
Refinements and Structural Decompositions in Generated Code

Georg Hinkel1, Kiana Busch2 and Robert Heinrich2

1Software Engineering Division, FZI Research Center of Information Technologies, Karlsruhe, Germany
2Software Design & Quality Group, Karlsruhe Institute of Technology, Karlsruhe, Germany

Keywords: Metamodel, Refinements.

Abstract: Todays systems are often represented by abstract domain models to cope with an increased complexity. To
both ensure suitable analyses and validity checks, it is desirable to model the system in multiple levels of
abstraction simultaneously. Doing so, it is often desirable to model that one association is a refinement of
another to avoid duplication of concepts. Existing approaches that support refinements request metamodelers
to use new modeling paradigms or have less efficient model representations than commonly-used technologies
such as EMF with Ecore. In this paper, we propose a non-invasive extension to support refinements and
structural decompositions in Ecore-like meta-metamodels, show how these extension can be supported by code
generation and show that the fulfillment of refinements can be guaranteed by the underlying type system.

1 INTRODUCTION

In many engineering disciplines, abstract models of
systems are created in order to reason on properties
of the modeled system by analyzing the model. Many
of such systems are nowadays supported by software
that runs these analyses automatically based on in-
memory representations of the models.

The structure and properties of these models are
described again in a model, called the metamodel.
Thus, the metamodel defines the level of abstraction
followed in the system model. However, it is often a
challenge to choose the most appropriate level of ab-
straction for such a metamodel. If the metamodel is
too general, it may easily allow instance models that
do not correspond with the real system. In such case,
model validation rules may help to reduce this risk,
but they also can only be specified using features con-
tained in the metamodel. If features are specified in
too specific subclasses, it gets hard to specify analy-
ses because of case distinction.

To compensate for this problem, the UML (Ob-
ject Management Group (OMG), 2015) has intro-
duced concepts of refinements between associations
in the form of subsetting, specialization and redefini-
tion. This specification is also reused in the Complete
Meta-Object Facility (CMOF) standard (Object Man-
agement Group (OMG), 2016). Though the seman-
tics of these declarations is not clear from the stan-
dard, several works (Nieto et al., 2011; Costal et al.,

2011; Hamann and Gogolla, 2013) have defined se-
mantics of these definitions and implemented them in
OCL constraints. However, the interaction of these
subsetting, specialization and redefinition with other
constraints such as multiplicity constraints have been
a source of various problems (Maraee and Balaban,
2011; Maraee and Balaban, 2012), as the semantics
turns out to be inconsistent.

In commonly used meta-metamodels such as
Ecore, the most popular workaround is to create a
feature in the most general concept and create de-
rived features in more specific classes. An example
for this is in Ecore itself, where ETypedElements
simply have a type. More specific classes such as
EAttribute or EReference inherit this reference,
even though they could be more specific: The type of
an attribute must be a data type or enumeration, while
a reference always must be typed with a class. The
metamodeler has to enforce this using a model valida-
tion constraint and this constraint has to be checked.

In an industrial context such as automated produc-
tion systems, we see a very similar effect where sen-
sors are generally equipped with a power supply, but
some kinds of sensors only accept certain power sup-
plies. Here, one would like to gain the expressive-
ness to specify the correct power supply type without
having to use case distinctions in the analyses. Be-
cause a wrong power supply may have dramatic con-
sequences in the physical sensor, we would like this
constraint to be enforced as early as possible. Further,

Hinkel, G., Busch, K. and Heinrich, R.
Refinements and Structural Decompositions in Generated Code.
DOI: 10.5220/0006549403030310
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 303-310
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

303

we also see the case that the exact type of the sensor
is not known, for example because the sensor is sup-
plied by a vendor.

Existing approaches to simplify the metamodel
in this regard such as VPM (Varró and Pataricza,
2003), Deep Modeling tools (Atkinson and Gerbig,
2012; De Lara and Guerra, 2010) or CORE (Schöttle
and Kienzle, 2015) require completely new modeling
paradigms that mostly break existing tools. However,
the availability of stable tools is one of the major fac-
tors for the lack of industry-adoption of model-driven
engineering (MDE) (Staron, 2006; Mohagheghi et al.,
2013). In addition, Meyerovich et al. (Meyerovich
and Rabkin, 2013) have shown that most developers
only change their primary language when either there
is a hard technical project limitation or there is a sig-
nificant amount of code that can be reused. Therefore,
we suspect that many metamodelers would still like to
use their usual meta-metamodel.

In this paper, we propose a formal foundation how
refinements of associations can be implemented in a
non-invasive way into an Ecore-like meta-metamodel.
The proposed approach is able to guarantee that the
refined associations are modeled correctly through
guarantees of the target platform type system. This
removes the potentially costly validation of an OCL
constraint and more importantly, means that model
analyses can completely rely on the fulfillment of
these constraints. In the power supply example above,
the modeler gets an immediate feedback in the form
of an exception as soon as he tries to add a non-
appropriate power supply to a sensor. We imple-
mented our approach in the meta-metamodel NMETA
that is part of the .NET Modeling Framework (Hinkel,
2016b) and discuss its advantages over alternative
metamodel fragments in the domain of production au-
tomation.

The remainder of this paper is structured as fol-
lows: Section 2 briefly introduces our notion of re-
finements and structural decomposition. Section 3
gives a summary of the implementation of this con-
cept in the meta-metamodel NMETA similar to Ecore.
Section 4 explains how the concept can be applied to
examples from the domain of production automation.
Section 5 explains how code generators need to ad-
justed to support refinements and structural decom-
position. Finally, Section 6 discusses related work
before Section 7 concludes the paper.

2 STRUCTURAL
DECOMPOSITION AND
REFINEMENTS

In this section, we briefly introduce our notion of
structural decomposition that we use in this paper.

In a metamodel, the structural properties of a
metaclass are determined by attributes and references,
in Ecore referred to as structural features. The goal of
our structural decomposition approach is to be able to
decompose this structure as we specialize the meta-
classes.

To describe this effect, we use a formal syntax
close to the OCL standard. Types, denoted with cap-
ital letters, are ordered with a partial order relation �
describing inheritance, i.e. AAA � BBB if BBB is an ances-
tor of AAA. We denote collections of type AAA with AAA∗
with concatenation operator ; similar to Kleene clo-
sures. Type membership is denoted with the usual ∈
symbol.

In the formalization, a feature f of a class AAA
with type BBB is a persistent in-model lens (Hinkel and
Burger, 2017) f : AAA ↪→ BBB consisting of a getter func-
tion f ↗: AAA→ BBB and a setter function f ↘: AAA×BBB→
AAA.
Definition 1 (Structural decomposition). Let AAA and
BBB be types. A list of features f1, . . . , fn : AAA ↪→ BBB∗ for
types AAA and BBB and n∈N is a structural decomposition
of a feature f : AAA ↪→ BBB∗ if we have that for each a ∈ AAA
that

f ↗ (a) = f1↗ (a); f2↗ (a); . . . ; fn↗ (a).

We say that f is made of f1, . . . , fn and call the fi
components of a composition f .

Since there is an embedding from AAA → BBB into
AAA→ BBB∗, we will also allow the features used for de-
composition to be single-valued where we depict an
element⊥∈ BBB that corresponds to an empty sequence
in BBB∗1. Similarly, we allow compositions to be single-
valued. In this case, the value of the composition has
to match the only component value that is not ⊥.
Definition 2 (Refinement). Let AAA, BBB, ĀAA and B̄BB be types
with ĀAA � AAA and B̄BB � BBB. Further, let f : AAA ↪→ BBB and
g : ĀAA ↪→ B̄BB be features. Then, we say that g is a refine-
ment of f if f ↗ and g↗ are the same on ĀAA, i.e. the
following equations holds for all a ∈ ĀAA,b ∈ B̄BB:

g↗ (a) = f ↗ (a)
g↘ (a,b) = f ↘ (a,b).

In particular, we know that for each element a, the
reference f will always refer to an element of B̄BB.

1In implementations, ⊥ is typically null.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

304

An important special case here is the refinement
by a constant reference g ≡ b for some constant ele-
ment b ∈ I(B̄BB)2. Usually, constant features are not ex-
plicitly modeled as they do not contain any informa-
tion specific to an instance, but in combination with a
refinement, they may carry information that is known
for some subtypes, but not in the general case for a
given type A.

3 IMPLEMENTATION IN NMETA

We have implemented structural decomposition and
refinements in the NMETA meta-metamodel, the
meta-metamodel within the .NET Modeling Frame-
work (Hinkel, 2016b). In the meta-metamodel, the
support for refinements and structural decomposition
simply adds a reference Refines of the Reference
class to itself. The semantics of such an assignment
is given by Definition 2. If multiple references refine
a reference, that reference is structurally decomposed
and the components are refined3. Therefore, the re-
fined reference must be declared in an ancestor of the
current class and the reference type of the refinement
reference must be a descendent of the refined refer-
ences type.

A reference may also refine a reference that is al-
ready refined in an ancestor class. In that case, the
original reference is structurally decomposed by all
references that refine the original reference. In other
words, a decomposition is always scoped for a given
class. Alternatively, a reference may also refine a ref-
erence that in turn refines another reference: There-
fore, refinements can be stacked together.

Additionally, the metamodeler can add a con-
stant reference into this structural decomposi-
tion through a dedicated model element called
ReferenceConstraint. This means that the at-
tribute is also refined by a constant model element or a
collection thereof, in case the reference is typed with
a collection. Only a single ReferenceConstraint is
allowed per class and reference.

The class ReferenceConstraint is only neces-
sary because NMETA has no support for derived fea-
tures, yet, because it lacks a support for OCL. Using
derived features such as in Ecore, one could use a de-
rived reference instead that simply returns a constant
value, therefore making the ReferenceConstraint
class obsolete.4

2Here, the ≡ symbol means that the getter function al-
ways returns the same element b.

3This definition is consistent because a single feature is
a structural decomposition of itself.

4The reason for NMETA to not support derived features

For attributes, structural decomposition works the
same but the types must match exactly because the in-
heritance hierarchy is not modeled. For this reason, a
refinement alone is not practical for attributes, except
for the case where attributes are refined with a con-
stant attribute. Similar to references, this can be used
to amputate features of a derived class, i.e. features
that must not be set or must always have the same
value if the object is of a given type.

For any composition of attributes or references,
the multiplicity of the composition must be compat-
ible with the multiplicity of the original feature. This
means that the lower bound of the original feature
must be smaller or equal to the sum of the lower
bounds of components. Likewise, the upper bound of
the original feature must be larger or equal to the sum
of upper bounds of the components. Furthermore, we
require that refinements of compositions are compo-
sitions. If a reference with an opposite is refined, we
require that any refining reference has an opposite that
refines the opposite of the original reference.

4 EXAMPLES IN THE
AUTOMATED PRODUCTION
SYSTEM DOMAIN

This section provides further details on the automated
production system example given in the introduction
section. In particular, we investigate a range of mod-
eling problems.

The domain of automated production systems in-
volves software, as well as mechanic and electric
parts. In this section, we use the example of sensor
and power supply. In general, a sensor has a power
supply. Several types of power supply exist, for exam-
ple Alternating Current (AC) or Direct Current (DC).
Additionally, there are several types of a sensor such
as photoelectric, capacitive, or AC current sensors.
Consider the example, that an AC current sensor must
have an AC power supply, as illustrated in Figure 1.

This fact must be specified either through an
OCL constraint or using derived features in an Ecore
model. This is problematic because it is not clear
whether or not other artifacts may depend on it. Some
OCL constraints can be enforced automatically, but
whether this is done is unclear from the perspective
of a model analysis or transformation.

Using NMETA, we create an additional reference
called acPowerSupply in the ACCurrentSensor class
and set it to refine the original powerSupply reference.

is that NMF has no support for OCL due to an incompatible
code generation infrastructure.

Refinements and Structural Decompositions in Generated Code

305

Sensor

ACCurrentSensor

PowerSupply

AC

powerSupply

0..1

acPowerSupply

0..1

� refines �

Figure 1: Modeling that an ACCurrentSensor requires an
AC power supply in NMETA. The inserted refinement is
printed in blue.

As a result, the generated implementation class for
ACCurrentSensor will not inherit the more general
power supply field, but includes a specific field to ref-
erence an AC element, from which the powerSupply
reference is populated upon request. Because both
references are single-valued, this just means that an
ACCurrentSensor element returns its acPowerSup-
ply when the power supply is requested. If an attempt
is made to set the power supply, the generated code
checks whether the provided power supply is an AC el-
ement and throws an exception otherwise, giving the
modeler an immediate feedback.

Therefore, regular type system rules guarantee
that a model where an ACCurrentSensor has a DC
power supply cannot exist.

There are also sensors that do not need any power
supply. For example, a surface acoustic wave sensor
(Pohl, 2000) obtains its energy from piezoelectric and
pyroelectric effects. We want to ensure, that the type
system does not allow to model a case, in which a
sensor with no power supply has an AC or DC power
supply as illustrated in Figure 2.

Sensor

PassiveSensor

powerSupply = []

PowerSupplypowerSupply

0..1

Figure 2: Modeling that a PassiveSensor must not have a
power supply in NMETA. The inserted reference constraint
is printed in blue.

Using refinements, this can be modeled by refin-
ing the the power supply reference with a constant.
This works very similar to the refinement by other
references but the power supply feature will return a
constant instead of a different reference.

For references with higher cardinality, we face
the problem that very general references can be de-
composed in more specific subclasses. As an exam-
ple, consider the power supply of a motor in a star
or delta connection, as illustrated in Figure 3. The
star-connected motors have a central point, where the
similar ends of the wires are connected, whereas in
the delta-connected motors the opposite ends of wires
are connected. Thus, the delta connection results in

a higher torque and a higher motor speed. However,
some motors require both connections. For example,
a three phase squirrel cage motor5 has to be started in
a star connection. After the normal speed is reached,
it has to be switched from a star to a delta connection.

To model this situation, using NMETA we can
simply mark multiple references to refine the same
reference. We call this a structural decomposition.
In this case, when a 3PhaseSquirrelCageMotor
is asked for its connections, it assembles this list
on the fly from its star connection and its delta
connection. When an element is to be added
to the connected reference, the generated code
for a 3PhaseSquirrelCageMotor checks whether
that connection is either a StarConnection or a
DeltaConnection and adds it to the respective ref-
erence. If multiple references apply, then the element
is added to the first reference that is not already full
with respect to its cardinality.

5 CODE GENERATION

Similar to EMF, NMF provides a code generator for
metamodels (Hinkel, 2016b). Because the meta-
metamodel allows multiple inheritance, the code gen-
erator generates both an interface and a default im-
plementation class for each class in the metamodel,
again similar to the EMF code generator. To keep the
generated code small, the code generator reuses de-
fault implementation classes for subclasses as much
as possible.

For any attribute or reference (feature in the re-
mainder), a property and a change event is generated.
If the featuire is not refined, this property is backed
by a field. In case a feature is refined, a private getter
and setter implementation6 is generated instead that
composes or decomposes the property on the fly.

Therefore, refinements impact the inheritance hi-
erarchy of the implementation base class. In case a
feature is refined, the code generator may no longer
reuse any implementation class that contains a back-
ing field for this feature.

For example, consider the classes Sensor and
ACCurrentSensor. The code generator gener-
ates an interface and a default implementation
class for each of these classes in the meta-
model. Because there is an inheritance relation be-

5http://www.pcbheaven.com/userpages/
check_the_windings_of_a_3phase_ac_motor/, accessed 10
Jul 2017

6.NET allows classes to privately implement an inter-
face, which means that the implementation is not visible
from the class API, but only through this interface.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

306

Motor

3PhaseSquirrelCageMotor

Connection

StarConnection DeltaConnection

connected

1..2

deltaConnected

1

starConnected

1

� refines �
� refines �

Figure 3: Star and delta connections in motors modeled in NMETA. The inserted structural decomposition is printed in blue.

tween the metaclasses, the generated interface for
ACCurrentSensor does inherit from the generated
interface for Sensor. However, the generated im-
plementation type ACCurrentSensor does not inherit
Sensor, in order to avoid inheriting the powerSupply
reference backing field.

On the other hand, the code generator may still
reuse an implementation class for base classes of
Sensor to avoid replicating too many features.

We may encounter diamond problems. If, for
the sake of the example, a class inherited from both
ACCurrentSensor and PassiveSensor, the code
generator must not reuse the implementation class
of either ACCurrentSensor or PassiveSensor, be-
cause the decomposition of the feature powerSup-
ply is different to the one in ACCurrentSensor or
PassiveSensor, where only one feature refines pow-
erSupply.

As soon as an appropriate base class is found, we
may simply copy the generated code for the features
that cannot be inherited and copy them into the gen-
erated type, as long as they are not refined.

To find such a base class, we propose the abstract
algorithm depicted in Algorithm 1. It is essentially
based on a reversed topological order of strongly con-
nected components in a dedicated graph that is in-
duced by inheritance relations and refinements. The
result of Algorithm 1 for a class c, if not ⊥, is a class
cb that

• is a base class of the class to be generated (c� cb).

• only contains properties that have not been refined
by classes c̃ with c� c̃≺ cb.

• that does not contain a decomposition that is
no longer valid. Here, an invalid decomposi-
tion refers to a decomposition of a feature f into
f1; . . . ; fn in the scope of a class c̃ with c ≺ c̃, but
f is decomposed in c by a larger list of features.

In Algorithm 1, the function ALLFEATURES sim-
ply computes the set of all attributes and references
available in a given class, including inherited and
transitively inherited. The function REFINEMENTS

returns those attributes and references that are refined
by attributes or references of the given class. More in-
teresting is the function EDGE that defines the edges
in the graph the topological order is created for. This
graph shall contain edge from a class cs to a class ct ,
if the generated code for class cs obsoletes the gener-
ated code for ct . This may either be because cs � ct
or because cs refines a property of ct . The latter case
is not problematic for the case that ct � cs, because
in that case, the generated code for ct is aware of this
refinement.

The reversed topological order guarantees us that
there is no incoming edge from ancestor classes not
yet considered for the given class. It can be easily
implemented by reversing the output of Tarjan’s al-
gorithm (Tarjan, 1972). In Algorithm 1, we assume
the latter to return a list of strongly connected compo-
nents, each represented as set of classes.

The graph may contain cycles. Because inheri-
tance is acyclic and we only allow features to refine
features of base classes, such a cycle must come from
a set of classes that refine features of a common base
class, i.e. we are facing a diamond-shaped inheri-
tance. Because the generated code for the bottom of
the diamond must respect all refinements made in any
of its base classes, no generated code for a class con-
tained in a cycle must be reused. However, there still
may be a common ancestor class whose features have
not been refined, such as any base class of Sensor.

Applied to the class ACCurrentSensor, the re-
verse topological sort returns the strongly con-
nected components {ACCurrentSensor},{Sensor}.
Sensor is not chosen, because its property powerSup-
ply is refined.

Because the class ACCurrentSensor does not in-
herit an implementation of ISensor, it implements
this interface directly by duplicating the implemen-
tation of non-refined attributes and references. This
code duplication is not problematic since the code
is generated and therefore not manually maintained.
The metamodel as the source from the code genera-
tion does not have this duplication. The powerSupply-

Refinements and Structural Decompositions in Generated Code

307

Algorithm 1: Find implementation base class.

function ALLFEATURES(c) return
⋃

c�cb
cb.Attributes∪⋃c�cb

cb.Re f erences

function REFINEMENTS(c) return {g| f ∈ c.Attributes∪ c.Re f erences, f
�re f ines�−−−−−−→ g}

function EDGE(cs,ct) return cs � ct ∨ (REFINEMENTS(cs)∩ALLFEATURES(ct) 6= /0∧ ct 6� cs)

function FINDBASECLASS(c)
shadows← /0
ancestors← TRANSITIVEHULL(c,cl 7→ cl.BaseTypes)
for all layer in REVERSETOPOLOGICALORDER(ancestors,EDGE) do

if |layer|= 1∧ layer 6= {c}∧ shadows∩ALLFEATURES(layer[0]) = /0 then return layer[0]
for all l in layer do

shadows← shadows∪REFINEMENTS(l)
return ⊥

reference is implemented in private where the getter
simply returns the acPowerSupply reference and the
setter tries to cast the value appropriately and sets the
acPowerSupply reference, if applicable and throws
an exception otherwise.

For a structural decomposition such as the pow-
erSupply reference of 3PhaseSquirrelCageMotor,
a dedicated collection class is generated. When
browsed, this collection class iterates all the compo-
nents in sequence. In the example, the iterator first
returns the star connection (if not null) and then the
delta connection (if not null). In case one of the com-
ponent features is multi-valued itself, all items of this
component are iterated. Conversely if a new element
is added to the composite feature such as powerSup-
ply, the generated code tries to find a component ref-
erence to which the element can be added, based on
the element type and the cardinality of the component
reference.

Artifacts that modify model elements such as edi-
tors would rather operate on the real type of the model
elements and therefore only see the public proper-
ties, which are exactly the non-decomposed and non-
refined properties.

By default, the generated XMI code for a serial-
ized model will not contain any information on de-
composed features since they can be reconstructed by
its components. If information about refinements is
cut off (e.g. by exporting the metamodel to Ecore),
the serialization simply needs to be configured to se-
rialize also refined features and then tools not aware
of structural decomposition are able to read the model
just like any other model. Conversely, when reading
the model, the refined features are just ignored in the
deserialization, such that models created by tools not
enabled for structural decomposition can be loaded –
the only problem here is that these tools may unnec-
essarily demand the modeler to specify features that
are otherwise refined.

Therefore, existing tools not aware of structural
decomposition and refinements can be reused without
changes, though they may not offer the best conve-
nience.

6 RELATED WORK

We see related work in the areas of refinements,
deep modeling languages (in particular level-adjuvant
ones) and aspect-oriented modeling and discuss them
in the following sections.

6.1 Refinements

The idea to use refinements for deep modeling is
not new as in particular, Back and Von Wright have
written a whole book on refinement calculus with a
strong mathematical foundation based on lattices and
set theory (Back and Von Wright, 1998). A usage in
a model-driven context has been proposed by Varró
and Patarisza in 2003 (Varró and Pataricza, 2003) or
by Pons (Pons, 2006). In contrast to our approach,
they break with existing modeling paradigms. Fur-
thermore, they do not seem to enforce the refinements
through the type system.

The specifications of UML and CMOF also know
refinements, as redefinitions and subsets. However,
the actual semantics of these constructs is not de-
tailed in the specification (Object Management Group
(OMG), 2016).

The UML defines three methods to refine asso-
ciations: redefinition, specialization and subsetting,
though as mentioned, the semantics and especially
their interplay are not clearly defined. In particular,
these definitions have some correctness problems in
connection with other constraints such as multiplicity
constraints as shown by Maraee and Balaban (Maraee
and Balaban, 2011; Maraee and Balaban, 2012). To

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

308

some degree, our approach tackles the necessity of
the three of those: Our implementation of refinements
matches redefinition quite closely, but we show that
through the interplay of refinements of the same fea-
tures, we can support many more modeling scenarios.
We also consider the interconnection of refinements
with multiple inheritance.

There have been a couple of works to define the
semantics of UML association refinements through
OCL constraints (Nieto et al., 2011; Costal et al.,
2011; Hamann and Gogolla, 2013). Closest to our ap-
proach, Nieto et al. (Nieto et al., 2011) propose a se-
mantics for association redefinition and use a similar
notation. However, they also implement refinements
through a constraint of the more general reference and
therefore do not inherit type-system guarantees. Fur-
thermore, their approach is limited in that only a sin-
gle reference may refine another reference.

Further, tools that use OCL to check the validity
of models are usually dynamic in the sense that they
represent models and metamodels in memory. Our
approach uses a generative approach where code is
generated from a metamodel to represent models in
memory. A generative approach usually has a faster
model API at the cost of higher maintenance efforts.

We are not aware of any solutions that consid-
ered UML redefinition in combination with diamond-
shaped inheritance and how these situations can be
resolved.

6.2 Level-adjuvant Deep Modeling
Languages

The possibility to refine references also has been im-
plemented in level-adjuvant (Atkinson et al., 2014)
deep modeling approaches that allow to refine ref-
erences through an instantiation. Level-adjuvant
approaches typically use a level-agnostic meta-
metamodel (Atkinson and Kühne, 2000) describing
the model structure. Many of these approaches are
much more mature than ours and already provide rich
tool support (Atkinson and Gerbig, 2012; De Lara
and Guerra, 2010). However, the introduced potency-
concept of these approaches is a breaking new con-
cept that disallows the usage of existing tools and
makes evolution scenarios hard.

6.3 Aspect-oriented Modeling

Refinements are only one possibility to simplify the
modeling of recurring patterns. Another possibility is
to model the pattern once and very explicit, including
possible constraints that have to be implemented, and
weave this pattern implementation into a concrete use

case using aspect-oriented modeling techniques. An
example is CORE7. However, once applied, concerns
have a fixed level of abstraction, while refinements
allow to model multiple levels of abstraction concur-
rently. In our scenario, this is important in the case of
bought components where their inner structure is not
known.

7 CONCLUSION AND OUTLOOK

In this paper, we have proposed a formal definition of
refinements and structural decomposition, how they
can be implemented in a meta-metamodel and how
a code generator can be designed to ensure them
through type system guarantees. This can make many
validation constraints obsolete as a demonstration of
these concepts in the domain of industrial production
automation shows.

Our notion of refinements matches redefinition of
properties as defined in UML. However, UML redef-
initions do not consider the case that multiple prop-
erties redefine the same property and currently, it is
unclear what the semantics should be in that case and
even whether this should be allowed at all. Here, our
approach proposes a semantics by extending the se-
mantics of the refinement information to structural de-
composition. As our implementation shows, these se-
mantics can be enforced by underlying type-system
guarantees in case the metamodel is generated to
code.

Because refinements and structural decomposition
can be stacked, these concepts make it viable to model
a system in a fine granularity in order to ensure cor-
rectness, while still being able to analyze the model
at a high level of abstraction. We envision that meta-
models may contain specific metaclasses down to a
low level of abstraction, basically down to a level of
manufacturers and makes of a certain type of com-
ponent. While this allows very detailed correctness
checks, it also bloats the metamodel and demands for
concepts to specify the make of a component type in
a different model. Therefore, we want to investigate
how these problems can be solved using deep model-
ing ideas. Early experiments in this direction (Hinkel,
2016a) showed promising results.

ACKNOWLEDGEMENTS

This work was supported by the DFG (German Re-
search Foundation) under the Priority Program SPP

7Concern-Oriented REuse (Schöttle and Kienzle, 2015)

Refinements and Structural Decompositions in Generated Code

309

1593: Design For Future – Managed Software Evolu-
tion and by the MWK (Ministry of Science, Research
and the Arts Baden-Württemberg) in the funding line
Research Seed Capital (RiSC).

REFERENCES

Atkinson, C. and Gerbig, R. (2012). Melanie: multi-level
modeling and ontology engineering environment. In
Proceedings of the 2nd International Master Class
on Model-Driven Engineering: Modeling Wizards,
page 7. ACM.

Atkinson, C., Gerbig, R., and Kühne, T. (2014). Com-
paring Multi-Level Modeling Approaches. MULTI
2014–Multi-Level Modelling Workshop Proceedings,
page 53.

Atkinson, C. and Kühne, T. (2000). Meta-level indepen-
dent modelling. International Workshop on Model
Engineering at 14th European Conference on Object-
Oriented Programming, pages 12–16.

Back, R.-J. and Von Wright, J. (1998). Refinement calculus:
a systematic introduction. springer Heidelberg.

Costal, D., Gómez, C., and Guizzardi, G. (2011). Formal
Semantics and Ontological Analysis for Understand-
ing Subsetting, Specialization and Redefinition of As-
sociations in UML, pages 189–203. Springer Berlin
Heidelberg, Berlin, Heidelberg.

De Lara, J. and Guerra, E. (2010). Deep meta-modelling
with metadepth. In Objects, Models, Components,
Patterns, pages 1–20. Springer.

Hamann, L. and Gogolla, M. (2013). Endogenous Meta-
modeling Semantics for Structural UML 2 Concepts,
pages 488–504. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Hinkel, G. (2016a). Deep Modeling through Structural De-
composition. Technical report, Karlsruhe Institute of
Technology, Karlsruhe.

Hinkel, G. (2016b). NMF: A Modeling Framework for the
.NET Platform. Technical report, Karlsruhe Institute
of Technology, Karlsruhe.

Hinkel, G. and Burger, E. (2017). Change Propagation
and Bidirectionality in Internal Transformation DSLs.
Software & Systems Modeling.

Maraee, A. and Balaban, M. (2011). On the Interac-
tion of Inter-relationship Constraints. In Proceedings
of the 8th International Workshop on Model-Driven
Engineering, Verification and Validation, MoDeVVa,
pages 3:1–3:8, New York, NY, USA. ACM.

Maraee, A. and Balaban, M. (2012). Inter-association Con-
straints in UML2: Comparative Analysis, Usage Rec-
ommendations, and Modeling Guidelines, pages 302–
318. Springer Berlin Heidelberg, Berlin, Heidelberg.

Meyerovich, L. A. and Rabkin, A. S. (2013). Empirical
analysis of programming language adoption. In Pro-
ceedings of the 2013 ACM SIGPLAN international
conference on Object oriented programming systems
languages & applications, pages 1–18. ACM.

Mohagheghi, P., Gilani, W., Stefanescu, A., and Fernandez,
M. A. (2013). An empirical study of the state of the
practice and acceptance of model-driven engineering
in four industrial cases. Empirical Software Engineer-
ing, 18(1):89–116.

Nieto, P., Costal, D., and Gómez, C. (2011). Enhancing the
semantics of UML association redefinition. Data &
Knowledge Engineering, 70(2):182 – 207.

Object Management Group (OMG) (2015). Unified Model-
ing Language (UML) – Version 2.5 (formal/2015-03-
01).

Object Management Group (OMG) (2016). MOF 2.5.1
Core Specification (formal/2016-11-01).

Pohl, A. (2000). A review of wireless SAW sensors. IEEE
transactions on ultrasonics, ferroelectrics, and fre-
quency control, 47(2):317–332.

Pons, C. (2006). Heuristics on the definition of UML refine-
ment patterns. In SOFSEM 2006: Theory and Prac-
tice of Computer Science, pages 461–470. Springer.

Schöttle, M. and Kienzle, J. (2015). Concern-Oriented In-
terfaces for Model-Based Reuse of APIs. In Proceed-
ings of the 18th International Conference on Model-
Driven Engineering Languages and Systems - MOD-
ELS 2015, pages 286–291. ACM.

Staron, M. (2006). Adopting model driven software devel-
opment in industry–a case study at two companies. In
Model Driven Engineering Languages and Systems,
pages 57–72. Springer.

Tarjan, R. (1972). Depth-first search and linear graph algo-
rithms. SIAM journal on computing, 1(2):146–160.

Varró, D. and Pataricza, A. (2003). VPM: A visual, precise
and multilevel metamodeling framework for describ-
ing mathematical domains and UML (The Mathemat-
ics of Metamodeling is Metamodeling Mathematics).
Software and Systems Modeling, 2(3):187–210.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

310

