed successfully at
an earlier point in time. With the number of subse-
quent transactions, the probability of this happening
quickly diminishes (Nakamoto, 2008). While having
to rely on probabilistic state appears unreliable, it is
barely a problem in current networks (e.g., Bitcoin or
Ethereum). As a best practice, users wait for a cer-
tain number of blocks (based on their risk threshold)
succeeding the block containing their transaction until
they consider the transaction to be final.

4.5 T for Turing Complete?

Traditional TP systems know the concepts of stored
procedures. These procedures group a sequence of
database operations and can be exposed to clients.
This reduces the permissions clients require and can
also improve usability.

With blockchains, the same concept becomes
much more powerful. The procedure is executed
on every node in the network and the resulting state
changes are applied. Hence, a stored procedure on
a blockchain is essentially a piece of software that is
executed in a fully decentralized way without anyone
being able to control it.

Applying the concept of stored procedures to
blockchains has two challenges, though. Because the
state changes caused by the stored procedures on ev-
ery node have to be consistent, the code needs to be
deterministic. Furthermore, for the network to make
progress and for block times to average the targeted
block interval, there can be no infinite loops or long
running transactions.

Determinism can be achieved by not allowing any
non-deterministic operations in stored procedures.
External API calls, for example, cannot be allowed,
as they might yield different results when performed
on different nodes in the network.

The second problem, preventing infinite loops,
theoretically reduces to the halting problem: Does
a given program terminate or will it run forever? It
is well known, that this problem is undecidable for
turing-complete languages, so another way of pre-
venting infinite loops has to be found.

One approach is to write stored procedures in a
less powerful language so they are guaranteed to ter-
minate after a well-defined number of steps. While
this constrains overall expressiveness, it enhances se-
curity by reducing potential vulnerabilities. A promi-
nent example of a blockchain following this approach
is Bitcoin, which provides a rather limited scripting
language mainly used for signature verification.

Another approach is to introduce a cost model
to a turing-complete language: Every operation is
assigned a price and an initial endowment is speci-
fied for a stored procedure when it is called. With
that, every stored procedure is guaranteed to halt, be-
cause even if it contains an infinite loop, the endow-
ment will be used up at some point which causes ex-
ecution to stop. Although it involves additional risk
from a security perspective, this approach is certainly
more expressive and enables more powerful appli-
cations. However, the cost calculation and tracking
during execution involve considerable overhead. The
Ethereum blockchain adopts this approach and refers

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

760



to its stored procedures as Smart Contracts (Buterin,
2014), (Wood, 2014).

5 DESIGNING SALTy
APPLICATIONS

With an understanding of SALT transactions and
SALT systems, we now turn to the question of how
to design the next generation of decentralized trans-
actional applications that use blockchains. Innovative
companies are already building such applications to-
day, which allows us to discuss SALT in the context
of specific industry use cases. Besides financial ap-
plications in the banking and insurance industry, there
are numerous examples of non-financial, blockchain-
based applications, such as notary services, digital
content monetization, decentralized storage, decen-
tralized IoT, and so on (Crosby et al., 2015).

We propose to approach the design and analysis
of blockchain-based applications along the two SALT
perspectives: the transactions perspective, and the
systems (data management components) perspective.
We selected two non-financial use cases to illustrate
the basic approach.

5.1 Monegraph Use Case

The first use case, Monegraph, is a content distri-
bution and monetization platform that enables media
creators to transfer rights of digital artwork to media
owners (Monegraph, 2017). With the platform, me-
dia creators, such as photographers, videographers,
and musicians, can monetize their work, and media
owners can manage their media’s use rights, distribute
content, and share revenue with media creators, pub-
lishing partners, and affiliates.

5.1.1 The Transactions Perspective

The main business transactions from the point of view
of the two main stakeholders, the media creators and
the media owners, are the following, as depicted in
figure 4.

• Media creators can, for example, create and up-
load digital artwork (as a file), register the artwork
as a public record, and list their artwork in a pri-
vate catalog.

• Media owners use the platform to agree to terms
(in the form of a Smart Contract), make payments
using Bitcoin or traditional payment transactions,
and transfer ownership of the public record.

M
on
eg
ra
ph

Da
ta

 M
gt

.
M

ed
ia

 C
re

at
or

Create 
digital artwork

Register 
artwork

List in 
catalog

M
ed

ia
 O

wn
er

Agree 
to terms

Make a 
payment

Transfer of 
ownership

File Store
(AWS S3)

Doc Store
(Couchbase)

Blockchain
(Ethereum)

Blockchain
(Bitcoin)

Art Portfolio
Binary Assets

Sales Contracts 
& Catalogs
JSON Docs

Owner History
Crypto Hashes

Payments
Virtual Currency

Figure 4: Monegraph use case from a combined transac-
tions and data management systems perspective.

Using blockchain technology, Monegraph gains
the following SALT transaction properties.

Sequential
Transactions are guaranteed to be processed in a se-
quential order so that the transfer of media rights from
creators to owners is performed without “double sell-
ing”, i.e., selling the same rights to different media
owners.

Agreed
Since an agreement among the majority of the
blockchain network is required, it becomes more dif-
ficult to illegitimately claim media rights ownership.
Once an agreement on a transaction has been reached
in the network, there is a certain level of trust that me-
dia rights that have been exchanged really belong to
the agreed-on media owner.

Ledgered
Appending all agreed-on transactions to a public
ledger asserts that media ownership records cannot
be revoked by a single party or a small part of the net-
work. Thereby, media owners gain trust that their dig-
ital rights ownership cannot be single-handedly an-
nulled by a seller.

Tamper-resistant
All transactions are tamper-resistant, making it diffi-
cult to forge transactions, e.g., by replacing the media
owner in a transaction through a man-in-the-middle
attack.

5.1.2 The Systems Perspective

Monegraph uses three different types of data stores
for enabling the business transactions described be-

Not ACID, not BASE, but SALTNot ACID, not BASE, but SALT - A Transaction Processing Perspective on Blockchains

761



fore:

1. A blob store for digital artworks, which stores the
art portfolio as binary files (jpeg, mp4, mp3, etc.).
The blob store (using AWS S3) is suitable for stor-
ing multiple Petabytes of unstructured data in a
flat namespace.

2. A NoSQL data store for storing sales contracts
and catalog data in JSON format. The NoSQL
document store (using Couchbase) is suitable for
storing Terabytes of semi-structured data.

3. Two blockchain data stores for storing Gigabytes
of data:

(a) One blockchain, Ethereum, is used for stor-
ing the ownership history of digital artworks as
crypto hashes.

(b) Another blockchain, the Bitcoin system, is used
for facilitating payments with the Bitcoin vir-
tual currency.

The two different NoSQL data stores (S3 and
Couchbase) that Monegraph uses are both BASE sys-
tems which enable scalable and highly-available data
storage of unstructured items in a blob store, and
semi-structured JSON items in a document store, re-
spectively. It would be prohibitively expensive to
use the Ethereum blockchain as a data store for these
items. Using the Ethereum blockchain as part of the
data management system, however, enables, in partic-
ular, the following SALT system properties that sim-
plify revenue sharing and payment distribution.

Ledgered
Transparently storing all agreed-on transactions in a
public ledger simplifies revenue sharing between mul-
tiple parties, such as publishers, media creators, and
affiliates, without layers of intermediaries that use
their own complex accounting and rights management
processes. For example, a third-party that wants to li-
cense media can more easily verify media ownership
of the party that claims to be the media owner by look-
ing up the ownership record in the public blockchain.

Time-consensual
The time-consensual property implies that transac-
tions are appended to the ledger after a defined av-
erage time period. Although this could be problem-
atic for some applications, a certain delay involved in
transferring media rights could still be acceptable in
this use case.

5.2 Provenance Use Case

The second use case, Provenance, is a supply chain
traceability application that provides insight into the

provenance of items across different supply chains
(Provenance, 2017). Thereby, Provenance makes it
possible for consumers to transparently retrace the
origin of products that they purchase. A pilot project
shows how blockchain technology can be used for
tracing yellowfin and skipjack tuna fish in Indonesia
from catch to consumer.

Pr
ov
en
an
ce

Fi
sh

er
Su

pp
lie

r
Fa

ct
or

y
PO

S
Da

ta
 M

gt
.

Register 
catch

Receive 
catch

Receive 
certificate

Consumer 
scans tag

Display 
provenance 

data

Blockchain
(Ethereum)

ERP System
(Tally-O)

Provenance
(RDBMS)

Hand-over 
catch

Tag products Ship
 products

Figure 5: Provenance use case from a combined transac-
tions and data management systems perspective.

5.2.1 The Transactions Perspective

Provenance uses blockchain technology to integrate
different stakeholders across the supply chain, en-
abling them to support the following business trans-
actions, as shown in figure 5.

1. Local fishermen in Indonesia register their catch
(by sending an SMS message to a Provenance ap-
plication), which triggers the creation of a public
digital certificate that represents the physical good
in the blockchain.

2. Along with the physical transaction of the catch
from fisher to supplier, suppliers receive the digi-
tal certificate from the blockchain.

3. In the factory that processes and packages the fish,
the products are tagged (e.g., using QR codes, bar-
codes, NFC tags, etc.), and can thereby be traced
along the supply chain by linking the tag to the
digital certificate.

4. At the Point of Sale, consumers scan the tag
on a product (e.g., a QR code) with their mo-
bile phones and retrieve information regarding the
product’s provenance.

In the tuna fish tracing pilot project of Provenance,
NGOs perform audits to validate compliance along
the supply chain. Therefore, the system is not com-
pletely trustless. However, audits are simplified by

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

762



using the blockchain as a shared data layer for certifi-
cates.

Using blockchain technology for building the cer-
tification system enables, in particular, the following
SALT transaction properties.

Agreed
There is no single party that governs the certification
process. Instead, an agreement between all stakehold-
ers is automatically formed based on defined conven-
tions of the blockchain consensus protocol. The cer-
tification data is thereby not prone to arbitrary actions
of a single party.

Ledgered
The agreed-on transactions in a blockchain cannot be
revoked, thereby providing a perfectly auditable sys-
tem which is particularly important for NGOs who
are responsible for auditing the uninterrupted chain
of custody from raw fish to packaged products at the
point of sale. It is practically impossible for a sin-
gle party to modify transactions once they have been
appended to the blockchain.

5.2.2 The Systems Perspective

Provenance uses the Ethereum blockchain as a secure,
auditable, shared data layer, thereby avoiding data si-
los in heterogeneous systems with limited interoper-
ability. With the blockchain, data can be accessed and
verified by all involved parties, rather than solely by
the original certificatory.

By using a blockchain-based system in the tuna
tracing pilot project, Provenance gains two main ad-
vantages. First, the blockchain serves as an integra-
tion layer between different stakeholders with het-
erogeneous IT systems that range from the mobile
phones of fishermen to complex ERP systems of man-
ufacturers. Second, the peer-to-peer setup and cryp-
tographic properties of the system make it impossi-
ble for a single governing party to manipulate data at
some point in the supply chain, thereby strengthen-
ing the confidence of consumers into the provenance
information they retrieve at the point of sale.

The following SALT system properties are of par-
ticular importance in the Provenance use case.

Symmetric
Fragmentation along the chain of custody makes a
certification system vulnerable to fraud. Furthermore,
no single organization can be trusted to broker all data
about every product’s supply chain. Relying on a
single party creates an inherent bias that eventually
could weaken trust of consumers regarding the certi-
fied provenance information that they receive at the

point of sale. A blockchain-based peer-to-peer net-
working approach with symmetrically shared respon-
sibilities takes the role of an “honest broker” in such
a distributed certification system.

Admin-free
The blockchain serves as an integration layer between
different stakeholders with heterogeneous IT systems
that are ranging from the mobile phones of local pro-
ducers to the ERP systems of manufacturers. Tra-
ditionally, a governing third-party, such as an NGO,
would have been required to integrate all IT systems
along the supply chain with their own auditing sys-
tem, thereby increasing cost of operations. Cost shar-
ing is difficult and could weaken the trustworthiness
of the system due to adverse incentives of the govern-
ing third-party who might be more interested in pleas-
ing the sponsor rather than performing proper over-
sight.

Moreover, by using a blockchain, the authentica-
tion system is drastically simplified compared to cen-
trally managed public key infrastructure. This re-
moves a critical single-point-of-failure and security
risk from the certification system.

6 SUMMARY AND OUTLOOK

Different notions of transactions and transaction pro-
cessing systems exist, most notably ACID transac-
tions and BASE systems. With the emergence of
blockchain technology, an alternative to ACID and
BASE is introduced: SALT. In this paper, we intro-
duced SALT along the two perspectives of transac-
tions and TP systems. We discussed the importance
of these dual perspectives.

When engineering blockchain-based applications,
the SALT model can be used to explain the
blockchains under consideration, that is, to study both
the business transactions and their supporting sys-
tems. While there are specific transactions that are
exclusively SALT, we expect the systems to always
encompass different data management components so
that SALT, ACID, and BASE can all be supported at
the same time. The two use cases discussed are first
examples of such systems that benefit from using mul-
tiple transactional models and systems.

This immediately raises two main research ques-
tions that require further exploration:

1. Given a combination of different transaction
models and systems, including SALT, are there
system-wide application properties that can be
guaranteed?

Not ACID, not BASE, but SALTNot ACID, not BASE, but SALT - A Transaction Processing Perspective on Blockchains

763



2. With blockchain technology advancing at a rapid
pace, will ACID, BASE and SALT continue to co-
exist as alternatives, or can frameworks and solu-
tions stacks be designed that impose an integrated
data management using all three models?

Further, a number of related research challenges
emerge:

1. In this paper, we suggested a business transac-
tions and a systems perspective when engineering
blockchain-based applications. Other perspec-
tives – for example, a consensus-perspective, or a
blockchain technology (platforms and tools) per-
spective – may also be beneficial.

2. Private and permissioned blockchains, as opposed
to the public blockchains discussed in this pa-
per, maintain some of the SALT properties, while
compromising others. Whenever closed networks
with different consensus algorithms and asym-
metric peers are suggested – is less SALT actually
healthy?

3. Scalability (of blockchains and blockchain-based
applications) is a major limitation of current
blockchain technology. Heterogeneous data man-
agement, as exemplified with the two use cases
above, may help to improve scalability (and ad-
dress related concerns of data volume, distribu-
tion, and processing needs). How, and at what
costs, can scalability be improved?

The list above is by no means complete and fi-
nal; our discussion in this paper is largely driven from
a data management and distributed systems interest,
while several other communities (including security,
privacy, legal, economics) also formulate a number
of open issues related to blockchains and blockchain-
based applications. As blockchain technology and
blockchain-based applications continue to evolve at
a rapid pace and more lessons are learned, we ex-
pect both a fine-tuning of specific open issues and a
more integrated, inter-disciplinary big picture to be-
come important next steps.

REFERENCES

Bernstein, P. A. and Newcomer, E. (2009). Principles of
Transaction Processing. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2nd edition.

Brewer, E. A. (2000). Towards robust distributed systems.
In PODC, volume 7.

Buterin, V. (2014). Ethereum: A next-generation smart con-
tract and decentralized application platform. https://
github.com/ethereum/wiki/wiki/%5BEnglish%5D-
White-Paper.

Crosby, M., Nachiappan, Pattanayak, P., Verma, S., and
Kalyanaraman, V. (2015). Blockchain technology:
Beyond bitcoin. Technical report, Sutardja Center for
Entrepreneurship & Technology, Berkeley, CA.

Gray, J. and Reuter, A. (1992). Transaction Processing:
Concepts and Techniques. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1st edition.

Monegraph (2017). https://monegraph.com/. Accessed:
2017-02-07.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system.

Pritchett, D. (2008). BASE: An acid alternative. ACM
Queue, 6(3):48–55.

Provenance (2017). https://www.provenance.org/. Ac-
cessed: 2017-02-07.

Tai, S. (2017). Continuous, trustless, and fair: Chang-
ing priorities in services computing. In Advances
in Service-Oriented and Cloud Computing (ASOCC).
Springer.

Wood, G. (2014). Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum Project Yellow
Paper.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

764


