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Abstract: Loss of vision has a large detrimental impact on a person’s mobility. Every day, visually impaired people

(VIPs) face various challenges just to get around in the most diverse environments. Technological solutions,

called Electronic Travel Aids, help a VIP with these challenges, giving greater confidence in the task of getting

around in unfamiliar surroundings. Thus, this article presents an embedded navigation and classification

system for helping VIPs indoors. Using stereo vision, the system is able to detect obstacles and choose

safe ways for the VIP to walk around without colliding. A convolutional neural network using a graphics

processing unit (GPU) classifies the obstacles. Acoustic feedback is transmitted to the VIP. The article also

features a wearable prototype, to which the system hardware is docked for use. Using the system, the prototype

could detect and classify obstacles in real time defining free paths, all with battery autonomy of about 6 hours.

1 INTRODUCTION

Electronic Travel Aids (ETAs) have gained promi-

nence in the last decade in the area of visual impair-

ment. The World Health Organization (WHO, 2014)

reported that there are at least 285 million visually

impaired people (VIPs), considering partial and total

loss of vision, thus making ETAs important tools that

can be built into the day-to-day life of a visually disa-

bled person.

In terms of hardware, ETAs can be developed in

different ways depending mainly on the type of in-

put sensors and how information is transmitted to the

visually impaired person (VIP). Input sensors com-

monly found in the literature are GPS cameras, IMUs,

RFID readers, infrared lasers and others (Fajarnes

et al., 2010; Katz et al., 2012; Mehta et al., 2011;

Tapu et al., 2016). Each input sensor can be used al-

one or in conjunction with others to provide safety

information to the user via acoustic audio feedback

(Schauerte et al., 2012), where sounds represent the

information, or the user receives some other physical

stimulus, such as vibrations (Bourbakis, 2008).

A device to help safe navigation for a VIP must,

however, allow the user good mobility, in terms of the

weight and size of the device (Pissaloux, 2002). This

premise makes it unfeasible that an ETA device has a

PC or a notebook as the processor, since the former

is not mobile, (although some PC based systems use

cloud processing), and the latter, while offering a cer-

tain degree of mobility, still tends to be quite heavy.

One possible solution for local processing is to make

an ETA with an embedded system, albeit with more

limited processing power.

The segmentation of free paths and classification

of obstacles in embedded platforms have been parti-

ally explored in some studies, as seen in Section 2,

however there is no approach that considers presen-

ting multiple paths to the user, nor any work using re-

cent object classification techniques using deep neural

networks with graphics processing units (GPUs).

This paper presents an embedded ETA that helps

the VIP with navigation, through the recognition and

classification of indoor obstacles, providing acoustic

feedback. The system was built in an NVIDIA Jetson

Tegra X1 module (NVIDIA, 2017) that has a CUDA

256-core video card for parallel processing and offers

high performance with low power consumption. The

images are captured through the sensors of an RGB-D

camera and processed. The use of a RGB-D camera

imposes an indoor environment limitation, knowing

that external environments have a high incidence of

infrared light which may interfere with the camera’s

image capture. For the classification of obstacles, the
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ETA will use Convolutional Neural Networks (CNN),

a category of Deep Neural Network that has produced

great results since its first appearance in 2012 in the

ILSVRC competition (Krizhevsky et al., 2012).

The article is divided as follows: Section 2 pre-

sents studies related to this one that have been repor-

ted in the literature. In Section 3, the proposed sy-

stem is described along with the architecture in which

it was developed. Section 4 describes the developed

prototype and the experiments performed using the

system and the results are shown in section 5. Fi-

nally, in Section 6, the conclusions and future work

are given.

2 RELATED WORK

The literature about recognition and classification na-

vigational systems for VIPs describes several diffe-

rent approaches to address the issues of safe paths and

the classification of obstacles.

Mocanu et al. (2015) used the classic features ex-

traction technique to classify obstacles with an adap-

tation of the Histogram of Oriented Gradients (HOG)

and they represented images globally using techni-

ques like the Vector of Locally Aggregated Descrip-

tors (VLAD) and the Bag of Visual Word (BoVW)

framework. The images are ranked in conjunction

with Support Vector Machines (SVM). The imple-

mentation is done on a smartphone and the proces-

sing reaches a maximum of 5 fps. It is important to

emphasize that, although 5 fps is an acceptable per-

formance for VIPs, the authors did not suggest safe

paths and they do not make it clear how the VIP is

informed about the obstacles.

The idea proposed by Deb et al. (2013) aims pre-

dominantly at the safe navigation of the VIP by esti-

mating the safe direction in which they can walk. In

the project, authors use a simple camera for image

acquisition and apply techniques such as edge de-

tection and pyramidal segmentation to then define a

safe zone using Template Matching and transmit via

musical tones whether the safe path is to the right or

left. The area analyzed is center-bottom of the image.

So the VIP is not alerted to possible (and unclassi-

fied) obstacles above the ground and the proposed sy-

stem disregards much of the left and right sides of the

image which, in some cases, could have alternative

routes. Finally, the authors also state that, in the case

of two safe paths, the system will always choose the

left side and not even present the alternative to the

VIP periodically.

The use of embedded platforms for VIPs was ex-

plored by Bangar et al. (2013), using recognition of

objects and their colors. In their research, the authors

extract the images from a coupled video sensor in a

pair of glasses and apply procedures like background

extraction, edge detection and pixel clustering to de-

fine an object and also its color, using a standard color

scheme. The system then passes the result of proces-

sing to the VIP via stereo sound. Color detection after

object detection is an important factor for classifica-

tion, but the authors do not classify the object com-

pletely and, although mentioning stereo sound, do not

mention in their work if the audio is used in a way

that transmits the direction of the object. The work

also does not aim for or try to explain the segmenta-

tion of free paths.

Poggi and Mattoccia (2016) also use embedded

technology for the implementation of an intelligent

system for VIPs. In their work, the authors use an

Odroid U3 device in communication with a smartp-

hone, headphones, tactile feedback glove, and deep

camera goggles as an embedded platform and the sy-

stem classifies obstacles using convolutional neural

networks, but without the acceleration of a Graphics

Processing Unit (GPU). There is a navigation stage

but only via the GPS of the smartphone and the sy-

stem proposed by the authors does not define safe

paths, only dealing with the classification of obsta-

cles and their positioning and informing the user of

the GPS directions.

3 PROPOSED SYSTEM

The system developed here has been divided into five

main stages: image acquisition, preprocessing, free

path segmentation, obstacle detection and acoustic

feedback as shown in Figure 1. Image acquisition

is a simple and obvious process in which two 640 x

480 images are received from the RGB-D sensor, one

depth and one color.

Preprocessing only happens for the depth image.

The original depth image captured by the RGB-D sen-

sor contains several faults with indefinite depths, ge-

nerating chromatic irregularities in the depth image.

The preprocessing corrects such flaws using mathe-

matical morphology. The image is dilated and then

reduced again to the same 21 by 21 element square

structure. Then it’s submitted to a free path segmenta-

tion, obstacle detection and acoustic feedback stages,

which are presented in the subsections below.

3.1 Free Path Segmentation

To determine one or more safe paths for the user,

the RGB-D camera depth image has been divided
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Figure 1: System Overview.

into four horizontal parts and, in this stage only, the

bottom of the image has been taken, i.e. the bottom

25% of the image is processed. The reason for this is

that the VIPs will carry the camera in their belly re-

gion during the use of the prototype and, considering

the field of vision of the camera, the lowest quarter of

the image contains more elements that limit the na-

vigation of the VIP. The top 75% of the image, ho-

wever, is not discarded but processed for obstacle de-

tection after the indicated safe path has been chosen.

Figure 2 shows the selected lowest area of the color

and depth images but, as mentioned, only the depth

image is used for path segmentation.

Figure 2: Splitting process. RGB Image (left) and Depth
Image (right).

When the lowest 25% of the image is separated,

the Template Matching technique (Brunelli, 2009)

is applied to define which areas of the image are

safe for navigation. Before the template matching is

done, a simple thresholding operation is done on the

bottom slice of the image to separate the possible free

paths from those with obstacles. To define the free

paths, a template, 50 pixels wide by the height of the

bottom slice, performs the template matching opera-

tion throughout the length of the slice, as shown in

Figure 3. Regions next to free paths are joined to-

gether and considered as one region and its centroids

added to a list of coordinates that, in the end, is used

by the system to give the direction to the VIP.

Figure 3: Sliding template (Green) for free path segmenta-
tion. Dark areas indicate obstacles.

If more than one path is separated, the options will

be sent via acoustic feedback and then the path closest

to the center of the image will be chosen. The sy-

stem considers five possible directions of orientation

for VIPs in the free path segmentation: right, slightly

right, front, slightly left and left (Figure 4). Each re-

gion corresponds to 20% of the image so ’slightly left’

and ’slightly right’ mean the user should turn slightly

in the specified direction, while the right and left di-

rections define the user should turn between 30◦ and

45◦ in that direction.

Figure 4: Directions defined by image regions.

Algorithm 1 contains the pseudocode for the free

path segmentation stage. The code determines one or

more free paths and chooses the closest to the center,

if any. A list with the X coordinates of the centers

of the free paths and also the path chosen are those

resulting from the code.

With one free path determined, the system may

then look at verifying the existence of an obstacle in

that direction.

3.2 Obstacle Detection and

Classification

Although free path segmentation occurs in the bottom

25% of the image, the detection and classification of

obstacles occurs in the upper 75% of the image as

shown in Figure 5. However, this stage only occurs

if and when a free path is chosen, since obstacle

checking occurs only in the direction of such a cho-

sen path. The areas of the image relative to any not-

selected paths are ignored and not processed in search

of obstacles. This search for obstacles in the upper

part of the image is because several objects, such as

an open drawer or a cupboard door, could block the

space above the free path and prevent the user from

walking forward.
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Algorithm 1: Free Path Segmentation Algorithm

Data: DepthFrame
Result: List of Free Paths, Chosen Path

1 bottomSlice = imageYSplit(DepthFrame,4)[4]
2 bottomSlice = threshold(bottomSlice,

distanceThreshold)
3 template = Rectangle(50,bottomSlice.height)
4 while Sliding template through bottomSlice do

5 if template matches then

6 if adjacent region then

7 updateLastFreePath(freePaths,
XCenterCoordinate)

8 else

9 freePaths = XCenterCoordinate
10 end

11 end

12 end

13 if freePaths >0 then

14 if freePaths >1 then

15 sendAcousticFeedback(freePaths)
16 end

17 chosenPath = pickCentralPath(freePaths)

18 else

19 sendAcousticFeedback(”No path found.”)
20 end

Figure 5: Obstacle detection area (green).

The upper slice of the image, as well as the lo-

wer one, is also subjected to a thresholding operation

(with the same value as the lower slice) to delimit clo-

ser obstacles, and then a new pixel operation defines,

if any, the obstacle closest to the defined area. Any

obstacle detected is defined by a Canny edge detector,

its contours drawn and a bounding box is created for

that obstacle. For best results, the bounding box area

is increased by 25% to avoid cropping the borders of

the obstacle.

Obstacle classification uses a convolutional neural

network, using the Caffe framework (Jia et al., 2014).

A 22-layer GoogLeNet (developed by Google) model

(Szegedy et al., 2015) was trained to classify twenty

classes of objects: animal, cabinet, vacuum cleaner,

bag, chair, bed, basket, stove, refrigerator, window,

table, backpack, person, sink, door, sofa, monitor and

toilet. About 60,000 images were used for the trai-

ning, reaching 82% classification accuracy for Top-1

prediction and 95% for Top-5 prediction (the correct

class is one of the top five ranked classes) after 35

epochs. Although many of the trained objects are not

usually detected in the upper 75% of the image, espe-

cially in the experiments of this study, the model will

also be used for a future study mentioned in Section 6.

However, the model is able to classify hanging back-

packs and table corners, for example. In cases where

the obstacle cannot be classified, the system will emit

a warning sound about the obstacle but not identifying

it.

When an obstacle has been detected and its region

determined, the defined bounding box is used to ex-

tract the sub-image from the RGB image containing

the obstacle. This sub-image is sent to the classifier

which returns a list of the five most likely classes of

the image and their accuracy percentages. The con-

fidence of the classification of the obstacle is divided

into three bands according to the percentage of accu-

racy:

Con f (img) =





100%, if Predict(img)1 ≥ 90%

50%, if Predict(img)1 ≥ 60%

and Predict(img)2 ≤ 30%

0%, otherwise

The confidence defined by Conf(img) directly informs

the feedback that the VIP will receive from the sy-

stem, as shown in Section 3.3, , and ranges from total

certainty that the obstacle is of a given class to unable

to identify the obstacle. With the information provi-

ded, the function Predic(img)x is called to classify the

image (img) and its index (x) is the position of the re-

sult in the list, with 1 being the most accurate, 2 the

second most accurate and so on. Algorithm 2 shows

the pseudocode for the detection and classification of

an obstacle.

3.3 Acoustic Feedback

Acoustic feedback implies in processed system in-

formation of interest to the user passed to them via

sound. The system developed here performs two ty-

pes of acoustic feedback: via voice, in which feed-

back consists of words informing the user about a free

path or an obstacle; and via tones, in case a detected

obstacle cannot be correctly classified or only classi-

fied with low accuracy. Thus the types of feedback

that the system can provide are:

• Directions (voice), informing the direction in

which the defined free path is. In this case the

phrases were defined as: ”left”, ”slightly left”,

”front”, ”slightly right” and ”right”;
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Algorithm 2: Obstacle Detection and Classifica-

tion Algorithm

Data: DepthFrame, RGBFrame, ChosenPath

Result: Acoustic Feedback

1 upperSlice = imageXSplit(DepthFrame, ChosenPath)

2 obstacles = threshold(upperSlice, distanceThreshold)

3 obstacle = getNearestObstacle(obstacles)

4 if nearestObstacle is not null then

5 obstacleImg = cropImage(RGBFrame, obstacle)

6 obstacleClass = classify(obstacleImg)

7 obsInfo = {obstacle, obstacleClass}
8 sendAcousticFeedback(chosenPath, obsInfo,

RGBFrame, DepthFrame)

9 else

10 sendAcousticFeedback(chosenPath, NULL,

RGBFrame, DepthFrame)

11 end

• No direction (voice), when the system is not able

to find a safe path, the sentence informed the user

is ”No path”;

• Obstacle class (voice), identifying the obstacle

after its classification only by its class and posi-

tion via 3D audio. Two types of messages can

be sent to the user. If the prediction reliability is

100%, the system will simply send the obstacle

class as feedback. For 50% reliability, the system

will report that the obstacle appears to be of the

informed class, by means of the sentence ”It ap-

pears to be <class>”;

• Unclassified obstacle (tone), if the obstacle can

not be classified, will be issued a tone towards the

obstacle, rather than say the class of the obstacle.

In order to preserve the contact of VIPs with the

sounds of the environment around them, this design

uses a non-invasive bone-conducting stereo headset

that allows both system feedback and ambient sounds

to be heard simultaneously. The system also converts

the sounds of obstacle positions into 3D positioning,

indicating by sound if an obstacle is to the right, left or

center of the path. The text-to-speech synthesis of the

above phrases was done with the eSpeak library (ES-

peak, 2007) and reproduced by the OpenAL library

(Hiebert et al., 2017), which was also used reprodu-

cing the tone of an unclassified obstacle.

4 EXPERIMENT

The proposed system aims at improving mobility of

VIPs and their relative comfort without detriment to

the system performance. So, before experimenting

with the system, a functional, wearable prototype for

navigating had to be developed.

4.1 Wearable Prototype

The prototype hardware seeks to minimize the impact

on both the movement and also the hearing of VIPs,

avoiding their total sensory immersion in the sy-

stem. The prototype consists of: a Kinect for XBOX

360 RGB-D camera, an NVIDIA Jetson TX1 board,

Aftershokz Sportz M2 bone conduction headphones

with built-in microphone, a LiPo 3S 2.200MAh bat-

tery to power the RGB-D camera and a 2.2200MAh

4S LiPo battery as the Jetson TX1 power source.

The Kinect camera is surrounded by a fabric co-

ver. This cover is used to attach the camera to a spe-

cial dress for VIPs tailored from a tactical (airsoft)

vest. The vest is used not only to attach the camera

to the front, but also to attach to three other compart-

ments on the back that carry both batteries and the

Jetson TX1 card. Figure 6 shows a person wearing

the prototype vest with the attached equipment.

Figure 6: Prototype equipment for developed system. Front
(left) and back (right).

4.2 Practical Experiment

The prototype was tested in the corridors of the de-

partment to which the project is linked. Although

a partnership with a non-governmental organization

(NGO) for VIPs already exists, the first testing was

done with a fully-sighted person and a future version

of the system will be tested by the VIP members of

the NGO.

The experiment consisted of following several

paths through the corridors, shown in Figure 7, where

the green dot indicates the beginning of the route, the

red dots indicate the end and each line linking them

indicates a path. This sought to check if the system

would prevent collisions between the participant and

any object, wall or person, in addition to indicating

the free paths including the most central. The sy-

stem was configured and tested for detection of free
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paths from three maximum distances: 80cm, 120cm

and 160cm. All the test routes were followed for each

of these three configurations.

None of the surroundings in the department were

adapted for the experiments nor was the movement of

people restricted at any time the routes were being

followed, in order to encourage chance encounters

with people and the response of the system to such

an event.

During the experiment, the authors also looked at

the questions of the speed and time of the feedback

in relation to the user’s reaction, i.e. if the time spent

sending the feedback is adequate so that the user can,

for example, avoid bumping into a wall. The classi-

fication of obstacles was also checked during the ex-

periment, including its impact on the performance of

the system.

5 RESULTS

For all the routes followed, the system was able to

help with safe navigation, since there were no collisi-

ons with walls, people or obstacles in general.

Each maximum distance produced different sy-

stem behavior. The 80cm distance could inform the

user in a timely manner about changing a path or ob-

stacle but the authors observed that the user reaction

time and the speed of their steps can be a problem if

they walk fast and have slower reactions. A maximum

distance of 150cm was enough to detect obstacles and

we believe that a slow reaction from user for system

feedback is not a problem for such distance. However,

there was an issue found for this maximum distance,

when moving in narrow places where any minimal

change of user angle (i.e.: user slightly turning right)

potentially generates a free path feedback in the oppo-

site direction to that minimal turn. Finally, the ideal

maximum distance tested was 120 cm. This distance

maintains user safety even with a possible low post-

feedback reaction time. It still gives the VIP freedom

to choose their direction and there is no need for con-

stant slight adjustments as with the 160cm maximum.

Figure 8 shows the free path detected by the system

in red.

Figure 8: Path chosen by the system (red).

In scenarios with multiple paths, the system de-

tected each of the paths and chose the one closest to

the center to indicate as the safe path. In this case,

the system took up to three seconds to transmit all

the directions to the user but there was no impact on

its reliability, considering the decision time and re-

action time that the user has to carry on in or change

to the direction that the system chose. Multiple path

detection is shown in Figure 9. The system also de-

Figure 7: Department map with routes followed.
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tected false paths when there was a partial or full glass

door. These false paths are explained by the fact that

the glass in the door does not reflect the infrared emit-

ted by the RGB-D camera, an event which the authors

already expected. Although the total direction repro-

duction time was up to three seconds, the frame rate

(fps) was 15fps, on average, after subtracting the feed-

back time.

Figure 9: Multiple path indications. Red indicates the cho-
sen path.

Obstacle detection by the system went as expected

and all the obstacles that appeared in the upper por-

tion of the chosen free path were properly detected.

The obstacle classification was also tested in the ex-

perimental stage, but to a lesser extent than the free

path segmentation. The classifier was able to cor-

rectly classify people, tables, chairs, and computer

monitors. However, there is an important limitation

that the authors found in the experiments: Partial ima-

ges of obstacles are difficult to classify and generally

lead the system to only emit a tone indicating lack of

accuracy. The results therefore show the need for a

classification approach that considers partial images

of an obstacle, such as an arm being classified as a

person. The performance of the classification was sa-

tisfactory, on average 240 milliseconds to predict the

class of an obstacle, without optimizations.

Finally, the wearable prototype was shown to be

an alternative that works but the authors will study

other designs, since clothing tends to be hot and cum-

bersome after a long period of use. The total distribu-

ted weight of the prototype is about 1 kg, and this was

not a problem during the experiment. The measured

energy autonomy of the prototype is about 6 hours of

continuous use, considering both batteries.

6 CONCLUSIONS AND FUTURE

WORK

This article presented an embedded navigation and

classification system that can assist VIPs in their daily

lives, as well as a wearable prototype that includes

such an embedded system. Table 1 compares the dif-

ferences between the system proposed here and the

approaches presented in Section 2.

The system developed here showed itself totally

capable of indicating free paths so that a VIP does not

bump into obstacles such as walls, tables, chairs, etc.

in addition to detecting multiple path choices. This is

the first step in a larger project of which this system

is part and the next step is to include simultaneous lo-

calization and map (SLAM) techniques (Leonard and

Durrant-Whyte, 1991) so that a VIP can be guided to

a specific location in an environment. The detection

and classification of obstacles achieved the expected

results but new classes of objects must be added to the

current model, in order to contemplate other objects

commonly found in closed public environments. As

previously mentioned, the model used in this project

was also trained for a future project with classifica-

tion of objects in a residential environment (see the

list Section 3.2 in above).

Soon, the prototype will be tested in an experi-

ment involving VIPs, who will be able to offer their

feedback on the experience with the system and pro-

totype. The implementation of a voice interface for

direct interaction between the user and the system is

also planned.
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Table 1: Comparison between our proposed system and related works presented in Section 2.

Embedded GPU
Multipath
Detection

Multipath
Alert

Obstacle
Detection

Obstacle
Classification

Stereo
Vision

Acoustic
Feedback

3D Audio
Feedback

Our x x x x x x x x x

Mocanu x x x x

Deb x x

Bangar x x x x x

Poggi x x x x x
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