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Abstract: In previews work, a construction of electrical appliances identification system has been proposed using 

Hidden Markov Models combined with STFS (Short-Time Fourier Series) features extraction. This paper 

proposes many extensions: (i) a larger spectral band up to the maximum frequency value for the analysis of 

the data is investigated, but requiring a higher dimensionality of the STFS feature vector; (ii) a more 

compact representation than the SFTS vector is investigated with the wavelet based approaches; (iii) the 

relevance of the wavelet based features are investigated using feature selection procedure. The results show 

that increasing the number of harmonics in STFS from 50 to 249 does not necessarily improve the CR 

because of the peaking phenomenon observed with high dimensionality. The wavelet cepstral coefficients 

(WCC) descriptor with 8 cycle time analysis windows presents a higher performance comparing to the 

STFS, discrete wavelet energy (DWE) and log wavelet energy (LWE) descriptors. Recommendations are 

also given for selecting wavelet family, the mother wavelet order within the family and the decomposition 

depth. It turns out that the Daubechies wavelet of order 4 and decomposition depth 6 (or Coiflet wavelet 

with order 2 and depth 7) is recommended in order to achieve the better CR values. 

1 INTRODUCTION 

1.1 Motivation 

For electricity providers, accessing to detailed 

energy consumption at the appliance level helps in 

regulating the electric power delivery / demand 

balance. Indeed, demand responses can be 

modulated by targeting specific user and appliance 

groups. For the customers, the energy disaggregation 

information helps improving their energy 

consumption efficiency.  

This objective can be achieved in the frame of 

smart grids with the use of sensors, communications, 

computation abilities and control systems. In order 

to infer what appliances are operating in a home, 

home’s power consumption must be disaggregated 

into individual appliances. An energy meter allows 

the access to the energy consumption information of 

the appliance or group of appliances. A 

disaggregated consumption thus necessitates the 

deployment of many meters at home. This solution 

is fastidious, not flexible and costly. Conversely, the 

non-intrusive appliance load monitoring (NIALM or 

NILM) solution necessitates the installation of a 

single device only at the house’s power. NIALM 

techniques aim at disaggregating total electricity 

consumption to individual contributions of each 

load. Their design requires many stages: data 

acquisition, event detection, feature extraction, event 

classification and finally energy computation (Basu, 

2014). The event classification quality highly 

depends on the relevance of the features extracted 

from the acquired data. We have investigated in a 

previous paper (Nait-Meziane, et al., 2016) the 

contribution of the transient part of the turn on 

currents to the appliance identification rate. A 

pattern recognition system was created considering 

short time Fourier series coefficients (STFS) at the 

input of a hidden Markov model (HMM) classifier. 

The study demonstrated an interest in considering 

the transient part in addition to the steady state part 
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of the current signals for an improved identification 

rate. 

The purpose now is to extent this study to (i) a 

larger analysis spectral band up to the maximum 

frequency value which requires a higher 

dimensionality of the STFS feature vector; (ii) a 

more compact representation than the STFS vector 

using other potentially interesting features such as 

wavelet based approaches; (iii) the investigation of 

the features relevance using feature selection 

procedure. 

1.2 Related Work 

In (Nait-Meziane, et al., 2016), the use of HMM 

models were introduced to solve the electrical 

appliance identification problem based on high-

frequency sampled signals. The HMM classifier 

were designed using extracted features from the 

current signals. 

The current signals remain periodic at the rate of 

the main power frequency with possible high 

distortions. These current signals can be analyzed 

with the coefficients of Discrete Fourier Series 

(DFS) decomposition. For a 𝑁 samples periodic 

signal 𝑠 [𝑛], 𝑛 ∈ ℤ the DFS coefficients are 

expressed as 

𝐶[𝑘] =
1

𝑁
∑ 𝑠[𝑛]exp (

−𝑗2𝜋𝑘𝑛

𝑁
) ,

𝑁/2−1

𝑛=−𝑁/2

 

with −
N

2
≤ k ≤

N

2
− 1. In the steady state part of the 

active current signals, the magnitude of these 

coefficients should be constant whatever the location 

of the considered time period. 

For transient electrical current signals, however, 

the periodicity property is lost and strictly speaking 

this formula is no more correct. Nevertheless, the 

DFS coefficients still catch the greatest part of the 

signal energy. Moreover, the design of a HMM 

system requires the definition of many states which 

input features must be time-varying. For most of the 

appliances, the DFS coefficients magnitude varies 

along the time because of transient turn-on part, 

appliance regime changes or power fluctuations. 

This is the reason why the current signals were 

segmented into overlapping successive windows 

with DFS coefficients computed on each window.  

The resulting STFS coefficients are obtained as 

DFS coefficients computed around each time 

location 𝑛 as:  

𝐶[𝑛, 𝑘] =
1

𝑁
∑ 𝑠[𝑛 +𝑚]exp (

−𝑗2𝜋𝑘𝑚

𝑁
) ,

𝑁/2−1

𝑚=−𝑁/2

 

with 
𝑁

2
≤ 𝑛 ≤ 𝑀 −

𝑁

2
− 1 and 𝑀 being the total 

number of samples of the current signal. For the 

tested PLAID dataset, the number 𝑁 was 500 

samples at 30 kHz frequency for the 60 Hz cycle-

time and the overlapping was 50% of the window 

size, i.e.  𝑛 = 𝑗𝑁/2 where 𝑗 is the segment number. 

Different choices for the identification system 

were investigated: the use of transient vs. steady-

state signals, the use of even vs. odd-order 

harmonics features, and the optimal feature vector 

size. The conclusion of this study was that the 

combined use of the transient part of the electrical 

current signals with only a few odd-order harmonics 

allows constructing an appliance identification 

system that is accurate, fast, and less complex in 

terms of memory occupancy and computations. 

Another choice for the characterization of the 

transient electrical current signals has been proposed 

in (Nait Meziane, et al., 2017). Novel features 

extracted from a proposed mathematical model for 

modelling the turn-on transient current are 

introduced and used in order to classify electrical 

appliances. The model of the current is an amplitude 

modulated sum-of-sinusoids with additive white 

Gaussian noise (Naït Meziane, et al., 2015). The 

sinusoids frequencies are known and are odd order-

harmonics of the fundamental frequency (the 

frequency of the main power). The amplitude 

modulation, or envelope, describes the current 

amplitude variation of the turn-on transient part as a 

time polynomial expression of an exponential 

function until reaching the steady-state part with a 

unity envelope. 

The results showed that the amplitude-related 

features of this model are the most suited for 

appliance identification (giving a classification rate 

of 98.57% evaluated on COOLL database) whereas 

the envelope related features are the most adapted 

for appliance clustering. 

Moreover, these features were analysed for the 

sake of selecting a set of features that is relevant for 

appliance classification. A feature selection 

procedure using a wrapper approach for 

identification was carried out corroborating the 

previous results. 

2 WCC FEATURE EXTRACTION 

We introduce in this section a new feature for NILM 

based on wavelet theory and cepstral calculus. 
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2.1 Wavelet Processing for NILM 

Feature Extraction 

The features extracted from the electrical signals are 

expected to characterise the electrical appliances. 

More precisely for NILM, the features should be 

relevant for appliances identification, i.e. they 

should be able to explain the electrical appliances 

classes during their consumption periods. The role 

of features is to provide a compact representation of 

the data. They should be as relevant as possible and 

their number should be minimal. Classical features 

used in electrical engineering are the current and 

voltage root mean square values and the 

instantaneous power with the active and reactive 

parts. However, these averaged values partly hide 

the rich information contained in the frequency 

domain. Indeed, the measured voltage and current 

remain periodic at the period of the AC power main. 

The current signal in particular may have a lot of 

distortions which can be analyzed with the 

coefficients of DFS since the signal remains periodic 

as operated in (Nait-Meziane, et al., 2016). 

However, the period must be exactly known 

otherwise the computation may lack some 

information. 

The nonstationarity of the data can otherwise be 

caught with the Short Time Fourier Transform 

(STFT). The differences with STFS rely on segment 

length and segment windowing choice possibilities. 

Actually, the STFT is a specific case of the Cohen’s 

class time-frequency representations. Each case is 

defined by a specific kernel function giving rise 

many time-frequency methods like Wigner-Ville, 

Choï-Williams... Nevertheless all these approaches 

are not as appropriate as the time scale methods for 

the characterization of transient signals. Indeed, the 

multi-resolution and time-frequency localization 

properties of the time-scale methods are particularly 

suited for the simultaneous analysis of short time 

fast events and long time slow events. This is the 

case for electrical signals where the slow events are 

related to the steady state periodic behaviour of the 

AC power and the fast events are the electrical 

changes like impulses, transient phases between 

steady state phases or electrical discharges. 

We thus propose to use wavelet-based signal 

decomposition instead of STFS or STFT for the 

feature extraction procedure. The scale effect of the 

wavelet transform is obtained by applying a scale 

factor to the time course of a mother analysing 

wavelet. The mother wavelet should also present 

oscillations in order to extract a spectral content 

around its rescaled central frequency. The time-

varying spectral analysis is obtained just by applying 

a temporal shift factor to the mother wavelet before 

scaling. The wavelet transform was thus first 

expressed in the continuous domain as continuous 

wavelet transform (CWT). The discrete wavelet 

transform (DWT) was second elaborated in the 

mathematical frame of multi resolution analysis 

providing two digital filters ℎ[𝑙] and 𝑔[𝑙]. The first 

one is a low pass filter and the second one is a high 

pass filter. 

The discrete wavelet coefficients 𝑎𝑗[𝑛] and 𝑑𝑗[𝑛] 

can be produced, at each level 𝑗, by the recursion 

formula: 

𝑎𝑗[𝑛] =∑𝑎𝑗−1[𝑙 − 2𝑛]

𝑙

ℎ[𝑙] 

𝑑𝑗[𝑛] =∑𝑎𝑗−1[𝑙 − 2𝑛]

𝑙

𝑔[𝑙] 

Note that the mother wavelet does not directly 

appear in these recursive expressions but its 

continuous waveform can be retrieved from the 𝑔[𝑙] 
sequence. Similarly, another continuous waveform 

(the so-called scaling function) can be retrieved from 

the ℎ[𝑙] sequence. 

The algorithm is initialized at level 0 by 

setting 𝑎0[𝑛] = 𝑥[𝑛] defined on 𝑁 samples. At each 

iteration, the filters split the full data bandwidth in 

low and high frequency bands (the result can 

therefore be down sampled by a factor 2 which is the 

dyadic scale factor in the discrete version, see the 2𝑛 

term in the formula). Low frequency components are 

thus represented by the approximation coefficients 

𝑎𝑗[𝑛] while high frequency components are 

represented by the detail coefficients 𝑑𝑗[𝑛]. The 

DWT wavelet coefficients at the decomposition 

depth 𝑝 can be put in a vector as the concatenation 

of the detail coefficients computed at all the scales 

plus the remaining approximation coefficients 

computed at scale 𝑝 {𝑑1[𝑛], 𝑑2[𝑛],⋯ , 𝑑𝑝[𝑛], 𝑎𝑝[𝑛]}. 

Because of the factor 2 down-sampling, the number 

of coefficients 𝑑𝑗[𝑛] at iteration 𝑗 is 𝑁𝑗 = 𝑁/2
𝑗. This 

means that the number 𝑁 of 𝑥[𝑛] samples is 

preserved in the DWT domain with 𝑁 coefficients. 

The maximal decomposition depth can be log2(𝑁) 
but practically depends of the filters length. 

A reduced dimensionality of the features can be 

obtained by computing any energy measure or 

information measure from the wavelet coefficients at 

each scale (Gray and Morsi, 2015). 

2.2 Review of Wavelets in NILM 

Wavelet processing was introduced in NILM at the 
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beginning of the 2000s. The first works used the 

wavelet scale decomposition ability for electrical 

signal analysis. Indeed, the harmonic Fourier series 

expression can be decomposed in different scale 

components which permits to highlight some 

changes in harmonic components because of the 

filter bank effect of the wavelet decomposition 

(Cristaldi, Monti, and Ponci, 2003). This wavelet 

property also allows a precise detection of the 

beginning and the end of the turn-on transient parts 

of the electrical currents (Su, Lian, and Chang, 

2011). 

The work proposed in (Figueiredo, de Almeida, 

and Ribeiro, 2011) uses the reversibility property of 

the DWT for a denoising stage before NILM 

processing by selecting certain coefficients to retain, 

and discarding the others considered as noise. 

The authors in (Duarte, Delmar, Goossen, 

Barner, and Gomez-Luna, 2012) are the only ones 

using the CWT in NILM for the characterization of 

switching voltage transients. The complex Morlet 

mother wavelet was applied at chosen 

decomposition scales. The scale values were 

experimentally found such that the 3dB bandwidths, 

obtained for each selected scale, cover the whole 

signal bandwidth without overlapping. 

In (Gray and Morsi, 2015), the energy of the 

detail coefficients was used and their computation at 

each scale was used as the feature vector 

components for classification. The classification 

accuracy was also evaluated and compared using 

features obtained by various orders of Daubechies 

(Db) wavelets. They showed that higher order Db 

wavelets (and Db5 in particular) exhibit higher 

classification accuracy. 

In (Tabatabaei, Dick, and Xu, 2017), the authors 

also calculate the energy of the wavelet coefficients 

at each scale using Haar wavelets and use them as 

the feature vector instead of the wavelet coefficients. 

Finally, an adapted wavelet specifically designed for 

NILM application was proposed by (Gilis, 

Alshareef, and Morsi, 2016) (Gillis and Morsi, 

2017). The authors also applied the DWT on a 

derivative pre-processing of the data: for each 𝑁 

samples period, the difference signal between 𝑥[𝑛] 
and 𝑥[𝑛 − 𝑁] was considered. 

However, the improvement achieved by the 

newly designed filter is found to be small compared 

to Db wavelets. 

2.3 Wavelet Cepstral Coefficients 

(WCC) 

In the previous section, the authors took advantage 

of the wavelet transform for the electrical signals 

analysis in the NILM problem. Many of the authors 

reduced the dimensionality in the DWT domain by 

computing a discrete wavelet energy (DWE) 

features set composed of the wavelet coefficients 

energies evaluated on each scale as: 

{
 

 𝐸(𝑑𝑗) =∑ |𝑑𝑗[𝑛]|
2
       for  𝑗 = 1,⋯ , 𝑝

 𝑁𝑗−1

𝑛=0

𝐸(𝑎𝑝) =∑ |𝑎𝑗[𝑛]|
2 𝑁𝑝−1

𝑛=0
                                   

 

At this step, other measures on the wavelet 

coefficients have been proposed in the literature 

covering various application domains such that 

Teager-Kaiser energy, the log of the energy, the 

hierarchical energy (Didiot, Illina, Fohr, & Mella, 

2010), or information measures like entropy. (El-

Zonkoly and Desouki, 2011). 

In the speech processing domain, the logarithm is 

often used in order to highlight the harmonic content 

and to separate transfer functions. For a speech-

music discrimination application, the authors in 

(Didiot, Illina, Fohr, and Mella, 2010) introduced the 

log wavelet energy (LWE) computed on normalized 

energies: 

{
 
 

 
 𝐿𝐸(𝑑𝑗) = log (

1

 𝑁𝑗
∑ |𝑑𝑗[𝑛]|

2 𝑁𝑗−1

𝑛=0
)  𝑗 = 1,⋯ , 𝑝

𝐿𝐸(𝑎𝑝) = log (
1

 𝑁𝑝
∑ |𝑎𝑝[𝑛]|

2 𝑁𝑝−1

𝑛=0
)                     

 

In this speech domain, the classical features are 

the Mel Frequency Cepstral Coefficients (MFCC) 

and the authors compared the LWE-based 

discrimination approach with the MFCC-based one. 

The MFCC is a Fourier transform (FT) approach 

where the log of the energy is computed in different 

frequency bands (with a Mel filter applied). The 

inverse Discrete Cosinus Transform (DCT) is 

applied for the decorrelation of the coefficients. By 

replacing in this procedure the FT by the DWT, the 

Wavelet Cepstral Coefficients (WCC) can be 

obtained. This new typology of features has already 

been proposed in the speech (Lei and Kun, 2016). In 

a bat classification problem, the authors of 

(Gladrene, Juliet, and Jayapriya, 2015) go beyond by 

also proposing the Dual-Tree Complex WCC. 

Indeed, the DWT is based on real valued oscillating 

wavelets whereas the FT basically uses complex-

valued oscillating sinusoids. So the Dual-Tree 

Complex Wavelet Transform has been proposed for 

enhancing the DWT because it answers to some 

shortcomings of the DWT as the oscillations, the 

shift variance, aliasing and lack of directionality. 
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In the NILM domain, (Kong, Kim, Ko, and Joo, 

2015) partly investigated this idea using the 

quefrency position and amplitude of the dominant 

peaks in the smoothed cepstrum of the voltage signal 

as appliance features to distinguish ON/OFF 

appliances. But their work did not exploit the DWT. 

We thus propose to use the WCC features for the 

NILM problem. The following experiments aim to 

identify the most suitable wavelet family as well as 

the optimal decomposition level. The second step 

will investigate the feature selection problem using 

DWE, LWE or WCC features. 

3 EXPERIMENTS AND RESULTS 

We present in this section a number of experiments 

we carried out to evaluate the performance of the 

WCC based feature extraction method for the task of 

appliance identification. In these experiments, the 

WCC coefficients are used as features to identify 11 

electrical appliances of Plaid dataset using HMM 

classifier based identification system (Nait-Meziane, 

et al., 2016). Three experiments are conducted in 

order (i) to compare the performance of the WCC 

features to other features commonly used in the 

literature; (ii) to search for the optimal combination 

of mother wavelet and decomposition level; (iii) to 

analyze the WCC features relevance after feature 

selection procedure. 

3.1 HMM based Identification System 

The standard appliances identification system 

presented in (Nait-Meziane, et al., 2016) has been 

used in this work. The HMM based classifier system 

is composed of two principal phases, the training 

phase (learning) and the classification phase 

(testing) as presented in fig 1. Therefore, the 

database is divided into a training database and a 

testing database. 

 

Figure 1: HMM-models-based electrical appliances 

identification. 

Both phases need firstly a feature extraction 

step which consists in converting the temporal 

current waveforms signal into a sequence of 

features vectors (STFS coefficients). The total 

active current signals (transient and steady state 

phases) were considered because this repartition 

gives better CR results than those obtained with the 

steady state phase only as demonstrated in (Nait-

Meziane, et al., 2016). This sequence is considered 

as input sequence of observations to the HMM 

classifier. In (Nait-Meziane, et al., 2016), STFS 

feature vectors are computed on 50% overlapping 

window, each of 16.7 ms duration (one 60 Hz 

cycle-time). 

The training phase consists to model each 

appliance signature by HMM model of 3 states, each 

one being associated to GMM model of 3 Gaussians. 

In this phase, the system learns occurrences of the 

training database: the sequences of feature vectors of 

the training corpus are used for estimating the 

parameters of each HMM model using the 

embedded Baum-Welch reestimation algorithm 

performed by HEREST HTK command (Young, 

Kershaw, Odell, and Ollason, 1999). 

In the classification phase, the classifier uses the 

trained HMM models for assigning each input 

feature vectors sequence to one of 11 appliances 

using the Viterbi algorithm (HVITE command). The 

testing dataset is used to evaluate the performance of 

the identification system. The performance 

evaluation is based on Classification Rate (CR) 

defined in (Nait-Meziane, et al., 2016). 
In this paper, the STFS feature extraction process 

has been replaced by DWE / LWE / WCC features. 
This process is represented in fig.2. 

 

Figure 2: process of DWE / LWE / WCC feature 

extraction with Hamming windowing. 

The PLAID dataset has been used for the 

experiments. PLAID is a public dataset of current 

and voltage measurements taken from 55 houses. 

This dataset contains electric signatures of 11 

appliance types with a total of 1074 signals 

(current and voltage) sampled at a 30 kHz rate 

(Gao, Giri, Kara, and Bergès, 2014). 

In this work, the dataset is divided into a training 

set and a testing set; each one is composed of 537 

current signals with the consideration that all the 
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houses (55 in total) have examples in the training and 

in the testing sets. 

3.2 Comparative Study between STFS 

and DWE / LWE / WCC 

This experiment allows evaluating the advantage of 

WCC compared to STFS coefficients and DWE 

(Discrete Wavelet decomposition based calculus 

Energy) descriptors for the task of electrical 

appliances identification. Another case of WCC 

descriptor consists to calculate only the log of 

energy at each decomposition level without DCT 

transform (Didiot, Illina, Fohr, and Mella, 2010) in 

order to keep the interpretation of coefficients as 

frequency band energies. We called the last 

descriptor as LWE (Log wavelet decomposition 

based energy). 

Furthermore, this experiment allows extending 

the last work presented in (Nait-Meziane, et al., 

2016) by using a larger spectral band of signal and 

considering descriptors up to the maximal frequency 

(Fs/2 = 15 kHz). Hence the STFS set is composed on 

249 coefficients without taking the DC component 

(0 Hz). 

In (Gray and Morsi, 2015), the authors used the 

DWT for the classification problem in NILM and 

concluded that the order 5 Daubechies wavelet Db5 

gave the best performance in this family. For this 

reason, we firstly take the Db5 wavelet with 

maximum wavelet decomposition level of 𝑝=5 (the 

maximum depth obtained regarding the wavelet 

filter of Db5 and the number of samples N=500, 

using wmaxlev Matlab command). Thus, the DWE, 

LWE and WCC descriptors have a dimension of 6 

(energies in 5 levels, plus energy of approximation). 

3.2.1 HMM Number of States (NS) 

In this experiment, we search for the optimal states 

number of models in different cases of descriptor. 

The component number of GMM model is fixed to 

three (Nait-Meziane, et al., 2016). Table 1 gives the 

CR values with optimal number of states (NSopt) 

when varying NS from 1 to 8. From these results we 

can give the following points: 

- enlarging the bandwidth from 50 to 249 

harmonic features for the SFTS descriptor produces 

lower CR results probably because of the peaking 

phenomenon observed with high dimensionality 

(Jain, Duin, and Mao, 2000); 
- the SFTS gives the best CR with a reduced 50-

dimension feature vector with 4 HMM states; 

- in the case of large bandwidth, the STFS and 

WCC descriptors give the best CR of 93.48% with 

respectively NS equal to 7 and 6. However the 

WCC descriptor is a very compact representation 

with a 6-dimension features vector compared to the 

STFS descriptor with a large 249-dimension 

features vector; 

- taking only the wavelet energy as feature 

without the log gives the poorest performances as 

already noticed by (Gray and Morsi, 2015).  

Hence, this result demonstrates the superiority of 

the WCC descriptor to the other full band 

descriptors regarding both CR and dimensionality. 

Table 1: Performance Comparison of the CR (%) for 

STFS, DWE, LWE and WCC features using DB5 at level 

5 for the HMM Optimal Number of States (NSOPT). 

 

STFS 

(50 

features) 

STFS 

(249 

features) 

DWE LWE WCC 

NSopt 4 7 8 5 6 

CR 94.41 93.48 77.65 93.30 93.48 

3.2.2 Duration Window 

This experiment allows investigating performance 

improvement taking into account the advantages of 

wavelet analysis in the case of non stationary signal 

segments compared to the STFS analysis. For this 

reason, we propose to increase the window analysis 

until 12 cycle time (200 ms). This experiment 

considers the identification system with Db5 wavelet 

and with a decomposition level equal to 5. Table 2 

shows the accuracy for different values of window 

duration. The result shows that increasing the 

window duration until 8 cycles improves the CR 

achieving the 97.01% maximal value. Hence, for the 

next sections, we will consider window durations 

equal to 8 cycle time. 

3.2.3 Choice of the Mother Wavelet and 

Decomposition Level 

Many papers use the Haar wavelets which are rough 

and cannot smoothly follow a continuous signal, 

although this characteristic is beneficial when 

studying signals with sharp transitions. By 

considering successive convolution operations of the 

Haar scaling function (a rectangular function) with 

itself, many smoother wavelets can be obtained. 

These are the famous Daubechies wavelets where 

the number of convolutions defines the order of the 

Daubechies wavelet. So the purpose of this section is 

to evaluate the impact of the smoothness as well as 
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the impact of the wavelet family on the CR. Other 

mother wavelet families which members are defined 

by an order also exist and can be used. 

This experiment will permit to select the optimal 

wavelet mother within its family and the optimal 

decomposition level. In this work, we consider the 

following wavelet families: 

- the Daubechies family with orders 1 to 8: Db1 

or Haar, Db2, ... , Db8; 

- the Coiflets family with orders 1 to 5: Coif1, 

Coif2,..., Coif5; 

- the Symlets family with orders 1 to 8: Sym1, 

Sym2, ..., Sym8. 

For the first experiment, we consider the HMM 

identification system with 6 states and a window 

duration of 8 cycle time, with 50% overlapping 

between successive windows. 

Table 3 shows that the higher CR value of 

97.01% is achieved with the Daubechies wavelet of 

order 5 with a decomposition level equal to 5. Table 

4 presents the CR taking the same conditions as the 

last experiment but increasing the overlapping to 2/3 

of the window duration (66.66%). The results show 

globally the improvement with last value of 

overlapping. The Daubechies wavelet of order 4 

with a decomposition level equal to 6 gives the best 

performance with CR equal to 97.20%. This result 

demonstrates that the Daubechies wavelets family 

gives the best performance results in the case of high 

orders and high decomposition levels (in particular 

order 4, 5 and levels 6 and 7). 

This latter experiment was also carried out using 

the Coiflets and the Symlets wavelet families 

previously cited. The Coiflets with order 2 with level 

7 gives the best value of CR equal to 97.20%. Also, 

the Symlets wavelet with order 4 and level 6 gives 

the highest CR of 97.01% (table omitted). 

We can conclude from these experiments that 

WCC descriptor based on Daubechies or Symlets 

wavelet families gives the highest performance 

results in the case of high order (4) and high level 

(6) values. In the case of Coiflets family, the best 

result is given taking order 2 and level 7. 

Hence, whatever the wavelet family or order, the 

best performance results are obtained with high 

decomposition levels. 

3.2.4 Feature Selection using a Wrapper 

Approach 

In this experiment, we study the relevance of 

different descriptors by selecting the most relevant 

features explaining the appliances classes or types. 

In this work, we applied the wrapper-based 

sequential forward search (SFS) algorithm (Kohavi 

and John, 1997). This algorithm adds sequentially at 

each selection step the feature that gives the highest 

CR. This algorithm has been used in (Hacine-

Gharbi, Petit, Ravier, and Nemo, 2015) (Nait 

Meziane, et al., 2017). 

We consider the LWE and WCC descriptors 

taking into account the Daubechies wavelet of order 

4 with level 6. Hence, 7 features are considered for 

each descriptor. Table 5 displays the CR as a 

function of the total number of selected features at 

iteration 𝑗. Also this figure gives the selected feature 

number (Sel#) at iteration j. Several remarks can be 

drawn from Table 5: 

- the first selected feature in the case of LWE is 

feature # 7 which corresponds to the 

approximation spectral band; 

- globally, the first four LWE features strongly 

explain the classes. Most of these features 

correspond to high decomposition levels (in 

particular levels 6 and 5 and approximation 

feature 7). Hence we can conclude that the most 

information quantity about appliances is 

localised in the low spectral bands and the higher 

spectral band corresponding to level 2. 

4 CONCLUSIONS 

In this paper, a novel wavelet based feature 

extraction approach has been presented for electrical 

appliance identification. The first goal was to 

investigate a larger spectral band analysis in STFS 

feature extraction step applied on a previous 

identification system based on HMM classifier and 

evaluated on PLAID database. This system requires 

a higher dimensionality of the STFS feature vector. 

The second goal is to search a more compact 

representation than the SFTS vector using wavelet 

based approaches such as DWE and LWE proposed 

in NILM domains. In this work, we have presented a 

novel features extraction approach for NILM 

domain that extracts features from the DCT of log 

energies computed at each detail scale and at the 

approximation level of the DWT. Through several 

experiments and a comparison study, we can draw 

the following conclusions: 

- enlarging the bandwidth produces 249 features 

without improving the CR obtained with 50 

features probably because of the peaking 

phenomenon observed with high dimensionality; 

- the WCC descriptor with 8 cycle time analysis 

windows presents higher performance results 
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compared to the STFS, DWE and LWE 

descriptors; 

- the Daubechies wavelet of order 4 and 

decomposition depth 6 (or Coiflet wavelet with 

order 2 and depth 7) is recommended in order to 

achieve the better CR values. 
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Table 2: CR (%) obtained with respect to the duration of analysis window (expressed in number of cycles, one cycle is 

16.67 MS long). 

# cycles 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 𝟏𝟏 𝟏𝟐 

WCC 93.48 94.41 94.97 95.71 95.34 96.46 95.15 97.01 96.46 96.46 96.27 96.46 

Table 3: CR (%) obtained with respect to Order n of Daubechies mother wavelets and Decomposition level p. ovelapping 

between segments equals 50% 

     p 

DbN 

1 2 3 4 5 6 7 8 9 10 11 

Db1 78.73 80.41 85.26 85.82 87.87 86.57 86.38 69.78 70.15 69.22 64.74 

Db2 73.88 85.26 91.42 91.60 93.47 94.96 92.72 80.78 78.92 78.54  

Db3 73.13 88.43 90.11 94.59 96.08 96.08 94.03 84.51 82.09   

Db4 72.57 89.74 89.37 93.66 95.52 95.90 95.15 87.31 86.57   

Db5 71.46 89.74 89.93 93.84 97.01 95.90 94.40 86.57    

Db6 70.34 89.74  89.93 93.10 94.59 95.52 96.27 87.50    

Db7 68.84  89.18   90.30 92.16 95.15 94.96 94.96 85.82    

Db8 68.47 89.37 90.30 91.79  95.71 95.15 94.78 89.55    

Table 4: CR (%) obtained with respect to Order n of Daubechies mother wavelets and Decomposition level p. ovelapping 

between segments equals 66% 

     p 
DbN 

1 2 3 4 5 6 7 8 9 10 11 

Db1 82.09 81.16 86.75 87.50 90.67 88.62 89.18 80.78 78.36 78.73 77.43 

Db2 75.19 87.50 92.72 91.79 95.34 96.46 96.46 87.500 88.06 88.06  

Db3 73.69 89.18 93.10 94.59 95.15 95.52 95.34 91.04 88.81   

Db4 72.77 90.11 90.49 91.79 96.46 97.20 96.27 93.28 90.86   

Db5 71.64 90.11 92.16 93.10 94.96 96.64 96.83 94.96    

Db6 72.20 89.37 90.30 93.28 96.27 94.96 96.46 93.28    

Db7 71.08   89.18 89.93  94.03 95.15 96.46   96.64 93.47    

Db8  69.59  88.81 90.49 91.79 95.15 96.27 96.83 95.34    

Table 5: CR as a function of the number of selected features for descriptors: LWE and WCC; 𝑗is the iteration number; 

Sel#is the selected feature number, the lowest value represents the highest frequency band while the highest value 

represents the lowest frequency band; CR is considered taking all the features selected at iteration.𝑗 

𝑗 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 

LWE Sel# 7 2 6 5 1 4 3 

CR 55.60 85.63 92.72 94.4 94.78 95.34 94.96 

WCC Sel# 3 2 6 4 1 7 5 

CR 58.77 82.65 91.98 94.78 96.64 96.46 97.20 
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