
Towards Systematic and Automatic Handling of Execution Traces
Associated with Scenario-based Models

Joel Greenyer1, Daniel Gritzner1, David Harel2 and Assaf Marron2

1Leibniz Universität Hannover, Hannover, Germany
2The Weizmann Institute of Science, Rehovot, Israel

Keywords: Software Engineering, System Engineering, Scenario-based Programming, Behavioral Programming, Ab-
straction, Debugging, Program Repair, Execution Trace, Event Log.

Abstract: Scenario-based specification approaches offer system engineering advantages with their intuitiveness, exe-
cutability, and amenability to formal verification and synthesis. However, many engineering tasks such as
debugging or maintenance are still far from trivial even when using such specifications. Specifically, it is hard
to find out why a complex system behaves as it does, or how it would behave under certain conditions. Here,
we present work in progress towards the (semi-)automatic analysis of event traces emanating from simulation
runs and actual executions. These traces may be large, yet developers are often interested only in specific
properties thereof, like is any specification property violated? are particular properties demonstrated? is there
a smaller sub-sequence of events that violates or demonstrates the same properties? which trace properties
are common to multiple traces and which are unique? etc. Our approach includes automatic techniques for
discovering and distilling relevant properties of traces, analyzing properties of sets of traces, using (sets of) ex-
ecution traces for understanding specified and actual system behavior and problems therein, planning system
enhancement and repair, and more. Our work leverages and extends existing work on trace summarization,
formal methods for model analysis, specification mining from execution traces, and others, in the context of
scenario-based specifications. A key guiding perspective for this research is that interesting properties of a
trace often can be associated with one or very few concise scenarios, depicting desired or forbidden behavior,
which are already in the specification, or should be added to it.

1 INTRODUCTION

Execution logs of complex systems often contain
thousands if not millions of events. Depending on
the task at hand, say, debugging an apparent problem,
studying existing behavior in preparing for new de-
velopments, or making a management decision, ex-
tracting from such logs, or traces, just the relevant
items can be a difficult and error-prone task. Much
work has been done on trace summarization, mining,
and more, towards simplifying and accelerating tasks
in software and system engineering (SE) that require,
or that can take advantage of, execution traces. In
this paper we extend this work by observing that the
properties that one finds relevant in a given trace, may
change depending on the task one is working on, be it
helping a customer, debugging a problem, designing a
new feature, validation and verification, detecting cy-
ber intrusions, or, demonstrating the capabilities and
limitations of a system to new audiences. More gen-
erally, we propose to create a systematic arsenal of al-
gorithms, tools, and development methodologies for
using event traces in SE.

Consider, for example, the case of a model of a
city-wide road system, with many autonomous and
human-driven cars, and with automated traffic lights
and other controls. Then, during a model-based sim-
ulation a human observer looking at a video of the
system behavior notes several near-collision situa-
tions. The system’s event trace, will likely contain
a large number of events, including of course all car
movements, traffic light changes, raw and event-based
sensor data coming in from cameras, range finders
and other instruments, as well as high level abstract
ones such as cars reaching their intended destina-
tions, cars having negotiated busy intersections suc-
cessfully, and, sudden queues having been handled
successfully. However, in analyzing each of the near-
collision situations, especially for the first time, one
has to filter out the vast majority of the events in the
trace. Moreover, a human may be able to describe
the relevant portion of the video, or the trace, which
may still be quite large, with very few terms and im-
plicit abstractions, such as: “car C1 stopped abruptly
because bicycle B1 was quite fast, and was about to
cross in front of C1 without slowing down; and, car C2

560
Greenyer, J., Gritzner, D., Harel, D. and Marron, A.
Towards Systematic and Automatic Handling of Execution Traces Associated with Scenario-based Models.
DOI: 10.5220/0006671105600566
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 560-566
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



driving behind C1 was barely able to brake in time and
nearly collided with C1; further, not only did C2 not
keep a safe distance at that moment, but it has been
driving aggressively for some time now; this is inter-
esting because car C2 seems to be autonomous...”.

Our context is the scenario-based programming
approach (SBP), in which models and even final sys-
tems can be developed from components representing
different aspects of desired and undesired system be-
havior. Here, our goal is to assist engineers working
on development, debugging or maintenance of SBP
models by automating the handling of simulation and
execution traces, specifically, the extraction, and sub-
sequent use of succinct sub-traces and relevant ab-
stractions thereof.

In Section 2 we first present a small running exam-
ple to be used as context for the rest of the paper; in
Section 3 we introduce scenario-based modeling and
programming; in Section 4 we discuss existing rele-
vant research and tools; in Section 5, via a few ex-
amples and preliminary results, we elaborate on the
desired capabilities of the proposed tools and meth-
ods; and, in Section 6 we conclude with a discussion
of the results and of the next steps in this research.

2 A RUNNING EXAMPLE

As a running example we use an advanced driver-
assistance system using automated car-to-x commu-
nication to replace classic traffic control mechanisms
such as traffic lights, towards safer and more efficient
traffic flow. Fig. 1 shows an example situation in such
a system as well as a scenario that would appear in
a scenario-based specification or model of that sys-
tem. Roadworks block one lane of a two-lane road.
Cars approach on either lane and need to communi-
cate with the obstacle’s controller in order to know
what signal (either Go or Stop) to show to their driver
on their dashboards. An example scenario from the
system’s specification could be that: (1) when a car’s
sensors register an obstacle coming up ahead (2) the
car’s driver must be shown a Go or a Stop signal (3)
before the car actually reaches the obstacle.

Even experienced engineers usually need many it-
erations until a specification is feature-complete and
defect-free. Understanding the behavior induced by
a specification, including an intuitive scenario-based
one, is difficult. Simple mistakes, e.g., forgetting to
specify the assumption that drivers obey the signals
on the dashboard, can lead to formal methods report-
ing that violations, e.g., car collisions, are still possi-
ble despite the expected outcome being different.

approaching
obstacle on narrow 

passage lane
obstacle control

obstacle control

1

2

approaching an obstacle
on the blocked lane

show stop
or go

3

before
obstacle is
reached

Scenario “Dashboard of the car approaching on 
the blocked lane shows STOP or GO”

approaching
obstacle on 
blocked lane

Figure 1: Car-to-X example overview.

3 SCENARIO-BASED MODELING

Scenario-based Modeling (and Programming), also
termed behavioral programming, offers an intuitive
approach for writing formal specifications. Short sce-
narios specify sequences of events that involve mul-
tiple objects and that define how objects/components
may, must, or must not behave. A collection of these
scenarios is a specification which, through the inter-
play of the contained scenarios, defines the overall
behavior of an entire system. Visual and textual for-
malisms and languages for writing scenarios include
Live Sequence Charts (LSCs) (Damm and Harel,
2001; Harel and Marelly, 2003), the Scenario Model-
ing Language (SML) (Greenyer et al., 2015; Greenyer
et al., 2016; Gritzner and Greenyer, 2017), and be-
havioral programming in general-purpose procedural
languages like C++ or Java (Harel et al., 2012). Fig. 2
shows an LSC of the scenario depicted in Fig. 1.

Key to the scenario-based approach is that execu-
tion of the specification can be done intuitively using
play-out, namely concurrent execution of all scenar-
ios, while complying with the constraints and possi-
bilities defined by the entire specification and yielding
cohesive system behavior. Another execution method
is by synthesizing a composite automaton that reflects
the desired behavior of the system under all environ-
ment behaviors; in fact, this synthesis can be seen
as creating a strategy that guides event selection dur-
ing play-out. Yet another approach is execution with
lookahead, termed smart play-out, where the event se-
lection is subject to run-time assessment of all possi-
ble upcoming execution paths, to some limited depth
or horizon.

Scenarios consist of events, representing system

Towards Systematic and Automatic Handling of Execution Traces Associated with Scenario-based Models

561



:Sensor :Car

approachingObstacle

showGo

:Dashboard

alt

showStop

obstacleReached

Figure 2: LSC1: The dashboard of car approaching the
obstacle must display either “go” or “stop” before the car
reaches the obstacle.

:Sensor :Car

approachingObstacle
register

:ObstacleCtrl

alt

disallowPassage

allowPassage

:Dashboard

showGo

showStop

Figure 3: LSC2: A car approaching an obstacle must first
register and then wait for a go or stop signal from its dash-
board.

or environment actions. Scenarios define a partial or-
der of events and modalities encoding what events
may, must, or must not occur in each system state. An
event may be requested, waited for, or blocked. Dur-
ing play-out, at each state, an event that is requested
by some scenario and is not blocked by any scenario is
selected for triggering. All scenarios either requesting
or waiting for this event are notified and can change
their state and optionally change their declarations of
requested, blocked, and waited-for events.

Playing-out the scenarios in Figures 2 and 3, after
the event approachingObstacle both LSCs are active,
but the dashboard events showGo and showStop are
blocked due to the order enforced by LSC2. Thus,
register will be executed next. Depending on the ob-
stacle controller’s reply, the car will then update its
dashboard appropriately. If a car is able to reach the
obstacle before the dashboard shows either Go or Stop
the specification is violated.

The amenability of SBP specifications to incre-
mental refinement is accompanied by their often be-
ing under-specified and non-deterministic: depending
on the specification, multiple events may be candi-
dates in a given state some of which may be undesir-
able or even lead to violations. The opposite, not all
desirable events are enabled in a given state, may also
be true. These situations are indicators for missing
features or defects and are vital for engineers to no-
tice and to understand their cause. However, finding
and reasoning about such situations is often difficult,
especially in large systems.

4 RELATED WORK

Below we give brief examples of the kind of existing
research that can be applied ad-hoc in the use of exe-
cution traces in the desired SE activities. In Section 5
we explain how our contribution aims to extend these
capabilities.

Acting Upon Emergent Properties. Much of the
development process, and in particular in agile, incre-
mental methodologies, revolve around observing de-
sired and undesired properties in an existing model,
and refining the specification accordingly. Return-
ing to the example in the city-wide traffic automation
in the introduction, clearly the human intuition that
not only collisions are violations, but near-collisions
should be reported and analyzed should be manifested
as part of the specification. External sensors, as well
as programmed analysis of known and predicted car
movements can be used to alert about such risky con-
ditions. The specification should then be enhanced
with scenarios that forbid such events from occur-
ring. At run time, these will thus be automatically
avoided where possible, and when they nevertheless
occur, a violation will be reported. The detection of
near-collisions in general traces (depending on ve-
locities and locations) can be specified by engineers
and regulators, or can be automatically inferred using
machine learning techniques. In (Harel et al., 2016)
the authors present an automated approach for detect-
ing emergent properties in sets of execution traces of
scenario-based models, and allowing the programmer
to determine if they are desired (perhaps so that they
should be formally proven), or undesired, in which
case the specification should be repaired (manually or
automatically).

Trace Summarization and Analysis. A large va-
riety of techniques for summarizing and abstracting
execution traces, especially logs of method calls, has
been researched. E.g., in (Hamou-Lhadj and Leth-
bridge, 2006) the authors present a technique to iden-
tify low importance utility method calls by a fan-
in/fan-out metric. In (Braun et al., 2015) execution
traces are used to automatically generate system doc-
umentation via use case maps. The authors describe
eight algorithms (some emerging from prior works on
the topic) for assigning relevance or importance of
methods calls. These algorithms look at call patterns,
method size, etc. In other papers, such as (Noda et al.,
2017), filtering of events is based on pre-designated or
inferred importance of the events themselves or of the
objects involved.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

562



While the structured data of a trace can be pro-
cessed using many classical techniques, including
storing in databases and subjecting the information
to database queries, another approach (Bertero et al.,
2017), treats the log data as free text and applies natu-
ral language processing techniques to summarize the
raw data and distill relevant properties thereof.

Causality Analysis. In the present context of SBP
we relate to causality, especially that of undesired
events, as the sequence of events preceding the unde-
sired one, where each one could occur only after one
of several explicitly-specified events have occurred
(triggered either by the system or the environment).
This chain of events can be readily examined in a
trace in which the states of all scenarios is known in
addition to the identity of the events that occurred.
Automated tools for problem detection (and repair)
analyze traces that violate the specification or cause
a crash. The tools then attempt to detect the unex-
pected environment event, or the undesired system
decision that are the root cause for the violation, and
the sequence of events leading from that root cause to
the observed failure. The traces containing the prob-
lem may emanate from, e.g., execution failures (in
the field or during testing) (Weimer et al., 2010), and
from counterexamples generated by formal verifica-
tion (Clarke et al., 2003). In incremental SBP devel-
opment, when an added specification scenario reflect-
ing a valid user requirement, causes the specification
to become non-realizable, the engineers then search
for the unrealizable core of the specification. In this
context the new scenario can be viewed both as part
of the specification and as test run that violates it.

5 PROPOSED METHOD AND
PRELIMINARY RESULTS

The methodology we are developing for working with
execution traces should contain the following ele-
ments:

Working with Sets of Traces. Developers com-
monly work with one trace at a time. The methods we
propose enhance this kind of work, but also augment
it with tools for working with sets of traces, adding
to the considerations the analysis of common features
and of behaviors that are unique to certain traces. As
for generating these sets, naturally, many interesting
execution traces come from test runs, especially failed
ones, and from problem reports. To these we sug-
gest to add at least two variations: (a) collection of

traces emanating from random (possibly parameter-
ized) runs (see, e.g. (Harel et al., 2016)), and (b) dur-
ing model checking, do not suffice with a single coun-
terexample run that violates the specification or man-
ifests some desired behavior, but instead collect all
such paths in the model’s state graph (or a manage-
able subset thereof). In our current experiments we
have enhanced one of the SBP synthesis algorithms
to generate and collect all such paths.

Enhanced Traces. Whether in the development lab
or in the field, we propose that classical event traces
be augmented. In our experiments, we enhanced the
classical trace of states labels and transition events
with an extensive snapshot including: a list of active
scenarios (ideally, this would include their respective
local states), the enabled events (metaphorically, the
‘roads not chosen’, at any given state) and, selected
objects (e.g., cars) and their states (i.e., property val-
ues). While such traces can become unwieldy in
large systems, we observe and propose that extensive
logging can be a game-changer in system real time
adaptivity a SE in general (see also (Marron, 2017)),
and developing fast automated offline and run-time
techniques for compressing and filtering such traces
would be an important enabler.

Ad-hoc Tool Validation. While SBP offers advan-
tages in incremental development, our preliminary
experiments show that it is also advantageous in doing
the opposite: incremental removal of features, or iso-
lated insertion of well-specified undesired behaviors.
In the car-to-x SBP model described in Section 2 we
have experimentally modified (or have removed alto-
gether) individual specification scenarios (both indi-
vidually and several together), and checked whether
the proposed techniques can help identify the root
cause of problems. We propose that when analyzing
the root cause of a particular behavior (e.g., a hard-to-
solve, hard-to-recreate customer-reported problem),
we also modify the specification intentionally to gen-
erate similar external symptoms, and keep enhancing
our tools until they are able to automatically detect
the new known (synthetic) root cause. Then, we can
more safely apply the same tools to the traces from the
customer problem at hand. Specifically, in our exper-
iments we have modified the specification as follows:

1. We changed an obstacle controller scenario to
have an ”off-by-one” error - where when only one
car is passing in the narrow area, cars arriving
from the other direction are not signaled to stop.
When two or more cars occupy the narrow area,
the signal works correctly.

Towards Systematic and Automatic Handling of Execution Traces Associated with Scenario-based Models

563



2. We removed the (often forgotten) environment as-
sumption that drivers obey the stop/go signal on
their dashboard. In fact we experimented with af-
fecting one, two, or all drivers in this manner.

3. We omitted the scenario that as soon as the narrow
area becomes free allows the passing of cars that
were previously told to wait.

A Rich, Dynamic and Open Trace-processing API.
In our experiments we externalized to end-users and
to higher-level scripts a rich and growing library of fil-
tering and validation functions. The trace-processing
tools should allow engineer to readily incorporate any
heuristics they develop, as a method to be readily ac-
cessible in all future analyses, for the entire commu-
nity. For example,our proof-of-concept APIs include,
among others:
• extracting (from a set of traces) all those with

safety violations, and all those exhibiting liveness
‘violation’ within the trace, as well as the respec-
tive violated scenarios

• finding properties that are common to sets of
traces or sub-traces, by computing their intersec-
tion; additionally, compute the complements of
such sets, in search for properties that are unique
to individual traces or to particular (sub)sets of
traces

• filtering sets of traces according to trace properties

• filtering a trace according to entry properties

• a variety of queries on trace data

• trace transformation, especially according to
specification properties

• finding a first or a last entry with a particular prop-
erty in a trace, and

• quantitative analysis (e.g., producing histograms)
of trace properties (within a set of traces) and of
entry properties (within a trace or set of traces).
For example in our analysis of the set of traces

with all three defects, the initial set of traces occu-
pied 78MB. It contained about 5000 traces of about
20 events each. Clearly one or few of these small
traces could have been analyzed manually using tra-
ditional techniques, but in our initial experimentation
(to be elaborated in future work) we were able to
program the following automated analysis of the en-
tire set as follows: we extracted all traces that lead
to a safety violation of the specification; we create
a list of all events which trigger a violation. We
(manually for now) observed in this list that viola-
tions occur upon the event of a car reaching the ob-
stacle or the event of a car passing the obstacle. We

used this observation to narrow our set of traces to all
those in which the event carB1.ObstacleReached
is the cause of a violation. (such choice can em-
anate from, say, a customer complaint — that after
certain actions certain undesired conditions emerged).
This yielded 670 traces, all with the same violated
scenario, the one with the self-explanatory name
of CarReceivesAnswerBeforeReachingObstacle.
Checking a failed trace against this scenario we see
that the above event occurred out of order and the ex-
pected event (of reaching the obstacle) has not arrived
yet at that point. Checking all scenarios which can
emit this event yielded (in this case) just a single one,
and finding the bug in this small scenario was then
straightforward. Again, while some of these steps are
similar to classical debugging, one should note that
some of the answers apply to a multitude of test runs
and not just one, providing a greater generality to the
analysis and to the proposed solution.

It should be noted that intersection of traces refers
to event sequences and not just to event sets. Con-
sider our analysis of the second defect we injected.
This defect caused car collision in the narrow passage
next to the obstacle to occur. As the intersection of
violating traces we obtained the following sub-trace
(shown here in text, with the sending and receiving
lifelines and the event method name):

env -> carA1.approachingObstacle()
carA1 -> obstacle.register()
env -> carB1.approachingObstacle()
carB1 -> obstacle.register()
env -> carA1.passingObstacle()
env -> carB1.passingObstacle()

and two kinds of complements of the intersection,
namely six traces containing
obstacle -> carA1.allowPassage() // may pass
obstacle -> carB1.disallowPassage() // must wait

and four traces containing

obstacle -> carB1.allowPassage()
obstacle -> carA1.disallowPassage()

Which suggested that indeed the drivers were not
obeying the signals.

The analysis of the liveness violation in the third
injected defect highlights the role of object data. Af-
ter several filtering operations similar to the above,
we observe that the last event received (earlier) by
carB1 is carB1.disallowPassage(), and that no
allowPassage() was sent to it, despite all cars that
drive in the opposite direction being conspicuously
past the narrow area (e.g., the location of carA1 is
BehindObstacle).

Quantitative analysis showed its value as well.
While we knew what we were looking for, it was still

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

564



interesting to see certain suspicious pairs or triples
of events occurring, in this order, but not necessarily
purely consecutively, in large numbers of problematic
traces. E.g., in traces where collisions occurred due
to the second defect, the pair
obstacle->carB1.allowPassage();
env->carB1.passingObstacle()
and the triple
obstacle->carB1.disallowPassage();
env->carB1.obstacleReached();
env->carB1.passingObstacle()
occur thousands of times, indicating that carB1 may
not be obeying the signal sent to it.

Support for Demonstrating Relevant Properties.
We propose to give a particular emphasis to demon-
strating desired properties in specifications and sets
of traces. Consider for example the requirement that
the obstacle signal approaching cars to wait whenever
there are other cars in the opposite direction occupy-
ing the narrow area. Of course, a single test would be
a nice, but insufficient demonstration. A straightfor-
ward formal verification of this specification property
may be misleading, e.g., if due to other modeling er-
rors it turns out that cars rarely, or even never arrive
at the obstacle from opposite directions at the same
time. Results indicating that the following triples oc-
curred thousands of times, repeatedly, and in distinct
traces
obstacle->carA1.allowPassage();
env->carB1.obstacleReached();
obstacle->carB1.disallowPassage()
indeed contributes substantially to demonstrating the
desired property. This also serves as a reminder that
a particular trace or set thereof may possess multiple
relevant properties, and engineers may be interested
in different properties at different times. E.g., during
our analysis of collisions in pursuing the second de-
fect, the automated trace analysis informed us (with-
out us asking explicitly) that the obstacle sent the re-
quired signals correctly in all possible runs.

6 DISCUSSION AND FUTURE
WORK

We have presented our direction towards a systematic
approach for management, summarization, analysis
and querying of large sets of large execution traces of
SBP models, and have shown preliminary results how
such tools can accelerate causal analysis, debugging
and maintenance.

A more systematic evaluation of the advantages of
such tools over manual techniques can motivate and

guide the particular areas that should be further de-
veloped.

For example, the approach can be enhanced via
richer queries on traces, scenarios and system states.
E.g., “what are the scenarios which request other en-
abled events when event E1 was selected (in traces
in the current set), and were these event requests ever
granted, or did the scenarios transition out of that state
due to other events that occurred?”.

In particular we would be interested in causality
queries, such “starting with a violation, find the se-
quence of events that directly caused the triggering of
the last event”. In other words, going backwards, for
each triggered system event, what are all the scenar-
ios that requested it at that state (system cut); what
was the preceding event in each of these scenarios;
and then, repeat the process for each of these events.
In fact, this should be augmented with researching the
events that were blocked in those states, and how the
scenarios that blocked them have reached those par-
ticular states. While this chain of analysis may be
large, recall that it filters out all the events that are
not in this causal chain, and are merely the result of
parallel processes.

One can automate certain aspects of liveness prop-
erty analysis in traces, based on the fact that scenar-
ios distinguish events that must happen from those
that ‘just’ may happen, at a given state in a scenario.
Hence the specification and traces can guide the dis-
covery of situations where scenarios wait for an ex-
tended period of time for events that were marked as
must happen, as well as the causality chains which
may have been broken.

Another area of intriguing research opportunity is
automating (or, at least, methodologically prescrib-
ing) the steps in the method that presently depend on
human decision and intuition.

The enrichment of the log with object data can
help analyze complex problems. For example, it
seems that only a few additional details, like time and
certain car properties, and a small amount of domain
knowledge (to be captured as additional assumption
scenarios), should be needed in further automating
the analysis of near-collisions described in Section 1.
We would expect the computer to be be able to reach
complex observations like: (i) “Car C2 was actually
an ambulance on an emergency call with a siren and
lights on” (hence its driving aggressively may be ac-
ceptable); (ii) “the event of car C1 pulling over to the
side to make way for C2 is missing”; and (iii) “C1
is not at fault as the ambulance has just turned into
the street in which C1 was driving and there was not
enough time for C1 to pull over before the bicycle
crossed its path.”.

Towards Systematic and Automatic Handling of Execution Traces Associated with Scenario-based Models

565



Another dimension in which this work should be
extended is to create generalized behavioral sum-
maries which transcend specification scenarios and
individual trace summaries. E.g. we would like to
find a formal, concise representation for SE knowl-
edge as contained in natural language sentences like:
“presently, always, (as opposed to ‘it happened once’)
when the user presses the green button the buzzer
sounds, but instead, the green light should go on”,
or “the user could not complete his desired action of
pressing buttons B1, B2, B3, B4 in this order, be-
cause, always after one presses button B2, button B3
is disabled”. Such formalization capabilities would
enable deeper analysis and perhaps streamline the
automation and complex development tasks such as
feature analysis, problem determination, and profes-
sional interaction with customers.

ACKNOWLEDGEMENTS

This work has been funded in part by grants from the
German-Israeli Foundation for Scientific Research
and Development (GIF) and from the Israel Science
Foundation (ISF).

REFERENCES

Bertero, C., Roy, M., Sauvanaud, C., and Trédan, G. (2017).
Experience Report: Log Mining using Natural Lan-
guage Processing and Application to Anomaly Detec-
tion. In 28th International Symposium on Software
Reliability Engineering (ISSRE).

Braun, E., Amyot, D., and Lethbridge, T. (2015). Generat-
ing Software Documentation in Use Case Maps from
Filtered Execution Traces. In International SDL Fo-
rum, pages 177–192. Springer.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.
(2003). Counterexample-guided abstraction refine-
ment for symbolic model checking. Journal of the
ACM (JACM), 50(5):752–794.

Damm, W. and Harel, D. (2001). LSCs: Breathing life into
message sequence charts. In Formal Methods in Sys-
tem Design, volume 19, pages 45–80.

Greenyer, J., Gritzner, D., Gutjahr, T., Duente, T., Dulle,
S., Deppe, F.-D., Glade, N., Hilbich, M., Koenig, F.,
Luennemann, J., Prenner, N., Raetz, K., Schnelle, T.,
Singer, M., Tempelmeier, N., and Voges, R. (2015).
Scenarios@run.time – Distributed Execution of Spec-
ifications on IoT-Connected Robots. In 10th Int. Work-
shop on Models@Run.Time (MRT), co-located with
MODELS 2015, CEUR Workshop Proceedings.

Greenyer, J., Gritzner, D., Katz, G., and Marron, A. (2016).
Scenario-Based Modeling and Synthesis for Reactive
Systems with Dynamic System Structure in Scenari-
oTools. In Proceedings of the MoDELS 2016 Demo

and Poster Sessions, co-located with ACM/IEEE 19th
International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS). CEUR.

Gritzner, D. and Greenyer, J. (2017). Controller Synthe-
sis and PCL Code Generation from Scenario-based
GR(1) Robot Specifications. In Proceedings of the
4th Workshop on Model-Driven Robot Software En-
gineering (MORSE 2017), co-located with Software
Technologies: Applications and Foundations (STAF).

Hamou-Lhadj, A. and Lethbridge, T. (2006). Summarizing
the content of large traces to facilitate the understand-
ing of the behaviour of a software system. In 14th
IEEE International Conference on Program Compre-
hension (ICPC), pages 181–190. IEEE.

Harel, D., Katz, G., Marelly, R., and Marron, A. (2016).
An Initial Wise Development Environment for Behav-
ioral Models. In Proc. 4th Int. Conf. on Model-Driven
Engineering and Software Development (MODEL-
SWARD), pages 600–612.

Harel, D. and Marelly, R. (2003). Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine. Springer.

Harel, D., Marron, A., and Weiss, G. (2012). Behavioral
Programming. Comm. of the ACM, 55(7).

Marron, A. (2017). A Reactive Specification Formalism for
Enhancing System Development, Analysis and Adap-
tivity. In 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design
(MEMCODE).

Noda, K., Kobayashi, T., Toda, T., and Atsumi, N.
(2017). Identifying Core Objects for Trace Summa-
rization Using Reference Relations and Access Anal-
ysis. In Computer Software and Applications Confer-
ence (COMPSAC), 2017 IEEE 41st Annual. IEEE.

Weimer, W., Forrest, S., Le Goues, C., and Nguyen,
T. (2010). Automatic program repair with evolu-
tionary computation. Communications of the ACM,
53(5):109–116.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

566


