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Abstract: We propose a novel classification method that integrates into existing agile software development practices by
collecting data records generated by software and tools used in the development process. We extract features
from the collected data and create visualizations that provide insights, and feed the data into a prediction
framework consisting of a deep neural network. The features and results are validated against conceptual
frameworks that model the development methodologies as similar processes in other contexts. Initial results
show that the visualization and prediction techniques provide promising outcomes that may help development
teams and management gain better understanding of past events and future risks.

1 INTRODUCTION

Software development organizations have to take
many factors into account in order to stay dynamic
and innovative. The people who work on producing a
deliverable product to an actively participating client
must have a diverse set of skills and knowledge about
their development platform and associated topics, in
order to collaborate with their peers and stakeholders.

We study the effectiveness of different practices
within software development processes. Specifically,
we investigate the use of the Scrum software devel-
opment method, and observe the effects of various
events and actions during the development process
upon the outcome of the process as well as the suc-
cessful release of the product. Moreover, we take
other development aids, such as software quality as-
sessment tools and continuous integration pipelines,
into account in this research.

The research takes place from multiple view-
points: we apply the principles from theoretical soft-
ware engineering, delve into the practical aspects by
following the actions made during a sprint, combine
our experiences with relevant work and conceptual
models from other fields, and apply machine learning
on features that are extracted according to the models
and definitions we have formed.

We specifically focus on the practice of the Scrum
software development process as it is applied at a
government-owned, non-profit organization based in

the Netherlands. This organization develops and
maintains specialized software for other governmen-
tal entities, and keeps close liaison contact with these
offices. In this paper, we set out to investigate how
Scrum manifests itself in this organization, what other
social and technical practices are involved, and how
these may be used as indicators that point toward the
success of the process and the end result, as detailed
in in the research questions in Section 3.2.

The remainder of our paper has the following
structure: Section 2 presets our theoretical ground-
work as well as points toward related practical studies.
Section 3 provides insight into the problem statement
and theoretical backgrounds, and Section 4 shows the
analytical approach of finding solutions to some of
the problems. Section 5 discusses the solutions and
Section 6 concludes our findings thus far.

2 BACKGROUND

In this section, we introduce the foundations of the
Scrum framework which provides us with a model of
the interactions between the people, the code and the
support tools. This helps us understand what certain
properties in the collected data mean and how we can
apply them in other models, such as the conceptual
frameworks in Section 3.3. We show existing work
which is relevant to this approach in Section 2.2.
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2.1 Concepts

Scrum is a lightweight framework which describes
a software development process. A self-organizing
software development team works in sprint iterations
of about two weeks to deliver increments of work-
ing software to the client. The client provides feed-
back on new features during a post-sprint review, and
prioritizes desired items on a product backlog. The
Scrum team commits itself as a whole to develop a
certain number of the top items during the sprint, and
in an optimal situation no stories are added or re-
moved while the sprint is undergoing.

The Scrum process is meant to have a flexible im-
plementation, such as what determines a story to be
‘done’. This definition can range from implementa-
tion to (automated) testing, documentation and client
acceptance. Rules can be added and removed within
the framework when the team agrees to do so dur-
ing a retrospective, where team members discuss prior
events and determine what practical problems they
need to overcome in the future.
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Figure 1: Workflow of a sprint in the Scrum framework.

Other events surrounding a Scrum sprint, outlined
in Figure 1, are the pre-refinement, where stories are
developed to become ready for selection in a sprint,
the refinement where the stories are picked, and the
pre-sprint planning, where the stories are outlined
once more. Every workday, the team holds a Daily
Scrum stand-up meeting to discuss the situation of the
stories and ask each other what they did thus far, their
plans to do in the remainder of the sprint and if there
are any (foreseeable) problems.

Scrum is an agile software development method,
which means that it adheres to principles that are set
out in the Agile Manifesto (Agile Alliance, 2001).
The manifesto assigns an ordering of value between
pairs of software development aspects, e.g., favoring
individuals and interactions over processes and tools.
Even though our research makes use of such systems
to collect data points, we do so to provide the team
with recommendations based on data regarding their
work (Highsmith, 2002). Potential conflicts resulting
from putting the principles of the Agile Manifesto in
practice are resolved by ensuring that there is plenty

attention for higher-valued goals (Cockburn, 2007).
With regard to the individuals and their inter-

actions, the Scrum framework defines a number of
groups and roles. The shape of the organisation is out-
side the scope of Scrum, as it may include managers,
technical leads, coaches and support teams. The main
Scrum roles are as follows:

• Client: The organization which has procured for
the development of the product. The client may
be the end-user or the software maintainer. The
client expects the product to be delivered accord-
ing to their requirements. An actively involved
client provides regular feedback the development
team and other stakeholders such that potentially
changing wishes are known.

• Software development team: A group of people
that work together on a product or component.
The development team shares a work ethos which
drives them to not only successfully release their
product in the end, but also improve their working
method and the product quality.

• Scrum master: A role that might rotate between
team members, who ensures that any impediments
or other problems are taken care of rapidly, and
verifies that the team commits to the same goals.

• Product owner (PO): A middle-man between the
team and the client, who handles the bidirectional
communication surrounding a Scrum sprint. The
PO assesses requirements from the client and
molds them into stories, with the help of the
team. Additionally, the PO organizes meetings
and demonstrations between the stakeholders.

2.2 Related Work

Some of the longest outstanding questions in the field
of software development is whether the use of so-
called methodologies yields a better product that is
delivered earlier than in the absence of them, and how
we can compare the different practices (Wynekoop
and Russo, 1995). Each in vivo study appears to dif-
fer in its scientific rigorousness (Dybå and Dingsøyr,
2008) and the topic of interest within the study. Meta-
analyses of the related topic of software fault predic-
tion using machine learning show that bias is a strong
factor in the obtained results of such classifiers (Shep-
perd et al., 2014).

A large number of studies deal with distributed
software development projects which use agile pro-
gramming or management solutions. While these
may provide relevant results (Paasivaara et al., 2009),
their use in on-site collaboration teams may be lim-
ited. Studies show the (successful) application of



Scrum in small teams (Rising and Janoff, 2000) and
in teams that have a requirement of communicating
with other teams as well as external stakeholders on
a frequent and documented basis (Pikkarainen et al.,
2008).

We distinguish the earlier case studies into two
segments: qualitative and quantitative. The qualita-
tive studies assess the application of Scrum or an-
other agile development practice through means of
interviews, developer experiences, and scoring sys-
tems. The empirical methods used this way still help
laying down new foundations for practices and anti-
patterns in Scrum (Eloranta et al., 2016) and set light
on new relevant factors (Lee, 2012), providing knowl-
edge models for others to build upon.

Recent quantitative research covers topics includ-
ing agile software development processes, or more
specifically Scrum practices. The analysis of data
from different sources is often combined with frame-
works and practices that have proven themselves in
other fields, such as multi-criteria optimization mod-
els (Almeida et al., 2011). There is an analysis of
the effectiveness of Scrum and Kanban on project re-
sources management (Lei et al., 2017), and an ethno-
graphic case study on the correlation with overtime
and customer satisfaction after introduction of Scrum
in an organization (Mann and Maurer, 2005).

3 DESIGN

We formulate our goals and propose our research
questions related to the quantitative validation of soft-
ware development processes in this section.

3.1 Goals

Different types of goals exist in the context of an anal-
ysis of software development processes. We cate-
gorize these goals by level of detail, focus area and
stakeholder interest. For the benefit of the software
development organization, a corporate industrial goal
would be to reduce development and maintenance
costs. We study various factors that influence the re-
quired effort and sprint success, i.e., whether the esti-
mated effort is realized in time.

Tactical goals are usually high-level, with a focus
on the process itself. For example, we wish to im-
prove the software development process by means of
novel standards and best practices. A research goal is
then to recommend new norms based on analysis and
to verify that these norms boost the progress.

At a more detailed level, we have goals that
strengthen the measurable nature of the process. The

software development organization management may
only have a need for a single indicator of success, but
some stakeholders prefer insight into the underlying
factors. In a research context, we have measurable
domains (projects, teams, deliverable artifacts, and so
on) and we apply specific measurements to them.

Table 1: The goal, question, metric framework for Scrum
software development research.

FIELD VALUE

Object of study Scrum board, issue tracker,
version control

Purpose Visualization, prediction,
recommendation

Quality focus Scrum sprint progress, code
quality metrics, collaboration

Point of view Team leaders, team members,
management

Environment Scrum software development
organization

We summarize the purposes and context of our
goals in Table 1. From this summary, we build pre-
diction models that reduce bias toward individual do-
main samples, and may be generalized, applied and
inspected more broadly. We extract features from ar-
tifacts and records originating from the software de-
velopment process in order to better understand it and
provide recommendations for stakeholders. We pro-
vide a systematic mapping from conceptual frame-
works to the data set of features.

3.2 Research Questions

We wish to find out how we can significantly improve
software quality of products developed at software
development organizations. We consider the use of
various kinds of analysis tools that accept collections
of measurable events as input. These events occur
during the development process; they may be based
upon attributes of a Scrum event, changes in the issue
tracker or code, or signals of changes in the quality of
the deliverable product.

From this research question, we can deduce sev-
eral subquestions which form the basis of our re-
search. Are we able to objectively determine best
practices or other quality norms by means of analysis
of data logs detailing the software development pro-
cess? We look for indicators that point toward a suc-
cessful or unsuccessful sprint period within Scrum.
We take into account the viewpoints of involved
stakeholders as semi-quantitative indicators.

Through this scientific analysis of process data,
we may be able to deduce new, predictive norms or



recommendations for software development projects.
This requires research into feature extraction and
model definition and validation, to support predic-
tion of success or failure of a current Scrum sprint
period. We make use of information about earlier
sprints, such that we can predict the probable outcome
before the sprint in question has started.

Finally, to what respect and extent, and using
which kinds of measures, can the effectiveness of
novel software engineering methodologies be deter-
mined scientifically? After model validation, we will
apply the prediction to ongoing projects and deter-
mine the effects of recommendations on the devel-
opment process and its success. The recommenda-
tion model must integrate into the current software de-
velopment practices, for example by augmenting ex-
isting systems for quality reporting, project manage-
ment, logistics and human resources. Such an experi-
mental setup requires thorough verification and com-
parison with projects that lack this setup.

3.3 Conceptual Frameworks

We describe a Scrum sprint as models which we will
use to perform model validation. We present three
models that relate to the linear model of a Scrum
sprint, namely a factory process, a symbiotic learning
network, and a predator-prey system.

In the factory model, we start at some predeter-
mined state with a concept for something a user may
want to be able to do with the product, of which the
release is the eventual outcome. This leads to a use
case which can be expanded into a story. The story
may undergo multiple phases in which it is further
detailed in terms of design and scope, after which the
story is reviewed. The review determines whether the
story is ready to develop into an implemented fea-
ture. This step employs programming of source code
to handle the use cases. Again, this step can be re-
viewed to ensure code quality and agreement within
the team about how the code is supposed to function.
Aside from manual inspection, a test process allows
the team to check if the implementation conforms to
their expectations through the use of verification mod-
els (with a technical equivalent of automated regres-
sion tests and similar benchmarks).

A special twist of the Scrum factory is that the
client may be involved in the quality acceptance of
the product before it is released to them. This may
materialize in the form of acceptance testing in a test
environment, witness testing, or a demo near the end
of the sprint. This external testing process brings the
story closer to production. In the end, the stories
that are considered to be ‘done’ are released in a po-
tentially shippable increment. Again, this is slightly

different from conventional product launch strategies,
since not all desired functionality may have made it
into the increment, but those that did are working as
expected.

There are indicative moments at each step in this
process: before the entire process starts, in between
the subprocesses, and at the end of the production
line. These moments are shown in Figure 2 and may
occur during the Scrum sprint or before or after it in
the case of designing and reviewing the stories. At
any moment, we may determine how many of these
stories are at the current step as well as how many are
waiting to be pulled into the next step after a subtask
is done. Thus we have separate backlogs for stories
at any point of the development phase, not just before
they are pulled into a sprint.

Ideally, the factory pipeline is a one-way conveyor
belt with a stable speed such that the backlogs re-
main small and manageable. However, one additional
complication is that stories may be pulled back into
an earlier state, for example when review or testing
uncovers problems that require redesigning, fixes in
code, or other changes in an earlier process. Similarly
to the intermediate backlogs, the volume of such set-
backs should be limited. The practice of adding these
backward flows into the model yields a value stream
map, which stems from the Lean software develop-
ment principles (Abdulmalek and Rajgopal, 2007).

In another context, the Scrum sprint can be seen as
a symbiotic environment that encourages stakeholders
to learn from past mistakes, such that known prob-
lems can be prevented in the future.

One can define a time range, such as the start of a
sprint until the end of a sprint, in which the team per-
forms actions that may improve the product and them-
selves. At the start of this range, we have a number of
artifacts, such as code, components in the system ar-
chitecture, stories in the sprint and in the backlog, and
(reported) bugs. All of these artifacts may have some
measurable indication of how proficient they are: is
the code readable, are the stories detailed enough (but
not too implementation-specific), etc.

At the end of the sprint, these artifacts have the
same properties, but upon measuring them they may
have improved. We can detect if the solutions were
implemented in the code in such a way that it is
reusable for later features and is future-proof against
unknown bugs or regressions elsewhere in the code.
This includes checks for code duplications or other
code smells within or between components. The
structure of the architecture may improve, which is
more than just aligning it with the initial design con-
cept. Problems that were encountered with certain
stories should be used as a learning moment to ensure
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Figure 2: Factory model of the Scrum process, similar to value stream maps from Lean.

the use case is clear enough before work commences,
and to lead to fewer bugs in the future.

As a final model, the actions of software develop-
ers that complete work on a story, find and fix bugs, or
create unit tests can be seen as a predator that intends
to minimize the population size of a prey (Arcuri and
Yao, 2008). Every time the developers get more work
done within a sprint, their ‘prey’ should subsequently
subside. However, if the quality and quantity of the
actions are lower than expected, then the number of
prey grows again due to the rise of bugs and undesir-
able features.

We define the predator size as the amount of work
that the team achieves, i.e., the velocity of the team.
We map the prey to volume of the product backlog
that need to be actioned upon, such as stories and
bugs. This makes the two population sizes more ab-
stract than in the biological process. The main simi-
larities are that the two volumes are inversely related
to each other, and the assumption that there is enough
‘food’ for the prey to live from, namely the influx of
ideas to improve the product and the code in the prod-
uct itself that may hold – not yet known – bugs. Fi-
nally, we assume that the predator is geared toward
solving these problems as the collective goal.

The powerful dynamics of predator-prey systems
have been studied in depth. In general, the predator
works best with a large population of prey (a defini-
tion which can additionally take into account the well-
orderedness of the backlog and clarity of the stories).
The predator often decreases the size of the prey to
an extent that it is almost extinct. This reduces the
work output of the predator, leading to a resurgence
of the prey stories and bugs. There are however stable
versions of the predator-prey system, where neither of
the two species changes their size based on the other,
or they slightly oscillate around two mean points.

What we learn from these observations is that
software development processes work best when the

backlog size is large enough. More importantly, the
system becomes stable when each cycle does not yield
tremendous changes to both volumes. Thus, a stable
influx of (new) stories, as well as a stable velocity of
work done per time unit, are factors in the process that
help ensure that the project can continue onward. The
predator-prey system obviously does not include all
aspects of the development process, but it provides a
mathematical concept of the major relevant properties
of the Scrum cycle-based framework: input, changes,
and output of story units as well as the velocity of
the team itself. Responding to changes in the backlog
volume and scope allows the predator team to keep
the prey volume of issues and tasks at a manageable
level.

4 ANALYSIS

We collect data from distributed version control sys-
tems, issue trackers and other tools used by the
projects. This is a completely automated process that
works via a pipeline where data flows one way. After
the collection and processing steps, the data is stored
in a database. The pipeline takes into account the lat-
est state of the collection process such that only up-
dated data is retrieved. This way, we can perform
frequent analysis using the persistent database, for
example feature extraction as demonstrated in Sec-
tion 4.4. We do this every time a new sprint might
start, e.g., weekly, and predict the outcome of new
sprints as soon as possible.

4.1 Data Sources

Each project has its own set of instances of tools used
during software development, such version control
systems (VCS), quality reporting tools, build automa-
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Figure 3: Pipeline of the collection of data from projects and their purposes after feature extraction.

tion, documentation wikis and project management
systems. A project has an associated issue tracker
board, which in our case is JIRA. This software pro-
vides additional functionality for Scrum boards with
a backlog and sprint tracking. Projects use a VCS like
Git or Subversion. In the case of Git, several reposi-
tory managers with review tools are in use, in partic-
ular GitLab, GitHub and Team Foundation Server.

Quality control is achieved using SonarQube with
a diverse set of profiles. The results of a Sonar-
Qube check are made available to a quality dashboard
which holds current and previous values of metrics
based on code quality and other sources. A metric
may have details available at the source in question.

Because some of these sources are only available
to the team itself for security considerations, we make
use of Docker-based automated services that are de-
ployed in the development environment of the team.
These ‘agents’ register themselves at a central server,
regularly collect fresh data and send the data to the
server. Additionally, the agents perform health checks
to warn if there are problems with the environment.

We process the data and where possible, automat-
ically create relationships between data sources, such
as matching a code commit with the sprint or issue
it relates to. Next, user accounts in the JIRA issue
tracker and the commit authors in VCS repositories
are linked, with a hand-made filter when automatic
matches are insufficient. Finally, the data is imported
into a MonetDB database as shown in Figure 3.

4.2 Threats to Validity

During our initial research, we validate the data col-
lected so far against other sources and findings during
a Scrum sprint. For example, we compare the actions
taken by team members during daily stand-up meet-
ings and find that many administrative actions in the
issue tracker take place around such meetings. We
also find this by comparing certain actions, such as
rank changes and story point changes, with meeting
reservation data from a self-service desk system.

This means that we cannot assume that the action,
such as closing a story, actually took place when the

task is finished or a decision is made. Detailed addi-
tions to tasks are often done during lunch breaks or
near the end of the day, for some teams with up to
four times as many changes in such hours compared
to other moments during the sprint. This makes it
more difficult to connect changes to issues with code
changes made during the day, but does not immedi-
ately affect our method when aggregating data over
entire sprints. Knowledge about the existence of these
patterns may in fact help find other anomalies.

Sprint are administratively closed in the issue
tracker as well. By default, the end date is a projec-
tion from the start date, so if nothing is done the sprint
is closed automatically a few weeks later. For sprints
whose stories are done in time, a date of completion
is known, but it may suffer the same consequences of
(delayed) administrative actions. We may use it as a
middle ground in some cases, such as when sprints
seem to overlap or have dubious dates.

Teams use the functionality provided by the issue
tracker in different ways. Due to various definitions of
‘done’, inherent to the Scrum framework, an issue sta-
tus may have several meanings. As another example,
an impediment may indicate that the team is waiting
for feedback from the client, not that the team has a
problem that must be fixed by the Scrum master.

In other data sources, we may have problems with
missing data, such as when a quality metric source is
misconfigured. Version control systems allow team
members to describe their changes in short commit
messages. Quite often, developers do not make use
of this, or they use a integrated development editor
which fills in the latest message automatically. It is
considered good practice to mention the issue that
the commit relates to, but this only happens in up to
14% of all commits in our data set. About 6% of all
commits are merges, which is relatively low consider-
ing that in distributed development, features are often
implemented on a branch, tested and merged later on.

We intend to generalize our approach, and build
a feature extraction model where we create reusable
definitions of properties related to the Scrum process
whose realizations take into account the unexpected
patterns that exist in the data. Additionally, we take



decisions about improving our coverage of certain
properties across all fields, consider not using a field
directly for some feature, or assume that we can inter-
polate or leave out a metric or event.

4.3 Reporting

We report our findings back to involved stakeholders,
including team members and management, through
various communication channels. We take into ac-
count that a bare number or classification for a sprint
does not provide sufficient context. Many people wish
to know how the report came to be and what else can
be deduced from the data. For this reason, we pro-
vide as many details from the steps that we take in the
feature extraction and prediction process.

Aside from the prediction results, we separately
make all features available in a timeline visualization
which displays and compares Scrum sprints from dif-
ferent teams. The timeline includes significant events
that took place in each sprint. Additional visualiza-
tions of the collected data come in the form of a burn
down chart, a leaderboard with project statistics, a
calendar showing code commit volumes per day us-
ing a heat map and external data such as daily weather
temperatures, and a network graph showing collabo-
rations between team members on different projects
with time-lapse capabilities.

We hold a system usability scale (SUS) question-
naire. The questionnaire is reachable from the visual-
ization interface and yields 17 responses. The respon-
dents have various roles in the organization. We found
that none of the respondents disagreed with the state-
ment that the visualizations were well integrated, and
the general agreement is that the visualizations are
easy to use (only the timeline has two disagreements).
Most of the respondents are not yet inclined to use the
visualizations frequently. Comments seem to indicate
that this is due to the fact that the data shown does not
directly impact their current work progress.

The classifications for a current sprint are shown
on a distinct page, including a risk assessment as well
as metrics that indicate the performance of the predic-
tion algorithm and its configuration. All data is shared
with other tools, including a quality reporting tool that
is well-used by the teams.

Intermediate results are not only shared electron-
ically but also presented during various meetings,
which immediately provide the possibility for atten-
dees to provide comments and questions. Similar to a
Scrum review, we attempt to display an early version
of a visualization such that we can update it based on
feedback from these meetings.

4.4 Feature Extraction

In order to create a dataset of numerical features that
describe certain properties of the Scrum sprints that
have taken place, we perform feature extraction on the
collected record data. We use a combination of SQL
statements and R programs to aggregate the data. The
SQL statements may contain variables that define cer-
tain common properties, filters and formulas, such as
the actual end date of a sprint, types of issues related
to stories, or the calculation of the velocity in a sprint,
based on the number of story points divided by the
number of working days in the sprint.

This way, we define features of sprints in a generic
manner, taking into account inconsistencies in the
source data as mentioned in Section 4.2:

1. Sprint:

• Sequential order of the sprint in the project
lifespan.

• Number of weekdays during the sprint.

2. Team size:

• Number of people that made a change in the
code, or on the issue tracker, during the sprint.

• Number of sprints that each developer has made
a change in before the sprint.

• Number of new developers in the team that
have not made a change before.

3. Issue tracker:

• Mean number of watchers or people making a
change on an issue.

• Mean number of story points that are ‘done’.
• Mean number of labels provided to an issue.
• Number of impediments.
• Number of changes to the order of stories on

the backlog, or the number of points, before or
after the sprint has started.

• Number of stories that are not closed as ‘done’.
• Number of workdays since the start of the sprint

which is the pivot day around which the most
changes are made.

• Velocity, both for the sprint as well as the aver-
age over three sprints prior.

• Number of issues that are closed, except stories.
• Number of concurrent stories, and the average

number of days that the stories are in progress.

4. Code version control:

• Number of commits.
• Average number of additions, deletions, total

difference size, number of files affected.



5. Metrics:

• The overall sentiment of the team about the
sprint as indicated during the retrospective.

• Number of metrics that are shown in the quality
dashboard, and the number of metrics that are
underperforming or not available.

Any of these features may take on the role of a la-
bel, indicating a single outcome of a sprint to be pre-
dicted from the remaining features. The label may be
converted to binary classifications. The features are
rescaled such that training models are not influenced
by unrelated scales.

Because the eventual value of a feature is un-
known while a sprint is in progress, we instead pre-
dict the label for this sprint using features from ear-
lier sprints. We create such a dataset by rolling all
features to the later sprint of the same project. This
loses the features of the latest ‘active’ sprint, as well
as a complete sample of the first sprint of the project.

For example, we may have 15 projects of differ-
ent lifespans, with a total of 530 sprints. After the
roll operation, we remove the label of first sprint of
each project and stow away the latest sprints as our
prediction target or validation set, leaving us with
500 sprints in the main dataset. Table 2 shows the
actual dimensions and other properties of our data.

Table 2: Dimensions and related properties of the database.

PROPERTY VALUE

Projects 15
Issues 60158
Stories 5369
Changes per issue 8.5
Code repositories 196
Code changes 140357
Metric values 71806613
Sprints 531

We then split up the dataset into training and test
sets, using stratified cross-validation to avoid biased
sets. We also calculate the distribution of labels across
the sets and the accuracy when we take the label of
previous sprint is as the new label, to better under-
stand the data and to improve the prediction algo-
rithm. The project identifier is never passed to the
model or training algorithm to generalize its use for
all teams; the label distribution may optionally be
used to rebalance the training set.

5 VALIDATION

From our thoughts on conceptual frameworks in Sec-
tion 3.3, we deduce certain properties which appear
to be relevant in both a Scrum process and in similar
processes. One point is that there must be some added
value after a period in which the most relevant actions
take place. For Scrum, this means that there must be
some (predetermined) number of story points reached
at the end of the sprint. Certainly, when value is not
realized within this period, it may need to be done in a
later sprint, which is not helpful for throughput of pri-
oritized stories. Thus, if there are stories that are not
done or closed as unfixable at the end of the sprint,
then this indicates a problem.

5.1 Preliminary Results

During our initial research into the quality of the
collected data, we create an inventory of the possi-
ble applications of the data, through discussions with
developers, Scrum coaches, management, and sup-
port team members. We specifically select questions
which can be answered efficiently with the database,
and additionally indicate whether the results lead to
unexpected results. Thus we validate the quantitative
data against human expectations regarding the Scrum
process. This allowed us to find some peculiarities in
the data, such as the length of the sprint which is often
predetermined due to a projected end date, or changes
made to priorities or story points at unlikely moments.

One of these questions relates to an often-stated
guideline with regard to the size of a story: If the
story is considered to be large, then it is better to
split it up into multiple smaller stories. We won-
dered whether a story which is awarded with many
points during the refinement, cf. Section 2.1, is more
likely to end up being ‘not done’ than a story with
few points. Story points may not be entirely com-
parable across teams, or even across periods of time.
Story points are awarded according to the Fibonacci
scale. Therefore, we acquire a logarithmic normaliza-
tion factor of the largest story of each sprint. In Fig-
ure 4(a) we aggregate stories with the same points and
demonstrate the ratio of not-done stories with those
points. The numbers above each bar indicate the sto-
ries that are ‘not done’, and the total number of sto-
ries with the same amount of points is shown in the
bar. Figure 4(b) shows aggregated ratios after log-
normalization. The distinct trend shows there an in-
creased likelihood that a story with a higher number
of points is not finished. This pattern remains visible
when taking subsets of projects, and indicates that we
are able to answer these questions efficiently.
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(b) Normalized story points and likelihood of ‘not done’.

Figure 4: Results showing a summary of the story points and the ratio of being ‘not done’ over all stories with the same points.

5.2 Prediction

We identify sprints with a high risk of unsatisfactory
results by training a machine learning algorithm on a
dataset with 23 features and one label, which we in-
troduce in Section 4.4. Even though many indicators
of successful sprints are feasible, we use a single met-
ric in this model for simplicity. We consider a sprint
to be successful if and only if all the stories involved
in the sprint are closed at the end of the sprint, with no
deferrals. We convert the feature providing the num-
ber of ‘not done’ stories to this binary label. The class
distribution is highly biased toward sprints that have
no unfinished stories, making up 80% of the data set.
Other features, such as the number of impediments
(77%) or the number of story point changes after the
sprint has started (83%) exhibit similar distributions.
A weighted label combining such features at different
thresholds may improve this distribution.

We apply the data set to a deep neural network
with various configurations to make use of the capa-
bilities of such architectures to handle a large number
of features. We find a feasible neural network with
three hidden layers of 100, 200 and 300 activation
nodes, respectively. In Figure 5, we show the accu-
racy curve of this experiment. We reach an accuracy
of 84% on the test set after training the neural network
for 1000 steps. A baseline classification using the la-
bel of the previous sprint has an accuracy on the test
set of 78%, indicated by the dashed line. Our trained
model thus outperforms a forecasting operation. This
is a promising result of our novel application of ma-
chine learning on Scrum data.
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Figure 5: Accuracy and precision of the three-layer neural
network on the data set, with the label ‘all stories are done’.

6 DISCUSSION

Our research is in the preliminary stages of assessing
the possibilities of a quantitative analysis in Scrum
software development processes. Our results thus far
indicate that there is a promising potential of such
an analysis, which may provide us with relevant fac-
tors and risk assessments during a sprint. We wish to
know which features demonstrate the impact on the
progress of the sprint the most, and why they are in-
fluential. From a data mining standpoint, we show
that it is possible to extract features from a collection
of records regarding Scrum sprints. Further analysis
will show what techniques work to improve accuracy.

In our formulation of conceptual models akin to a



Scrum sprint, we find that some of these models are
easier to relate than others. Further abstraction some-
times reveals the most important factors in the newly
created model and thus the original Scrum model. In-
spirations from other scientific fields help make the
model more intelligible through recognizable proper-
ties. A model may be simplified, describe a specific
feature in more detail, or contain inherent attributes
that only become visible once the model is abstracted.
From our proposed models, a feature of stable veloc-
ity, independent of the team size, comes to mind.

7 CONCLUSIONS

This quantitative study of process data from Scrum
development sprints presents a novel application of
data mining in the field of software engineering. The
use of state-of-the-art prediction algorithms plays a
huge role in this research. Analytical approaches help
find the success factors of Scrum sprints.

Conceptual models present a viable method for
validating a set of features and labels against the
model or fractions of it. The abstractions that are
made by relating one event to another help in finding
features that one could not perceive beforehand.

7.1 Future Research

The Scrum process provides a model which provides
a set of features that indicate certain behavior during
a sprint. Accurate prediction using these features re-
mains challenging due to noisy data. Future develop-
ments, including feature selection and expansion of
the data set with more variation, help solving this task.

We intend to not only predict binary classifications
to our end users, but also provide recommendations to
team members and management. The learning model
must be able to tell why it came to a certain conclu-
sion and what can be done to counteract the risk of
a failing sprint within time constraints. This means
that the model will have more introspective abilities
as well as the capability to provide more than a risk
assessment, leading to new norms.

ACKNOWLEDGEMENTS

We want to thank Stichting ICTU for providing the
funding and data access which makes it possible to
perform research and build tools for prediction and
visualization. Particularly, we thank those who assist
us through feedback during meetings, interviews and
surveys and let us observe Scrum in practice.

REFERENCES

Abdulmalek, F. A. and Rajgopal, J. (2007). Analyz-
ing the benefits of lean manufacturing and value
stream mapping via simulation: A process sector
case study.International Journal of Production Eco-
nomics, 107(1):223–236.

Agile Alliance (2001). Manifesto for agile software devel-
opment. http://agilemanifesto.org/ [2017-08-30].

Almeida, L., Albuquerque, A., and Pinheiro, P. (2011). A
multi-criteria model for planning and fine-tuning dis-
tributed Scrum projects. InProceedings of the 6th
IEEE International Conference on Global Software
Engineering, pages 75–83.

Arcuri, A. and Yao, X. (2008). A novel co-evolutionary
approach to automatic software bug fixing. InPro-
ceedings of the IEEE Congress on Evolutionary Com-
putation, pages 162–168.

Cockburn, A. (2007). Agile Software Development: The
Cooperative Game. Addison-Wesley, 2nd edition.
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