
A Performance Exploration of Architectural Options for a

Middleware for Decentralised Lightweight Edge Cloud Architectures

David von Leon, Lorenzo Miori, Julian Sanin, Nabil El Ioini, Sven Helmer and Claus Pahl
Free University of Bozen-Bolzano, 39100 Bolzano, Italy

Keywords: Internet-of-Things, Edge Cloud, Container, Middleware, Orchestration, Single-board Computer.

Abstract: The integration of Cloud and IoT (Internet-of-Things) resulting in so-called edge clouds has started. This

requires the combination of data centre management technologies with much more constrained devices.

Lightweight virtualisation solutions such as containerisation can be used to distribute, deploy and manage

edge cloud applications on clusters. Leightweightness also applies to the devices, where we focus here on

small-board devices such as Raspberry Pis in our concrete case. These small-board devices are particularly

useful in situations where a mix of robustness due to environmental conditions and low costs is required. We

discuss different architectural solutions for the distribution of computation to edge cloud devices based on

containers and other management approaches and evaluate these in terms of cost, power consumption and

performance.

1 INTRODUCTION

Cloud technology is moving towards multi-cloud

environments with the inclusion of various devices

and sensors. Cloud and IoT integration resulting in

so-called edge cloud and fog computing has started

(Chandra et al., 2013). This requires the combination

of data centre management technologies with much

more constrained devices, but still using virtualised

solutions to deal with scalability, flexibility and

multi-tenancy concerns.

Lightweight virtualisation solutions do exist for

this architectural setting with smaller, but still

virtualised devices to provide application and

platform technology as services. Containerisation is a

solution component for lightweight virtualisation

(Pahl, 2015). Containers furthermore address

platform concerns relevant for Platform-as-a-Service

(PaaS) clouds like application packaging and

orchestration.

We will compare a container middleware platform

for edge cloud computing with other platforms (own-

build or OpenStack based) that all use small-board

devices for low-cost, robust settings.

We will discuss these architectural options for

edge cloud middleware. For edge clouds, application

and service orchestration can help to manage and

orches-trate applications through containers (Pahl &

Lee, 2015; Pahl et al., 2016). In this way, computation

can be brought to the edge of the cloud, rather than

data from the Internet-of-Things (IoT) to the cloud

(Kratzke, 2014), thus increasing performance and

security by not transferring large amounts of data.

A key constraint of edge cloud settings, in

particular in the vicinity of sensors in the IoT and

cyber-physical systems (CPS) space are resource

constraints in terms of computing power, storage

capability, reliable connectivity or power supply.

We address this constrained environment by

focusing on small single board computers as the

deployment platform of the container solution

(Abrahamsson et al., 2013). We specifically focus on

clusters of Raspberry Pi devices, see

(https://www.raspberrypi.org/). Local cluster

management is important to manage for example a

number of locally distributed sensors.

We show that edge cloud requirements such as

cost-efficiency, low power consumption, and

robustness can be met by implementing container and

cluster technology on single-board devices like

Raspberry Pis (Miori, 2014; Sanin, 2016; von Leon,

2016). This architecture can facilitate applications

through distributed multi-cloud platforms built from

a range of nodes from data centres to small devices,

which we refer to here as edge cloud. Other

architectural options are less suitable.

von Leon, D., Miori, L., Sanin, J., El Ioini, N., Helmer, S. and Pahl, C.
A Performance Exploration of Architectural Options for a Middleware for Decentralised Lightweight Edge Cloud Architectures.
DOI: 10.5220/0006677400730084
In Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security (IoTBDS 2018), pages 73-84
ISBN: 978-989-758-296-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

73

Figure 1: Edge Cloud Architecture.

Our objective here is to discuss three different

architectural scenarios in terms of their

implementation and experimental evaluation results,

covering installation, power consumption, cost and

performance concerns.

Our contribution will be organised as follows. We

determine requirements and review technologies and

architectures for edge cloud computing. We discuss

the key ingredients of edge cloud architectures based

on containers as the packaging and distribution

mechanism. We specifically discuss storage,

orchestration and cluster management for distributed

Raspberry Pi clusters in edge cloud environments.

We report on experimental results with Raspberry Pi

clusters to validate the proposed architectural

solution. The settings included are:

 Own-build storage and cluster orchestration

 Openstack storage

 Docker container orchestration

 IoT/sensor integration

We pay particular attention to practical concerns

such as installation and management efforts, since

RPi edge clusters are meant to be run in remote areas

without expert support.

2 DETERMINATION OF

REQUIREMENTS

We determine requirements and review technologies

and architectures for edge cloud computing.

2.1 Edge Cloud Architectures

Edge computing mechanisms are needed for both

computation and storage to address data collection, its

pre-processing and further distribution. These edge

resources could be dedicated (possibly smaller)

resources spread across distributed networks. In order

to support edge cloud architectures, we need the

following features:

 location-awareness and computation placement,

 management services for data storage,

replication, recovery.

Virtualised resources can support edge cloud

architectures (Manzalini, 2014). Due to smaller

device sizes, this can result in different resource

restrictions, which in turn requires some form of

lightweightness of the virtualisation technique (Zhu,

2013). In edge cloud architectures with integrated IoT

objects, we need compute and storage resources used

by applications and managed by platform services,

i.e., packaged, deployed and orchestrated (Figure 1).

Even for the network, virtualisation capacity is

required as well (cf., recent work on software-defined

networks (SDNs). Thus, we need to support data

transfer between virtualised resources and to provide

compute, storage, and network resources between end

devices and traditional data centres.

Concrete requirements arising are location

awareness, low latency and software mobility support

to manage cloud end points with rich (virtualised)

services. This type of virtualised infrastructure might

provide end-user access and IoT links - through

possibly private, edge clouds. These are technically

micro-clouds, providing different services, but on a

small scale (Helmer et al., 2016).

These need to be configured and updated - this

particularly applies to service management. We also

need a development layer to provision and manage

applications on these infrastructures. Solutions here

could comprise common topology patterns,

controlling application lifecycles, and an easy-to-use

API. We need to find the right abstraction level for

edge cloud management at a typical PaaS layer.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

74

2.2 A Use Case

We motivate our approach with a use case taken from

our local region: modern ski resorts operate extensive

IoT-cloud infrastructures. Sensors gather a variety of

data:

 weather: air temperature/humidity, sun intensity

 snow: quality (snow humidity, temperature)

 people: location and numbers

With the combination of these data sources, two

sample functions can be enabled:

 People management: through mobile phone

apps, skiers can get recommendations regarding

snow quality and possible overcrowding at lifts

and on slopes. A mobile phone app can use the

cloud as an intermediary to receive data from, but

the performance of the architecture would benefit

from data pre-processing at sensor location to

reduce the data traffic into the cloud.

 Snow management: snow groomers (snow cats)

are heavy-duty vehicles that rely on sensor data

(ranging from tilt sensors in the vehicle and GPS

location all the way to snow properties) to

provide an economic solution in terms of time

needed for the preparation of slopes, while at the

same time allowing a near-optimal distribution of

snow. This is a real-time system where cloud-

based computation is not feasible (due to

unavailability of suitable connectivity) and thus

local processing of data is required for all data

collection, analysis and reaction.

As we can see, performance of the architecture is

a critical concern (Heinrich et al., 2017; Pahl et al.,

2018) that can be alleviated by more local

computation, avoiding high volumes of data to be

transferred into centralised clouds. Local processing

of data, particularly for the snow management where

data sources and actions resulting through the snow

groomers happen in the same place, is beneficial, but

needs to be facilitated through robust technologies

that can operate in remote areas under difficult

environmental conditions.

Clusters of single-board computers such as

Raspberry Pis are a suitable, robust technology. The

architecture is dynamic as only necessary

components (containers) should remain on local

devices. For instance, a sensor responsible for people

management during daytime could support snow

management during the night.

Furthermore, the solution would benefit from

flexible platform management with different platform

and application services deployed at different times in

different locations. Containers can help here, but need

to be supported by advanced orchestration support.

 To illustrate this, two orchestration patterns emerge:

 data pre-processing for people management:

reducing data volume in transfer to the cloud is

the aim. Analytics services packaged as

containers that filter and aggregate data need to

be deployed on selected edge nodes.

 fully localised processing in clusters (organised

around individual slopes with their profile): full

computation on board and locally between snow

groomers is required, facilitated by the

deployment of analysis, but also decision making

and actuation features, all as containers.

2.3 Edge Cloud Architectures

We discuss the key ingredients of an edge cloud

architecture based on containers as the packaging and

distribution mechanism. A number of concerns needs

to be addressed:

 Application construction

 Application orchestration

 Resource scheduling

 Distributed systems services

 Programming model

 (Edge) cloud-native architecture

This requires a combination of lightweight

technology platforms – single-board devices as

lightweight hardware combined with containers as a

lightweight software platform. Container

technologies can take care of the application

management based on constrained resources in a

distributed, clustered edge computing context.

3 LIGHTWEIGHT EDGE CLOUD

CLUSTERS

3.1 Raspberry Pi Clusters

We specifically discuss orchestration for distributed

Raspberry Pi clusters in edge cloud environments.

We were inspired to implement our edge cloud

architecture on Raspberry Pi clusters by previous

work showing that clusters consisting of 300 or more

RPis can be built (Abrahamsson et al., 2013). These

small single-board computers create both

opportunities and challenges. A Raspberry Pi (RPi) is

relatively cheap (they cost around 30$) and has a low

power consumption, which makes it possible to create

an affordable and energy-efficient cluster suitable for

demanding environments for which high-tech

installations are not feasible. Since a single RPi lacks

computing power, in general we cannot run computa-

A Performance Exploration of Architectural Options for a Middleware for Decentralised Lightweight Edge Cloud Architectures

75

Figure 2: Simplified Container Orchestration Plan for the Case Study.

tionally intensive software on it. Nevertheless, this

drawback can be remedied (to a certain degree) by

combining a larger number into a cluster. This also

allows the creation of differently configured and

customised, and at the same time robust, platforms.

Creating and managing clusters are typical PaaS

functions, including setting up and configuring

hardware and system software, or to monitoring and

maintaining the system. Raspberry Pis can also be

used to host containers.

3.2 Containerisation

We review an own-build and an OpenStack-based

solution and consider containers in a third

architectural option. As they are the most recent

technology, we introduce the basics here.

Containerisation allows a lightweight

virtualisation through the bespoke construction of

containers as application packages from individual

images (generally retrieved from an image

repository). This addresses performance and

portability weaknesses of current cloud solutions.

Given the overall importance of the cloud, a

consolidating view on current activities is important.

Many container solutions build on top of Linux LXC

techniques. Recent Linux distributions - part of the

Linux container project LXC - provide kernel

mechanisms such as namespaces and cgroups to

isolate processes on a shared operating system.

Docker is the most popular container solution at the

moment.

Container orchestration deals not only with

turning applications on or off (i.e., start or stop

containers), but also to move them around between

servers. We define orchestration as constructing and

managing a possibly distributed assembly of

container-based software applications. Container

orchestration allows users to define how to coordinate

the containers in the cloud when the multi-container

packaged application is deployed. Container

orchestration defines not only the initial deployment

of the containers, but also the management of the

multi-containers as a single entity, such as

availability, scaling and networking of the containers.

Essentially cloud-based container construction is a

form of orchestration within the distributed cloud

environment.

The orchestration management provided by

cluster solutions needs to be combined with

development and architecture support.

Multi-PaaS based on container clusters is a

solution for managing distributed software

applications in the cloud, but this technology still

faces challenges. These include a lack of suitable

formal descriptions or user-defined metadata for

containers beyond image tagging with simple IDs.

Description mechanisms need to be extended to

clusters of containers and their orchestration as well

(Andrikopoulos, 2014). The topology of distributed

container architectures needs to be specified and its

deployment and execution orchestrated.

There is no widely accepted solution for the

orchestration problems. We can illustrate the

significance of this problem through a possible

reference framework. Docker has started to develop

its own orchestration solution (Swarm) and

Kubernetes is another relevant project, but a more

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

76

comprehensive solution that would address the

orchestration of complex application stacks could

involve Docker orchestration based on the topology-

based service orchestration standard TOSCA, which

is for instance supported by the Cloudify PaaS.

Figure 2 shows an orchestration plan for the case

study. For a container host, it selects either the people

management or the snow management as the required

RPi configuration. For the people management

architecture, it allows an upgrade to more local

processing including analysis and local storage. The

orchestration engine will actually take care of the

deployment of the containers in the right order when

needed.

3.3 Network and Data Management
Challenges

Clustered containers in distributed systems require

advanced network support. Traditionally, containers

are exposed on the network via the shared host’s

address. In Kubernetes, each group of containers

(called pods) receives its own unique IP address,

reachable from any other pod in the cluster, whether

co-located on the same physical machine or not. This

requires advanced routing features based on network

virtualisation.

Distributed container management also needs to

address data storage besides network concerns.

Managing containers in Kubernetes clusters can

cause flexibility and efficiency problems because of

the need for the Kubernetes pods to co-locate with

their data. What is needed is a combination of a

container with a storage volume that follows it to the

physical machine, regardless of the container location

in the cluster.

4 ARCHITECTURES AND

EXPERIMENTATION

We report on experimental results with Raspberry Pi

clusters to validate the proposed architectural

solution. We look at the following settings: (i) own-

build storage and cluster orchestration in Section 4.1,

(ii) OpenStack storage in Section 4.2, (iii) Docker

container orchestration in Section 4.3, and (iv)

IoT/sensor integration in Section 4.4. For each, we

describe the architecture and its evaluation through

experiments. The criteria for the evaluation of the

architecture are the following four: installation and

management effort, power consumption,

performance, cost.

These address the general suitability of the

proposed architectures in terms of performance, but

also take specifically practical concerns such as

physical maintenance, power and cost into account.

4.1 Own-Build Cluster Storage and
Orchestration

4.1.1 Storage and Orchestration
Architecture

Our Raspberry Pi 1 (RPi 1) cluster can be configured

with up to 300 nodes. The core of an RPi 1 is a single

board with an integrated circuit with an ARM 700

MHz processor (CPU), a Broadcom VideoCore

graphics processor (GPU) and 256 or 512 MB of

RAM. There is also an SD card slot for storage and

I/O units for USB, Ethernet, audio, video and HDMI.

Power is provided via a micro-USB connector. As

operating system, Raspbian is a version of the widely

used Linux distribution Debian, which is optimised

for the ARMv6 instruction set.

Our cluster uses a star network topology. One

switch acts as the core of the star and other switches

then link the core to the RPIs. A master node and an

uplink to the internet are connected to the core switch

for connectivity reasons.

We use a Debian 7 image to support core

middleware services such as storage and cluster

management. (Abrahamsson et al., 2013) have

investigated basic storage and cluster management

for an RPi cluster management solution.

In addition to deploying existing tools such as

Swarm or Kubernetes, we also built our own

dedicated tool for low-level configuration,

monitoring, and maintenance of the cluster as an

architectural option. This for instance provides

flexibility for monitoring the joining and leaving of

nodes to and from the cluster that we expect for

dynamic edge cloud environments. The master

handles (de)registration here.

4.1.2 Use Case and Experimentation

The suitability of an RPi for a standard application

(responding to HTTP requests) was investigated. The

total size of a sample file was 64.9 KB. An RPi

(model B) was compared to a 1.2 GHz Marvell

Kirkwood, a 1 GHz MK802, a 1.6 GHz Intel Atom

330, and a 2.6 GHz dual core G620 Pentium. All

tested systems had a wired 1 GB Ethernet connection

(which the Raspberry, having a 10/100 Mbit Ethernet

card, could not utilize fully). ApachBench2 was used

as the benchmark. The test involved a 1000 requests

A Performance Exploration of Architectural Options for a Middleware for Decentralised Lightweight Edge Cloud Architectures

77

Table 1: Speed and Power Consumption of the Raspberry

Pi cluster, from R. van der Hoeven, “Raspberry Pi

Performance", [Online Resource; accessed on 19th

December 2017] Available at http://freedomboxblog.nl/

raspberry-pi-performance/.

Device Page/Sec Power

RPi 17 3W

Kirkwood 25 13W

MK802 39 4W

Atom 330 174 35W

G620 805 45W

 with 10 running concurrently. The following

page/sec and power consumptions were measured,

see Table 1 for details.

This has demonstrated the suitability of RPis for

sensor integration and data processing in an

environment subject to power supply problems, but

where robustness is required.

4.2 Openstack Storage

4.2.1 Storage Management Architecture

(Miori, 2014) has investigated Openstack Swift as a

distributed storage device that we ported onto RPis.

This extends our earlier self-built storage approach by

adopting an open-source solution.

Storage needs to be distributed over a whole

cluster in our application context. Using a network

storage system helps to improve the performance in a

common filesystem for the cluster. We used here a

four-bay Network Attached Storage (NAS) from

QNAP Systems. However, we have also

demonstrated that more resource-demanding

Openstack Swift is a feasible option.

The Swift cluster provides a mechanism for

storing objects such as application data as well as

system data. Data is replicated and distributed among

different nodes. We evaluated different topologies

and configurations. This again demonstrates

feasibility, but performance remains a key concern

and further optimisation work is required.

4.2.2 Use Case and Experimentation

We have run several benchmarks (Miori, 2014) based

on the Yahoo! Cloud Serving Benchmark (YCSB)

and the SwiftStack Benchmark (ssbench). For single

node installations, these show that a severe bottleneck

emerges around data uploads. A single server cannot

handle the traffic. Basically the server is so

overloaded that either the cache (memcached) stops

working or the container server stops working.

A slightly different picture emerges for clustered

file storage. A real-world case study has been carried

out using the ownCloud cloud storage system. We

have installed a middleware layer on a Raspberry

cluster that has been configured and benchmarked.

Nonetheless, we could demonstrate the utility of it by

running an application on top (ownCloud) enabling

the cluster to provide a cloud storage service to the

user. Performances are acceptable, yet further

optimizations can be achieved.

We use a FUSE (filesystem-in-userspace) module

called cloudfuse that is able to connect to a Swift

cluster and display its content, as if it were a

traditional directory-based filesystem. Each

ownCloud instance has access to the Swift cluster via

cloudfuse. OwnCloud is working well. The only

limitations arise from cloudfuse. It is not possible to

rename folders and it is not always fast. A direct

implementation or improvement of the built-in Swift

support is preferable. The application GUI itself loads

quite fast, file listing takes a bit more time.

Swift is a scalable application: the addition of

more Raspberry Pi predictably results in better

performances. We cannot say yet if the trend is linear

or not, thus further scaling up is needed (Jamshidi et

al., 2016; Arabnejad et al., 2017).

The cluster costs are acceptable, see Table 2, in

particular in comparison with modern gateway

services such as the Dell Gateway 5000 series, which

would cost a multiple including all hardware.

Table 2: Approximate costs of the Raspberry Pi cluster.

Component Price Units Total

Raspberry Pi 35 € 7 245 €

PoE module 45 € 7 315 €

Cat.5e SFTP Cable 3 € 7 21 €

Aruba 2530 8 PoE+ 320 € 1 320 €

Total 901 €

The PoE (Power over Ethernet) add-on boards and

PoE managed switches we used are not essential to

the project and could easily be replaced by a cheaper

solution that involves a separate power supply unit

and a simple unmanaged switch without having a

negative impact on the system's performance.

4.3 Docker Orchestration

Docker and Kubernetes have been put on Raspberry

Pis successfully (Tso, 2013), demonstrating the

feasibility of running container clusters on RPis. We

focus here on the edge cloud requirements. Our work

specifically explores key features for a (middleware)

platform for the edge cloud.

Fig. 3 describes the complete orchestration flow.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

78

Figure 3: Overall Orchestration Flow.

It starts with the construction of the container from

individual images from a container hub (an open

repository of images). Different containers for

specific processing needs are assembled into an

orchestration plan. The plan is then enacted on the

defined edge cloud topology.

The platform work described above has

implemented core elements of a PaaS-oriented

middleware platform. We have demonstrated that an

edge cloud PaaS is feasible. We dedicate more space

to containerisation as it overcomes some of the

problems of the earlier two solutions.

4.3.1 Docker Orchestration Architecture

The RPi as an intermediate layer for local data

processing is a feasible, cost-effective solution. A

possible solution for an edge cloud architecture is to

build a reliable, low-energy, low-cost computing

device that is powerful enough to perform data-

intense tasks.

Implementation – Hardware and Operating System

The test configuration we used is composed of

seven Raspberry Pis that are connected to a switch

with cables that aside from carrying the signals are

also responsible for delivering the power to the

devices. Each unit needs to be fitted with an

additional PoE module. This add-on board is

connected to the Raspberry Pi. It also replicates the

GPIO interface, allowing further modules to be con-

nected. A connection to a LAN or WAN is estab-

lished by connecting the switch through a remaining

Ethernet port. The switch can be configured to con-

nect to an existing DHCP (dynamic host configure-

tion protocol) server which is responsible for dis-

tributing the network configuration parameters such

as the IP (internet protocol) addresses. Alternatively

it can create subnets via VLANs (virtual LANs).

Hypriot OS, a dedicated distribution of Debian, is

the operating system. The distribution already

contains Docker software. Note, that we replaced the

default insecure authentication by a public-key au-

thentication during the cluster setup process. This

eliminates the need for a password-based authentica-

tion, the SSH daemon on the remote machine is con-

figured to accept only public-key authentication, cre-

ating a more secure environment.

Swarm Cluster Architecture and Security

One node is selected to become the user's gateway

into the cluster. The cluster is set up by creating

Docker Machines on the gateway node and

configuring both the OS and the Docker daemon on

all Raspberry Pis that will be part of the cluster.

Docker Machines allow the management of remote

hosts by sending the commands from the Docker

client over a secured connection to the Docker

daemon on the remote machine. When the first

Docker Machine is created, new TLS certificates are

generated on the local machine and then copied over

to the remote machines in order to create a trusted

network.

While normal nodes run just one container that

identifies them as a Swarm node, Swarm Managers

deploy an additional container that provides the

managerial interface. In addition, Swarm Managers

can be configured in a redundant manner that

improves the fault tolerance in case of a partial

breakdown. In such a constellation, the Swarm

Managers run as replicas. Furthermore, the Swarm

Managers share their knowledge about the Swarm,

and commands sent to a non-leading manager are

propagated to the one in charge. This behaviour

avoids inconsistencies in the Swarm that could lead

to potential misbehaviour due to inconsistent data.

A Performance Exploration of Architectural Options for a Middleware for Decentralised Lightweight Edge Cloud Architectures

79

Service Discovery

Multi-host networks such as a Docker Swarm

require a key-value store that holds information about

the network state, including discovery, networks,

endpoints and IP addresses. When deploying the

Swarm image, the information about the service itself

and how it can be reached needs to be provided. As a

key-value store, we chose Consul. Consul does not

require a continuous internet connection and allows

redundant Swarm Managers, which is why it is

ultimately selected. Additionally, it supports replicas

of its own, increasing the fault tolerance on the

discovery service side. Also Consul elects a leader

amongst the instances that are part of the cluster, and

propagates its information to every Consul node.

Swarm Handling

After the Docker Machines are set up

successfully, the Swarm nodes communicate their

presence to the Consul server, as well as the Swarm

manager. The users are able to interact with the

Swarm manager and also with each Docker Machine

separately. This is done by requesting Docker-

specific environment variables from the Docker

Machine. When the shell is set up accordingly, the

Docker client tunnels into the manager and executes

the commands there. This way it is possible for the

users to retrieve Swarm related information and

perform Swarm related tasks such as launching a new

container. The manager will consider each node of the

Swarm and deploy it according to given constraints

and to the selected Swarm strategy.

4.3.2 Docker Experimentation

The evaluation of the project focuses on the

complexity to build and handle it and its costs, before

concentrating on the performance and power

consumption (von Leon, 2016).

Installation Effort / Costs. Assembling the hardware

for the Raspberry Pi cluster does not require special

tools or profound skills. This makes the architecture

suitable to be installed in remote areas without expert

support. Once running, handling the cluster is

straightforward. Interacting with it is not different

from handling a single Docker installation. The only

aspect that has to be kept in mind is that ARM

software and images are not always available for, so

they might have to be created on purpose.

Performance & Power consumption. To evaluate the

performance, we performed a stress test on the swarm

manager by deploying many containers of a certain

image over a short period of time, looking at the time

to deploy the images as well as the launch time for

containers. The test configuration deploys 250

containers on the Swarm with 5 requests at a time. To

determine the efficiency of the Raspberry Pi cluster

both the time to execute the analysis and the power

consumption are measured and put into perspective

with a Virtual Machine Cluster on a desktop

computer and a Single Raspberry Pi. The desktop

computer is a 64bit Intel Core 2 Quad Q9550

@2.83GHz Windows 10 machine with 8GB Ram and

a 256GB SSD.

Table 3: Time comparison - listing the overall, the mean

and the maximal time of container.

 Launching Idle Load

Raspberry Pi cluster 228s 2137ms 9256ms

Single Raspberry Pi

node
510s 5025ms 14115ms

Virtual Machine

Cluster
49s 472ms 1553ms

Single Virtual

Machine Node
125s 1238ms 3568ms

Table 4: Comparison of the power consumption while

idling and under load.

 Idle Load

Raspberry Pi cluster 22.5W 25-26W

Single Raspberry Pi node 2.4W 2.8W

Virtual Machine Cluster 85-90W 128-132W

Single Virtual Machine Node 85-90W 110-114W

Table 5: Power consumption of the Raspberry Pi cluster

while idling and under load.

 Idle Load

Single node 2.4W 2.7W

All nodes 16W 17-18W

Switch 5W 8W

Complete system 22.5W 25-26W

In comparison, we can note a lack of performance

for the Raspberry Pi cluster that is due to its limited

single board architecture. The I/O of the micro SD

card slot is relatively slow in terms of reading and

writing, with maximally 22MB/s and 20MB/s,

respectively. On the other hand, the network

connectivity is only provided by 10/100Mbit/s

Ethernet. Furthermore, with 26W (2.8W per unit)

under load, the modest power consumption of the

Raspberry Pi cluster puts its moderate performance

into perspective and gives reason to assume the

suitability of such systems in robustness requiring

edge computing settings.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

80

4.4 IoT Integration

We also need to evaluate the suitability of the

proposed platform for IoT applications. For this, we

chose a health care application using sensor

integration: in the health care domain, we worked

with health status sensing devices that were integrated

using a Raspberry Pi device (Sanin, 2016).

A specific focus of this investigation has been on

power management. While protocols have emerged

that help to bridge between the sensor world and

Internet-enabled technologies such as MQTT, this

experimental work has also shown the need for

dedicated power management to prevent overheating

and reduce consumption.

5 DISCUSSION – TOWARDS AN

EDGE CLOUD PaaS

Some PaaS have started to address limitations in the

context of programming (such as orchestration) and

DevOps for clusters. The examples used above allow

some observations.

 Containers are largely adopted for PaaS clouds.

 Standardisation by adopting emerging de-facto

standards like Docker or Kubernetes is also

happening, though currently at a slower pace.

 Development and operations are still at an early

stage, particularly if complex orchestrations on

distributed topologies are in question.

We have shown the need for an Edge Cloud PaaS,

and have implemented, experimented with and

evaluated some core ingredients of these Edge Cloud

PaaS, showing that containers are the most viable

options over for instance an OpenStack attempt.

We can observe that cloud management platforms

are still at an earlier stage than the container platforms

that they build on. While clusters in general are about

distribution, the question emerges as to which extent

this distribution reaches the edge of the cloud with

small devices and embedded systems. Whether

devices running small Linux distributions such as the

Debian-based DSL (which requires around 50MB

storage) can support container host and cluster

management is a sample question. Recent 3rd-

generation PaaS are equally lightweight and aim to

support the build-your-own-PaaS idea that is a first

step. Edge Cloud PaaS then form the fourth

generation bridging between IoT and Cloud

technology.

An important concern for edge architectures is

security. We have discussed some ID management

concerns. IoT networks are distributed environments,

in which trust between sensor owners and network

and device providers does not necessarily exist. In

order to support important orchestration activities

from a security perspective, we want to record the

provenance of sensor data or the fact that certain

processing and interaction steps have actually been

carried out (Gacitua and Pahl, 2017; Pahl, 2002;

Gruhn et al., 1995). Blockchain technology is a

solution for this in an untrusted environment. Many

security related problems can be addressed using the

decentralized, autonomous, and trusted capabilities of

blockchain. Blockchain provides inherent security

mechanisms capable of operating in an unreliable

network, without relying on a central authority.

Blockchain is a tamper proofed, distributed and

shared database where all participants can append and

read transactions but no one has full control over it.

Every added transaction is digitally signed and

timestamped, this means that all operations can be

traced back, and their provenance can be determined

(Dorri et al., 2017). The security model implemented

by blockchain insures data integrity using consensus-

driven mechanisms to enable the verification of all

the transactions in the network, which makes all

records easily auditable. This is particularly important

since it allows tracking all sources of insecure

transactions in the network (e.g., vulnerable IoT

devices) (Nir, 2017). Additionally, blockchain can

strengthen the security of edge components in terms

of the identity management and access control and

prevent data manipulation.

6 RELATED WORK

Container-based operating systems virtualisation has

been demonstrated to be a viable option to

hypervisors (Soltesz, 2007). This is a benefit for

smaller devices due to their reduced sizes (Pahl et al.,

2017).

For clusters of smaller devices, be that in

constrained or mobile environments, the functional

scope of a middleware layer needs to be suitably

adapted (Qanbari et al., 2014). There is a need to

provide robustness through mechanisms that deal

with failure of connections and nodes. Flexible

orchestration and load balancing are such functions.

Also, security in the form of identity management is

in unsecured environments a must. While we have

added some security discussion in Section 5, further

security related concerns such as data provenance or

smart contracts accompanying orchestration

instructions need to be investigated.

A Performance Exploration of Architectural Options for a Middleware for Decentralised Lightweight Edge Cloud Architectures

81

De Coninck et al. (2016) also approach the

problem from a middleware perspective. Dupont et al.

(2017) look at a specific concern in IoT settings –

container migration (Jamshidi et al., 2017) to enhance

the flexibility of the setting.

Bellavista and Zanni (2017) investigate, as we do,

infrastructure based on Raspberry Pis to host Docker

container. Their work also confirms the suitability of

single-board devices. Work at the University of

Glasgow (Tso et al., 2013) also explores Raspberry

Pis for edge cloud computing. Their work involves

lessons learned from practical applications of RPis in

real-world settings. We have added in the solution

presented here a comparative evaluation of different

cluster-based architectures to their observations.

7 CONCLUSIONS

Edge clouds move the focus from heavy-weight data

centre clouds to more lightweight resources,

distributed to bring specific services to the users.

They do, however, create a number of challenges. We

have identified lightweight virtualisation and the need

to orchestrate the deployment of these services as key

challenges. We looked at platform (PaaS) specifically

as the application service packaging and orchestration

is a key PaaS concern (through of course not limited

to PaaS).

Our aim was to compare recently emerging

container technology and container cluster

management and other architectural options such as

OpenStack or bespoke solutions to determine the

suitability of these approaches for edge clouds built

on single-board affordable device clusters. Our

observations support the current trend in container

technology, but have also identified some limitations

and aspects that need further investigation.

Container technology has a better potential than

the other options to substantially advance PaaS

technology towards distributed heterogeneous clouds

through lightweightness and interoperability on, for

instance, Raspberry Pis.

We can also conclude that significant

improvements are still required to deal with data and

network management aspects, as is providing an

abstract development and architecture layer.

Orchestration, as far as it is supported in cluster

solutions, is ultimately not sufficient and needs to be

extended to include better analysis and decision

support (Fang et al., 2016). Suitable architecture that

include coordination and brokerage options shall be

considered (Fowley et al., 2016).

More work is also needed on improved

performance management (Heinrich et al., 2017) and

the adoption of microservices as an architectural

principle (Pahl et al., 2016). Another concern that

needs more attention is security. We are planning to

use blockchain technology for provenance

management.

ACKNOWLEDGEMENTS

The research reported here has been in part supported

by the Free University of Bozen-Bolzano through the

ECO and ECORE projects.

REFERENCES

P. Abrahamsson et al. (2013). Affordable and Energy-

Efficient Cloud Computing Clusters: The Bolzano

Raspberry Pi Cloud Cluster Experiment. IEEE 5th

International Conference on Cloud Computing

Technology and Science (CloudCom).

V. Andrikopoulos, S. Gomez Saez, F. Leymann, and J.

Wettinger (2014). Optimal distribution of applications

in the cloud. In Advanced Information Systems

Engineering, pp. 75-90. Springer.

H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada (2017).

A Comparison of Reinforcement Learning Techniques

for Fuzzy Cloud Auto-Scaling. Proceedings of the 17th

IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing.

P. Bellavista, and A. Zanni. (2017). Feasibility of fog

computing deployment based on docker

containerization over raspberrypi. Proceedings of the

18th International Conference on Distributed

Computing and Networking. ACM.

T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann,

A. Nowak, and S. Wagner (2013). OpenTOSCA - a

runtime for TOSCA-based cloud applications. In

Service-Oriented Computing, pp. 692-695.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli (2012). Fog

computing and its role in the internet of things.

Workshop Mobile Cloud Computing.

A. Chandra, J. Weissman, and B. Heintz (2013).

Decentralized Edge Clouds. IEEE Internet Computing.

C. Dupont, R. Giaffreda, and L. Capra (2017). Edge

computing in IoT context: Horizontal and vertical

Linux container migration. In Global Internet of Things

Summit (GIoTS), pp. 1-4. IEEE.

E. De Coninck, S. Bohez, S. Leroux, T. Verbelen, B.

Vankeirsbilck, B. Dhoedt, and P. Simoens (2016).

Middleware Platform for Distributed Applications

Incorporating Robots, Sensors and the Cloud. IEEE

International Conference on Cloud Networking.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

82

A. Dorri, S. Salil, S. Kanhere, and R. Jurdak (2017).

Towards an Optimized BlockChain for IoT. Intl Conf

on IoT Design and Implementation. ACM.

D. Fang, X. Liu, I. Romdhani, P. Jamshidi, and C. Pahl

(2016). An agility-oriented and fuzziness-embedded

semantic model for collaborative cloud service search,

retrieval and recommendation. Future Generation

Computer Systems 56, 11-26.

F. Fowley, C. Pahl, P. Jamshidi, D. Fang, and X. Liu (2016).

A classification and comparison framework for cloud

service brokerage architectures. IEEE Transactions on

Cloud Computing.

V. Gacitua-Decar and C. Pahl (2017). Structural Process

Pattern Matching Based on Graph Morphism Detection.

International Journal of Software Engineering and

Knowledge Engineering 27(2).

O. Gass, H. Meth, and A. Maedche (2014). PaaS

Characteristics for Productive Software Development:

An Evaluation Framework. IEEE Internet Computing,

vol. 18, no. 1, pp. 56-64.

A. Gember, A Krishnamurthy, S. St John, R. Grandl, X.

Gao, A. Anand, T. Benson, A. Akella, and V. Sekar

(2013). Stratos: A network-aware orchestration layer

for middleboxes in the cloud. Duke University, Tech

Report.

V. Gruhn, C. Pahl, M. Wever (1995). Data model evolution

as a basis of business process management. OOER'95:

Object-Oriented and Entity-Relationship Modeling,

270-281.

R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L.E.

Lwakatare, C. Pahl, S. Schulte, and J. Wettinger (2017).

Performance Engineering for Microservices: Research

Challenges and Directions. Proceedings of the 8th

ACM/SPEC on International Conference on

Performance Engineering Companion.

S. Helmer, C. Pahl, J. Sanin, L. Miori, S. Brocanelli, F.

Cardano, D. Gadler, D. Morandini, A. Piccoli, S.

Salam, A.M. Sharear, A. Ventura, P. Abrahamsson, and

T.O. Oyetoyan (2016). Bringing the Cloud to Rural and

Remote Areas via Cloudlets. Proceedings of the 7th

Annual Symposium on Computing for Development,

14.

P. Jamshidi, M. Ghafari, A. Ahmad, and C. Pahl (2013). A

framework for classifying and comparing architecture-

centric software evolution research. European

Conference on Software Maintenance and

Reengineering.

P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad, A.

Metzger, and G. Estrada (2016). Fuzzy self-learning

controllers for elasticity management in dynamic cloud

architectures. 12th International ACM Conference on

Quality of Software Architectures (QoSA).

P. Jamshidi, C. Pahl, and N.C. Mendonça (2017). Pattern‐
based multi‐ cloud architecture migration. Software:

Practice and Experience 47 (9), 1159-1184.

N. Kratzke (2014). A Lightweight Virtualization Cluster

Reference Architecture Derived from Open Source

PaaS Platforms. Open Journal of Mobile Computing

and Cloud Computing vol. 1, no. 2.

N. Kshetr (2017). Can Blockchain Strengthen the Internet

of Things? IT Professional 19.4:68-72.

A. Manzalini, R. Minerva, F. Callegati, W. Cerroni, and A.

Campi (2013). Clouds of virtual machines in edge

networks. IEEE Communications.

L. Miori (2014). Deployment and evaluation of a

middleware layer on the Raspberry Pi cluster. BSc

thesis, Univ of Bozen-Bolzano.

T.H. Noor, Q.Z. Sheng, A.H.H. Ngu, and S. Dustdar

(2014). Analysis of Web-Scale Cloud Services. IEEE

Internet Computing, 18(4), pp. 55-61.

C. Pahl (2002). A formal composition and interaction

model for a web component platform. Electronic Notes

in Theoretical Computer Science, vol 66(4), pp. 67-81.

C. Pahl and H. Xiong (2013). Migration to PaaS Clouds -

Migration Process and Architectural Concerns.

International Symposium on the Maintenance and

Evolution of Service-Oriented and Cloud-Based

Systems.

C. Pahl (2015). Containerisation and the PaaS Cloud. IEEE

Cloud Computing.

C. Pahl and B. Lee (2015). Containers and clusters for edge

cloud architectures - a technology review. 3rd

International Conference on Future Internet of Things

and Cloud (FiCloud-2015).

C. Pahl and P. Jamshidi (2016). Microservices: A

Systematic Mapping Study. Proceedings CLOSER

Conference, 137-146.

C. Pahl, S. Helmer, L. Miori, J. Sanin and B. Lee (2016). A

container-based edge cloud PaaS architecture based on

Raspberry Pi clusters. IEEE International Conference

on Future Internet of Things and Cloud Workshops

(FiCloudW).

C. Pahl, A. Brogi, J. Soldani and P. Jamshidi (2017). Cloud

Container Technologies: a State-of-the-Art Review.

IEEE Transactions on Cloud Computing.

C. Pahl, P. Jamshidi and D. Weyns (2017). Cloud

architecture continuity: Change models and change

rules for sustainable cloud software architectures.

Journal of Software: Evolution and Process 29 (2).

C. Pahl, P. Jamshidi, and O. Zimmermann (2018).

Architectural principles for cloud software. ACM

Trans. on Internet Technology (TOIT).

J. Sanin (2016). Evaluation and Development of a

Biometric Measurement Platform with a Raspberry Pi.

BSc thesis, Univ of Bozen-Bolzano.

D. von Leon (2016). Implementing an Edge Cloud

Architecture with a Raspberry Pi Cluster. BSc thesis,

Univ of Bozen-Bolzano.

S. Qanbari, F. Li, and S. Dustdar (2014). Toward portable

cloud manufacturing services. Internet Computing,

IEEE 18, no. 6: 77-80.

S. Soltesz, H. Potzl, M.E. Fiuczynski, A. Bavier, and L.

Peterson (2007). Container-based operating system

virtualization: a scalable, high-performance alternative

to hypervisors. ACM SIGOPS Operating Systems

Review, vol. 41, no. 3, pp. 275-287.

P. Tso, D. White, S. Jouet, J. Singer, and D. Pezaros (2013).

The Glasgow Raspberry Pi cloud: A scale model for

A Performance Exploration of Architectural Options for a Middleware for Decentralised Lightweight Edge Cloud Architectures

83

cloud computing infrastructures. Int. Works Resource

Management of Cloud Comp.

J. Turnbull (2014). The Docker Book. Online at

http://www.dockerbook.com/.

J. Zhu, D.S. Chan, M.S. Prabhu, P. Natarajan, H. Hu, and

F. Bonomi (2013). Improving web sites performance

using edge servers in fog computing architecture. Intl

Symp on Service Oriented System Engineering.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

84

