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Abstract: The integration of Cloud and IoT (Internet-of-Things) resulting in so-called edge clouds has started. This 

requires the combination of data centre management technologies with much more constrained devices. 

Lightweight virtualisation solutions such as containerisation can be used to distribute, deploy and manage 

edge cloud applications on clusters. Leightweightness also applies to the devices, where we focus here on 

small-board devices such as Raspberry Pis in our concrete case. These small-board devices are particularly 

useful in situations where a mix of robustness due to environmental conditions and low costs is required.  We 

discuss different architectural solutions for the distribution of computation to edge cloud devices based on 

containers and other management approaches and evaluate these in terms of cost, power consumption and 

performance. 

1 INTRODUCTION 

Cloud technology is moving towards multi-cloud 

environments with the inclusion of various devices 

and sensors. Cloud and IoT integration resulting in 

so-called edge cloud and fog computing has started 

(Chandra et al., 2013). This requires the combination 

of data centre management technologies with much 

more constrained devices, but still using virtualised 

solutions to deal with scalability, flexibility and 

multi-tenancy concerns.  

Lightweight virtualisation solutions do exist for 

this architectural setting with smaller, but still 

virtualised devices to provide application and 

platform technology as services. Containerisation is a 

solution component for lightweight virtualisation 

(Pahl, 2015). Containers furthermore address 

platform concerns relevant for Platform-as-a-Service 

(PaaS) clouds like application packaging and 

orchestration.  

We will compare a container middleware platform 

for edge cloud computing with other platforms (own-

build or OpenStack based) that all use small-board 

devices for low-cost, robust settings. 

We will discuss these architectural options for 

edge cloud middleware. For edge clouds, application 

and service orchestration can help to manage and 

orches-trate applications through containers (Pahl & 

Lee, 2015; Pahl et al., 2016). In this way, computation 

can be brought to the edge of the cloud, rather than 

data from the Internet-of-Things (IoT) to the cloud 

(Kratzke, 2014), thus increasing performance and 

security by not transferring large amounts of data.  

A key constraint of edge cloud settings, in 

particular in the vicinity of sensors in the IoT and 

cyber-physical systems (CPS) space are resource 

constraints in terms of computing power, storage 

capability, reliable connectivity or power supply.  

We address this constrained environment by 

focusing on small single board computers as the 

deployment platform of the container solution 

(Abrahamsson et al., 2013). We specifically focus on 

clusters of Raspberry Pi devices, see 

(https://www.raspberrypi.org/). Local cluster 

management is important to manage for example a 

number of locally distributed sensors.  

We show that edge cloud requirements such as 

cost-efficiency, low power consumption, and 

robustness can be met by implementing container and 

cluster technology on single-board devices like 

Raspberry Pis (Miori, 2014; Sanin, 2016; von Leon, 

2016). This architecture can facilitate applications 

through distributed multi-cloud platforms built from 

a range of nodes from data centres to small devices, 

which we refer to here as edge cloud. Other 

architectural options are less suitable. 
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Figure 1: Edge Cloud Architecture.

Our objective here is to discuss three different 

architectural scenarios in terms of their 

implementation and experimental evaluation results, 

covering installation, power consumption, cost and 

performance concerns. 

Our contribution will be organised as follows. We 

determine requirements and review technologies and 

architectures for edge cloud computing. We discuss 

the key ingredients of edge cloud architectures based 

on containers as the packaging and distribution 

mechanism. We specifically discuss storage, 

orchestration and cluster management for distributed 

Raspberry Pi clusters in edge cloud environments. 

We report on experimental results with Raspberry Pi 

clusters to validate the proposed architectural 

solution. The settings included are: 

 Own-build storage and cluster orchestration 

 Openstack storage 

 Docker container orchestration 

 IoT/sensor integration 

We pay particular attention to practical concerns 

such as installation and management efforts, since 

RPi edge clusters are meant to be run in remote areas 

without expert support. 

2 DETERMINATION OF 

REQUIREMENTS 

We determine requirements and review technologies 

and architectures for edge cloud computing. 

2.1 Edge Cloud Architectures 

Edge computing mechanisms are needed for both 

computation and storage to address data collection, its 

pre-processing and further distribution. These edge 

resources could be dedicated (possibly smaller) 

resources spread across distributed networks. In order 

to support edge cloud architectures, we need the 

following features: 

 location-awareness and computation placement, 

 management services for data storage, 

replication, recovery.  

Virtualised resources can support edge cloud 

architectures (Manzalini, 2014). Due to smaller 

device sizes, this can result in different resource 

restrictions, which in turn requires some form of 

lightweightness of the virtualisation technique (Zhu, 

2013). In edge cloud architectures with integrated IoT 

objects, we need compute and storage resources used 

by applications and managed by platform services, 

i.e., packaged, deployed and orchestrated (Figure 1). 

Even for the network, virtualisation capacity is 

required as well (cf., recent work on software-defined 

networks (SDNs).  Thus, we need to support data 

transfer between virtualised resources and to provide 

compute, storage, and network resources between end 

devices and traditional data centres. 

Concrete requirements arising are location 

awareness, low latency and software mobility support 

to manage cloud end points with rich (virtualised) 

services. This type of virtualised infrastructure might 

provide end-user access and IoT links - through 

possibly private, edge clouds. These are technically 

micro-clouds, providing different services, but on a 

small scale (Helmer et al., 2016). 

These need to be configured and updated - this 

particularly applies to service management. We also 

need a development layer to provision and manage 

applications on these infrastructures. Solutions here 

could comprise common topology patterns, 

controlling application lifecycles, and an easy-to-use 

API. We need to find the right abstraction level for 

edge cloud management at a typical PaaS layer. 
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2.2 A Use Case 

We motivate our approach with a use case taken from 

our local region: modern ski resorts operate extensive 

IoT-cloud infrastructures. Sensors gather a variety of 

data: 

 weather: air temperature/humidity, sun intensity 

 snow: quality (snow humidity, temperature) 

 people: location and numbers 

With the combination of these data sources, two 

sample functions can be enabled: 

 People management: through mobile phone 

apps, skiers can get recommendations regarding 

snow quality and possible overcrowding at lifts 

and on slopes. A mobile phone app can use the 

cloud as an intermediary to receive data from, but 

the performance of the architecture would benefit 

from data pre-processing at sensor location to 

reduce the data traffic into the cloud. 

 Snow management: snow groomers (snow cats) 

are heavy-duty vehicles that rely on sensor data 

(ranging from tilt sensors in the vehicle and GPS 

location all the way to snow properties) to 

provide an economic solution in terms of time 

needed for the preparation of slopes, while at the 

same time allowing a near-optimal distribution of 

snow. This is a real-time system where cloud-

based computation is not feasible (due to 

unavailability of suitable connectivity) and thus 

local processing of data is required for all data 

collection, analysis and reaction. 

As we can see, performance of the architecture is 

a critical concern (Heinrich et al., 2017; Pahl et al., 

2018) that can be alleviated by more local 

computation, avoiding high volumes of data to be 

transferred into centralised clouds. Local processing 

of data, particularly for the snow management where 

data sources and actions resulting through the snow 

groomers happen in the same place, is beneficial, but 

needs to be facilitated through robust technologies 

that can operate in remote areas under difficult 

environmental conditions.  

Clusters of single-board computers such as 

Raspberry Pis are a suitable, robust technology. The 

architecture is dynamic as only necessary 

components (containers) should remain on local 

devices. For instance, a sensor responsible for people 

management during daytime could support snow 

management during the night. 

Furthermore, the solution would benefit from 

flexible platform management with different platform 

and application services deployed at different times in 

different locations. Containers can help here, but need 

to be supported by advanced orchestration support. 

 To illustrate this, two orchestration patterns emerge: 

 data pre-processing for people management: 

reducing data volume in transfer to the cloud is 

the aim. Analytics services packaged as 

containers that filter and aggregate data need to 

be deployed on selected edge nodes.  

 fully localised processing in clusters (organised 

around individual slopes with their profile): full 

computation on board and locally between snow 

groomers is required, facilitated by the 

deployment of analysis, but also decision making 

and actuation features, all as containers. 

2.3 Edge Cloud Architectures 

We discuss the key ingredients of an edge cloud 

architecture based on containers as the packaging and 

distribution mechanism. A number of concerns needs 

to be addressed: 

 Application construction 

 Application orchestration 

 Resource scheduling 

 Distributed systems services 

 Programming model 

 (Edge) cloud-native architecture 

This requires a combination of lightweight 

technology platforms – single-board devices as 

lightweight hardware combined with containers as a 

lightweight software platform. Container 

technologies can take care of the application 

management based on constrained resources in a 

distributed, clustered edge computing context. 

3 LIGHTWEIGHT EDGE CLOUD 

CLUSTERS 

3.1 Raspberry Pi Clusters 

We specifically discuss orchestration for distributed 

Raspberry Pi clusters in edge cloud environments. 

We were inspired to implement our edge cloud 

architecture on Raspberry Pi clusters by previous 

work showing that clusters consisting of 300 or more 

RPis can be built (Abrahamsson et al., 2013). These 

small single-board computers create both 

opportunities and challenges. A Raspberry Pi (RPi) is 

relatively cheap (they cost around 30$) and has a low 

power consumption, which makes it possible to create 

an affordable and energy-efficient cluster suitable for 

demanding environments for which high-tech 

installations are not feasible. Since a single RPi lacks 

computing power, in general we cannot run computa- 
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Figure 2: Simplified Container Orchestration Plan for the Case Study. 

tionally intensive software on it. Nevertheless, this 

drawback can be remedied (to a certain degree) by 

combining a larger number into a cluster. This also 

allows the creation of differently configured and 

customised, and at the same time robust, platforms. 

Creating and managing clusters are typical PaaS 

functions, including setting up and configuring 

hardware and system software, or to monitoring and 

maintaining the system. Raspberry Pis can also be 

used to host containers. 

3.2 Containerisation 

We review an own-build and an OpenStack-based 

solution and consider containers in a third 

architectural option. As they are the most recent 

technology, we introduce the basics here. 

Containerisation allows a lightweight 

virtualisation through the bespoke construction of 

containers as application packages from individual 

images (generally retrieved from an image 

repository). This addresses performance and 

portability weaknesses of current cloud solutions. 

Given the overall importance of the cloud, a 

consolidating view on current activities is important. 

Many container solutions build on top of Linux LXC 

techniques. Recent Linux distributions - part of the 

Linux container project LXC - provide kernel 

mechanisms such as namespaces and cgroups to 

isolate processes on a shared operating system. 

Docker is the most popular container solution at the 

moment.  

Container orchestration deals not only with 

turning applications on or off (i.e., start or stop 

containers), but also to move them around between 

servers. We define orchestration as constructing and 

managing a possibly distributed assembly of 

container-based software applications. Container 

orchestration allows users to define how to coordinate 

the containers in the cloud when the multi-container 

packaged application is deployed. Container 

orchestration defines not only the initial deployment 

of the containers, but also the management of the 

multi-containers as a single entity, such as 

availability, scaling and networking of the containers. 

Essentially cloud-based container construction is a 

form of orchestration within the distributed cloud 

environment. 

The orchestration management provided by 

cluster solutions needs to be combined with 

development and architecture support. 

Multi-PaaS based on container clusters is a 

solution for managing distributed software 

applications in the cloud, but this technology still 

faces challenges. These include a lack of suitable 

formal descriptions or user-defined metadata for 

containers beyond image tagging with simple IDs. 

Description mechanisms need to be extended to 

clusters of containers and their orchestration as well 

(Andrikopoulos, 2014). The topology of distributed 

container architectures needs to be specified and its 

deployment and execution orchestrated. 

There is no widely accepted solution for the 

orchestration problems. We can illustrate the 

significance of this problem through a possible 

reference framework. Docker has started to develop 

its own orchestration solution (Swarm) and 

Kubernetes is another relevant project, but a more 
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comprehensive solution that would address the 

orchestration of complex application stacks could 

involve Docker orchestration based on the topology-

based service orchestration standard TOSCA, which 

is for instance supported by the Cloudify PaaS.  

Figure 2 shows an orchestration plan for the case 

study. For a container host, it selects either the people 

management or the snow management as the required 

RPi configuration. For the people management 

architecture, it allows an upgrade to more local 

processing including analysis and local storage. The 

orchestration engine will actually take care of the 

deployment of the containers in the right order when 

needed. 

3.3 Network and Data Management 
Challenges 

Clustered containers in distributed systems require 

advanced network support. Traditionally, containers 

are exposed on the network via the shared host’s 

address. In Kubernetes, each group of containers 

(called pods) receives its own unique IP address, 

reachable from any other pod in the cluster, whether 

co-located on the same physical machine or not. This 

requires advanced routing features based on network 

virtualisation. 

Distributed container management also needs to 

address data storage besides network concerns. 

Managing containers in Kubernetes clusters can 

cause flexibility and efficiency problems because of 

the need for the Kubernetes pods to co-locate with 

their data. What is needed is a combination of a 

container with a storage volume that follows it to the 

physical machine, regardless of the container location 

in the cluster. 

4 ARCHITECTURES AND 

EXPERIMENTATION 

We report on experimental results with Raspberry Pi 

clusters to validate the proposed architectural 

solution. We look at the following settings: (i) own-

build storage and cluster orchestration in Section 4.1, 

(ii) OpenStack storage in Section 4.2, (iii) Docker 

container orchestration in Section 4.3, and (iv) 

IoT/sensor integration in Section 4.4. For each, we 

describe the architecture and its evaluation through 

experiments. The criteria for the evaluation of the 

architecture are the following four: installation and 

management effort, power consumption, 

performance, cost. 

These address the general suitability of the 

proposed architectures in terms of performance, but 

also take specifically practical concerns such as 

physical maintenance, power and cost into account. 

4.1 Own-Build Cluster Storage and 
Orchestration 

4.1.1 Storage and Orchestration 
Architecture 

Our Raspberry Pi 1 (RPi 1) cluster can be configured 

with up to 300 nodes. The core of an RPi 1 is a single 

board with an integrated circuit with an ARM 700 

MHz processor (CPU), a Broadcom VideoCore 

graphics processor (GPU) and 256 or 512 MB of 

RAM. There is also an SD card slot for storage and 

I/O units for USB, Ethernet, audio, video and HDMI. 

Power is provided via a micro-USB connector. As 

operating system, Raspbian is a version of the widely 

used Linux distribution Debian, which is optimised 

for the ARMv6 instruction set. 

Our cluster uses a star network topology. One 

switch acts as the core of the star and other switches 

then link the core to the RPIs. A master node and an 

uplink to the internet are connected to the core switch 

for connectivity reasons. 

We use a Debian 7 image to support core 

middleware services such as storage and cluster 

management. (Abrahamsson et al., 2013) have 

investigated basic storage and cluster management 

for an RPi cluster management solution.  

In addition to deploying existing tools such as 

Swarm or Kubernetes, we also built our own 

dedicated tool for low-level configuration, 

monitoring, and maintenance of the cluster as an 

architectural option. This for instance provides 

flexibility for monitoring the joining and leaving of 

nodes to and from the cluster that we expect for 

dynamic edge cloud environments. The master 

handles (de)registration here. 

4.1.2 Use Case and Experimentation 

The suitability of an RPi for a standard application 

(responding to HTTP requests) was investigated. The 

total size of a sample file was 64.9 KB. An RPi 

(model B) was compared to a 1.2 GHz Marvell 

Kirkwood, a 1 GHz MK802, a 1.6 GHz Intel Atom 

330, and a 2.6 GHz dual core G620 Pentium. All 

tested systems had a wired 1 GB Ethernet connection 

(which the Raspberry, having a 10/100 Mbit Ethernet 

card, could not utilize fully). ApachBench2 was used 

as the benchmark. The test involved a 1000 requests  
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Table 1: Speed and Power Consumption of the Raspberry 

Pi cluster, from  R. van der Hoeven, “Raspberry Pi 

Performance", [Online Resource; accessed on 19th 

December 2017] Available at http://freedomboxblog.nl/ 

raspberry-pi-performance/. 

Device Page/Sec Power 

RPi 17 3W 

Kirkwood 25 13W 

MK802 39 4W 

Atom 330 174 35W 

G620 805 45W 

 with 10 running concurrently. The following 

page/sec and power consumptions were measured, 

see Table 1 for details. 

This has demonstrated the suitability of RPis for 

sensor integration and data processing in an 

environment subject to power supply problems, but 

where robustness is required. 

4.2 Openstack Storage 

4.2.1 Storage Management Architecture 

(Miori, 2014) has investigated Openstack Swift as a 

distributed storage device that we ported onto RPis. 

This extends our earlier self-built storage approach by 

adopting an open-source solution. 

Storage needs to be distributed over a whole 

cluster in our application context. Using a network 

storage system helps to improve the performance in a 

common filesystem for the cluster. We used here a 

four-bay Network Attached Storage (NAS) from 

QNAP Systems. However, we have also 

demonstrated that more resource-demanding 

Openstack Swift is a feasible option. 

The Swift cluster provides a mechanism for 

storing objects such as application data as well as 

system data. Data is replicated and distributed among 

different nodes. We evaluated different topologies 

and configurations. This again demonstrates 

feasibility, but performance remains a key concern 

and further optimisation work is required.  

4.2.2 Use Case and Experimentation 

We have run several benchmarks (Miori, 2014) based 

on the Yahoo! Cloud Serving Benchmark (YCSB) 

and the SwiftStack Benchmark (ssbench). For single 

node installations, these show that a severe bottleneck 

emerges around data uploads. A single server cannot 

handle the traffic. Basically the server is so 

overloaded that either the cache (memcached) stops 

working or the container server stops working.  

A slightly different picture emerges for clustered  

file storage. A real-world case study has been carried 

out using the ownCloud cloud storage system. We 

have installed a middleware layer on a Raspberry 

cluster that has been configured and benchmarked. 

Nonetheless, we could demonstrate the utility of it by 

running an application on top (ownCloud) enabling 

the cluster to provide a cloud storage service to the 

user. Performances are acceptable, yet further 

optimizations can be achieved.  

We use a FUSE (filesystem-in-userspace) module 

called cloudfuse that is able to connect to a Swift 

cluster and display its content, as if it were a 

traditional directory-based filesystem. Each 

ownCloud instance has access to the Swift cluster via 

cloudfuse. OwnCloud is working well. The only 

limitations arise from cloudfuse. It is not possible to 

rename folders and it is not always fast. A direct 

implementation or improvement of the built-in Swift 

support is preferable. The application GUI itself loads 

quite fast, file listing takes a bit more time. 

Swift is a scalable application: the addition of 

more Raspberry Pi predictably results in better 

performances. We cannot say yet if the trend is linear 

or not, thus further scaling up is needed (Jamshidi et 

al., 2016; Arabnejad et al., 2017). 

The cluster costs are acceptable, see Table 2, in 

particular in comparison with modern gateway 

services such as the Dell Gateway 5000 series, which 

would cost a multiple including all hardware. 

Table 2: Approximate costs of the Raspberry Pi cluster. 

Component Price Units Total 

Raspberry Pi 35 € 7 245 € 

PoE module 45 € 7 315 € 

Cat.5e SFTP Cable 3 € 7 21 € 

Aruba 2530 8 PoE+ 320 € 1 320 € 

Total   901 € 

The PoE (Power over Ethernet) add-on boards and 

PoE managed switches we used are not essential to 

the project and could easily be replaced by a cheaper 

solution that involves a separate power supply unit 

and a simple unmanaged switch without having a 

negative impact on the system's performance. 

4.3 Docker Orchestration 

Docker and Kubernetes have been put on Raspberry 

Pis successfully (Tso, 2013), demonstrating the 

feasibility of running container clusters on RPis. We 

focus here on the edge cloud requirements. Our work 

specifically explores key features for a (middleware) 

platform for the edge cloud. 

Fig. 3 describes the complete orchestration flow. 
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Figure 3: Overall Orchestration Flow. 

It starts with the construction of the container from 

individual images from a container hub (an open 

repository of images). Different containers for 

specific processing needs are assembled into an 

orchestration plan. The plan is then enacted on the 

defined edge cloud topology. 

The platform work described above has 

implemented core elements of a PaaS-oriented 

middleware platform. We have demonstrated that an 

edge cloud PaaS is feasible. We dedicate more space 

to containerisation as it overcomes some of the 

problems of the earlier two solutions. 

4.3.1 Docker Orchestration Architecture 

The RPi as an intermediate layer for local data 

processing is a feasible, cost-effective solution. A 

possible solution for an edge cloud architecture is to 

build a reliable, low-energy, low-cost computing 

device that is powerful enough to perform data-

intense tasks.  

Implementation – Hardware and Operating System 

The test configuration we used is composed of 

seven Raspberry Pis that are connected to a switch 

with cables that aside from carrying the signals are 

also responsible for delivering the power to the 

devices. Each unit needs to be fitted with an 

additional PoE module. This add-on board is 

connected to the Raspberry Pi. It also replicates the 

GPIO interface, allowing further modules to be con-

nected. A connection to a LAN or WAN is estab-

lished by connecting the switch through a remaining 

Ethernet port. The switch can be configured to con-

nect to an existing DHCP (dynamic host configure-

tion protocol) server which is responsible for dis-

tributing the network configuration parameters such 

as the IP (internet protocol) addresses. Alternatively 

it can create subnets via VLANs (virtual LANs). 

Hypriot OS, a dedicated distribution of Debian, is 

the operating system. The distribution already 

contains Docker software. Note, that we replaced the 

default insecure authentication by a public-key au-

thentication during the cluster setup process. This 

eliminates the need for a password-based authentica-

tion, the SSH daemon on the remote machine is con-

figured to accept only public-key authentication, cre-

ating a more secure environment. 

Swarm Cluster Architecture and Security 

One node is selected to become the user's gateway 

into the cluster. The cluster is set up by creating 

Docker Machines on the gateway node and 

configuring both the OS and the Docker daemon on 

all Raspberry Pis that will be part of the cluster. 

Docker Machines allow the management of remote 

hosts by sending the commands from the Docker 

client over a secured connection to the Docker 

daemon on the remote machine. When the first 

Docker Machine is created, new TLS certificates are 

generated on the local machine and then copied over 

to the remote machines in order to create a trusted 

network.  

While normal nodes run just one container that 

identifies them as a Swarm node, Swarm Managers 

deploy an additional container that provides the 

managerial interface. In addition, Swarm Managers 

can be configured in a redundant manner that 

improves the fault tolerance in case of a partial 

breakdown. In such a constellation, the Swarm 

Managers run as replicas. Furthermore, the Swarm 

Managers share their knowledge about the Swarm, 

and commands sent to a non-leading manager are 

propagated to the one in charge. This behaviour 

avoids inconsistencies in the Swarm that could lead 

to potential misbehaviour due to inconsistent data. 
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Service Discovery 

Multi-host networks such as a Docker Swarm 

require a key-value store that holds information about 

the network state, including discovery, networks, 

endpoints and IP addresses. When deploying the 

Swarm image, the information about the service itself 

and how it can be reached needs to be provided. As a 

key-value store, we chose Consul. Consul does not 

require a continuous internet connection and allows 

redundant Swarm Managers, which is why it is 

ultimately selected. Additionally, it supports replicas 

of its own, increasing the fault tolerance on the 

discovery service side. Also Consul elects a leader 

amongst the instances that are part of the cluster, and 

propagates its information to every Consul node.  

Swarm Handling 

After the Docker Machines are set up 

successfully, the Swarm nodes communicate their 

presence to the Consul server, as well as the Swarm 

manager. The users are able to interact with the 

Swarm manager and also with each Docker Machine 

separately. This is done by requesting Docker-

specific environment variables from the Docker 

Machine. When the shell is set up accordingly, the 

Docker client tunnels into the manager and executes 

the commands there. This way it is possible for the 

users to retrieve Swarm related information and 

perform Swarm related tasks such as launching a new 

container. The manager will consider each node of the 

Swarm and deploy it according to given constraints 

and to the selected Swarm strategy. 

4.3.2 Docker Experimentation 

The evaluation of the project focuses on the 

complexity to build and handle it and its costs, before 

concentrating on the performance and power 

consumption (von Leon, 2016). 

Installation Effort / Costs. Assembling the hardware 

for the Raspberry Pi cluster does not require special 

tools or profound skills. This makes the architecture 

suitable to be installed in remote areas without expert 

support. Once running, handling the cluster is 

straightforward. Interacting with it is not different 

from handling a single Docker installation. The only 

aspect that has to be kept in mind is that ARM 

software and images are not always available for, so 

they might have to be created on purpose. 

Performance & Power consumption. To evaluate the 

performance, we performed a stress test on the swarm 

manager by deploying many containers of a certain 

image over a short period of time, looking at the time 

to deploy the images as well as the launch time for 

containers. The test configuration deploys 250 

containers on the Swarm with 5 requests at a time. To 

determine the efficiency of the Raspberry Pi cluster 

both the time to execute the analysis and the power 

consumption are measured and put into perspective 

with a Virtual Machine Cluster on a desktop 

computer and a Single Raspberry Pi. The desktop 

computer is a 64bit Intel Core 2 Quad Q9550 

@2.83GHz Windows 10 machine with 8GB Ram and 

a 256GB SSD.  

Table 3: Time comparison - listing the overall, the mean 

and the maximal time of container. 

 Launching Idle Load 

Raspberry Pi cluster 228s 2137ms 9256ms 

Single Raspberry Pi 

node 
510s 5025ms 14115ms 

Virtual Machine 

Cluster 
49s 472ms 1553ms 

Single Virtual 

Machine Node 
125s 1238ms 3568ms 

Table 4: Comparison of the power consumption while 

idling and under load. 

 Idle Load 

Raspberry Pi cluster 22.5W 25-26W 

Single Raspberry Pi node 2.4W 2.8W 

Virtual Machine Cluster 85-90W 128-132W 

Single Virtual Machine Node 85-90W 110-114W 

Table 5: Power consumption of the Raspberry Pi cluster 

while idling and under load. 

 Idle Load 

Single node 2.4W 2.7W 

All nodes 16W 17-18W 

Switch 5W 8W 

Complete system 22.5W 25-26W 

In comparison, we can note a lack of performance 

for the Raspberry Pi cluster that is due to its limited 

single board architecture. The I/O of the micro SD 

card slot is relatively slow in terms of reading and 

writing, with maximally 22MB/s and 20MB/s, 

respectively. On the other hand, the network 

connectivity is only provided by 10/100Mbit/s 

Ethernet. Furthermore, with 26W (2.8W per unit) 

under load, the modest power consumption of the 

Raspberry Pi cluster puts its moderate performance 

into perspective and gives reason to assume the 

suitability of such systems in robustness requiring 

edge computing settings. 
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4.4 IoT Integration 

We also need to evaluate the suitability of the 

proposed platform for IoT applications. For this, we 

chose a health care application using sensor 

integration: in the health care domain, we worked 

with health status sensing devices that were integrated 

using a Raspberry Pi device (Sanin, 2016).  

A specific focus of this investigation has been on 

power management. While protocols have emerged 

that help to bridge between the sensor world and 

Internet-enabled technologies such as MQTT, this 

experimental work has also shown the need for 

dedicated power management to prevent overheating 

and reduce consumption. 

5 DISCUSSION – TOWARDS AN 

EDGE CLOUD PaaS 

Some PaaS have started to address limitations in the 

context of programming (such as orchestration) and 

DevOps for clusters. The examples used above allow 

some observations.  

 Containers are largely adopted for PaaS clouds.  

 Standardisation by adopting emerging de-facto 

standards like Docker or Kubernetes is also 

happening, though currently at a slower pace.  

 Development and operations are still at an early 

stage, particularly if complex orchestrations on 

distributed topologies are in question. 

We have shown the need for an Edge Cloud PaaS, 

and have implemented, experimented with and 

evaluated some core ingredients of these Edge Cloud 

PaaS, showing that containers are the most viable 

options over for instance an OpenStack attempt. 

We can observe that cloud management platforms 

are still at an earlier stage than the container platforms 

that they build on. While clusters in general are about 

distribution, the question emerges as to which extent 

this distribution reaches the edge of the cloud with 

small devices and embedded systems. Whether 

devices running small Linux distributions such as the 

Debian-based DSL (which requires around 50MB 

storage) can support container host and cluster 

management is a sample question. Recent 3rd-

generation PaaS are equally lightweight and aim to 

support the build-your-own-PaaS idea that is a first 

step. Edge Cloud PaaS then form the fourth 

generation bridging between IoT and Cloud 

technology. 

An important concern for edge architectures is 

security. We have discussed some ID management 

concerns. IoT networks are distributed environments, 

in which trust between sensor owners and network 

and device providers does not necessarily exist. In 

order to support important orchestration activities 

from a security perspective, we want to record the 

provenance of sensor data or the fact that certain 

processing and interaction steps have actually been 

carried out (Gacitua and Pahl, 2017; Pahl, 2002; 

Gruhn et al., 1995). Blockchain technology is a 

solution for this in an untrusted environment. Many 

security related problems can be addressed using the 

decentralized, autonomous, and trusted capabilities of 

blockchain. Blockchain provides inherent security 

mechanisms capable of operating in an unreliable 

network, without relying on a central authority. 

Blockchain is a tamper proofed, distributed and 

shared database where all participants can append and 

read transactions but no one has full control over it. 

Every added transaction is digitally signed and 

timestamped, this means that all operations can be 

traced back, and their provenance can be determined 

(Dorri et al., 2017). The security model implemented 

by blockchain insures data integrity using consensus-

driven mechanisms to enable the verification of all 

the transactions in the network, which makes all 

records easily auditable. This is particularly important 

since it allows tracking all sources of insecure 

transactions in the network (e.g., vulnerable IoT 

devices) (Nir, 2017). Additionally, blockchain can 

strengthen the security of edge components in terms 

of the identity management and access control and 

prevent data manipulation. 

6 RELATED WORK 

Container-based operating systems virtualisation has 

been demonstrated to be a viable option to 

hypervisors (Soltesz, 2007). This is a benefit for 

smaller devices due to their reduced sizes (Pahl et al., 

2017). 

For clusters of smaller devices, be that in 

constrained or mobile environments, the functional 

scope of a middleware layer needs to be suitably 

adapted (Qanbari et al., 2014). There is a need to 

provide robustness through mechanisms that deal 

with failure of connections and nodes. Flexible 

orchestration and load balancing are such functions. 

Also, security in the form of identity management is 

in unsecured environments a must. While we have 

added some security discussion in Section 5, further 

security related concerns such as data provenance or 

smart contracts accompanying orchestration 

instructions need to be investigated.  
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De Coninck et al. (2016) also approach the 

problem from a middleware perspective. Dupont et al. 

(2017) look at a specific concern in IoT settings – 

container migration (Jamshidi et al., 2017) to enhance 

the flexibility of the setting. 

Bellavista and Zanni (2017) investigate, as we do, 

infrastructure based on Raspberry Pis to host Docker 

container. Their work also confirms the suitability of 

single-board devices. Work at the University of 

Glasgow (Tso et al., 2013) also explores Raspberry 

Pis for edge cloud computing. Their work involves 

lessons learned from practical applications of RPis in 

real-world settings. We have added in the solution 

presented here a comparative evaluation of different 

cluster-based architectures to their observations. 

7 CONCLUSIONS 

Edge clouds move the focus from heavy-weight data 

centre clouds to more lightweight resources, 

distributed to bring specific services to the users. 

They do, however, create a number of challenges. We 

have identified lightweight virtualisation and the need 

to orchestrate the deployment of these services as key 

challenges. We looked at platform (PaaS) specifically 

as the application service packaging and orchestration 

is a key PaaS concern (through of course not limited 

to PaaS). 

Our aim was to compare recently emerging 

container technology and container cluster 

management and other architectural options such as 

OpenStack or bespoke solutions to determine the 

suitability of these approaches for edge clouds built 

on single-board affordable device clusters. Our 

observations support the current trend in container 

technology, but have also identified some limitations 

and aspects that need further investigation. 

Container technology has a better potential than 

the other options to substantially advance PaaS 

technology towards distributed heterogeneous clouds 

through lightweightness and interoperability on, for 

instance, Raspberry Pis.  

We can also conclude that significant 

improvements are still required to deal with data and 

network management aspects, as is providing an 

abstract development and architecture layer. 

Orchestration, as far as it is supported in cluster 

solutions, is ultimately not sufficient and needs to be 

extended to include better analysis and decision 

support (Fang et al., 2016). Suitable architecture that 

include coordination and brokerage options shall be 

considered (Fowley et al., 2016).  

More work is also needed on improved 

performance management (Heinrich et al., 2017) and 

the adoption of microservices as an architectural 

principle (Pahl et al., 2016). Another concern that 

needs more attention is security. We are planning to 

use blockchain technology for provenance 

management. 
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