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Abstract: Realistic synthetic data are increasingly being recognized as solutions to lack of data or privacy concerns in 

healthcare and other domains, yet little effort has been expended in establishing a generic framework for 

characterizing, achieving and validating realism in Synthetic Data Generation (SDG). The objectives of this 

paper are to: (1) present a characterization of the concept of realism as it applies to synthetic data; and (2) 

present and demonstrate application of the generic ATEN Framework for achieving and validating realism 

for SDG. The characterization of realism is developed through insights obtained from analysis of the literature 

on SDG. The development of the generic methods for achieving and validating realism for synthetic data was 

achieved by using knowledge discovery in databases (KDD), data mining enhanced with concept analysis and 

identification of characteristic, and classification rules. Application of this framework is demonstrated by 

using the synthetic Electronic Healthcare Record (EHR) for the domain of midwifery. The knowledge 

discovery process improves and expedites the generation process; having a more complex and complete 

understanding of the knowledge required to create the synthetic data significantly reduce the number of 

generation iterations. The validation process shows similar efficiencies through using the knowledge 

discovered as the elements for assessing the generated synthetic data. Successful validation supports claims 

of success and resolves whether the synthetic data is a sufficient replacement for real data. The ATEN 

Framework supports the researcher in identifying the knowledge elements that need to be synthesized, as well 

as supporting claims of sufficient realism through the use of that knowledge in a structured approach to 

validation. When used for SDG, the ATEN Framework enables a complete analysis of source data for 

knowledge necessary for correct generation. The ATEN Framework ensures the researcher that the synthetic 

data being created is realistic enough for the replacement of real data for a given use-case.

1 INTRODUCTION 

Rapid adoption of the Electronic Healthcare Record 

(EHR) continues to increase demand for secondary 

use of patient records. Synthetic EHRs have been 

suggested as a privacy protecting solution for 

producing available data sets, yet without the 

property of realism these synthetic data will have 

limited secondary use. The Realistic Synthetic EHR 

(RS-EHR) has been suggested as a privacy protecting 

technology for producing data for secondary use 

(Dube and Gallagher, 2014). Early prototypes, such 

as CoMSER (McLachlan et al., 2016), have 

demonstrated the important characteristic of realism 

when examined by clinicians. A continued challenge 

in developing the RS-EHR is the lack of consistent 

methods for validating and verifying realism.  

Sourcing or developing experimental datasets can 

be costly and often presents an insurmountable 

challenge (Bozkurt and Harman, 2011, Whiting et al., 

2008, Williams et al., 2007). The use of synthetic data 

has developed from concept to a key solution 

routinely employed (Weston et al., 2015). Synthetic 
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data may be used in research and experimentation, 

software and systems testing or for training and 

demonstration purposes (Whiting et al., 2008, 

Houkjaer et al., 2006, Mouza et al., 2010). The 

literature describes an array of models and methods; 

from those that simply remove or replace personally 

identifiable information (Mouza et al., 2010) through 

to those that entirely eschew using any personally 

identifiable or confidential records (McLachlan et al., 

2016). 

While generating synthetic data may sound 

simple, generating good synthetic data proves to be 

extremely difficult (Whiting et al., 2008). Articles 

published across every domain propose new methods 

for generating synthetic data.  In the healthcare 

domain synthetic data may take the form of health 

records (McLachlan et al., 2016, Mwogi et al., 2014), 

or models of gene expression (Van den Bulcke et al., 

2006) and nerve cells (Ascoli et al., 2001). An often 

stated primary goal in many articles is that synthetic 

data must comprise a suitable replacement for real 

data (Wu et al., 2003, Stratigopoulos et al., 2009). 

Some go so far as to prescribe that synthetic data 

should possess the property of realism; that it should 

be a realistic substitute for existing data (Bozkurt and 

Harman, 2011, Jaderberg et al., 2014, Brinkhoff, 

2003). 

Very few SDG solutions perform true validation, 

and for those that do it is only entertained once 

development concludes and the generation process is 

complete. This makes it difficult to ascertain where 

issues identified in the synthetic dataset occurred 

(Lydiard, 1992). It is almost impossible to establish 

whether issues are an artefact of the seed information, 

a coding or algorithmic miscalculation in the 

generation process, an output error, or a combination 

of all of these. These situations can be identified and 

resolved through use of the validation method 

described in this research.  

The rest of this paper is organised as follows: 

First, the paper presents the realism as an unresolved 

issue in the SDG domain. Second, a review of 

literature on realism and its validation in SDG 

approach is presented. Third, realism is then 

characterised and an approach for establishing the 

elements of realism SDG is proposed. Fourth, an 

approach for realism validation is presented with its 

demonstration and evaluation using EHR examples 

from the midwifery domain. Fifth, a discussion of the 

application and benefits of the approaches to the 

characterisation and validation of realism is 

presented. Finally, future work is followed by a 

summary and conclusion. 

2 THE RESEARCH PROBLEM 

The concept of realism remains largely unaddressed 

in current SDG literature. In the case of the RS-EHR, 

realism means synthetic patients should not just 

statistically and structurally mirror real counterparts, 

but that the concepts, symptomatology, treatments 

and language used should also be consistent. 

Certainly, any clinician accessing the record should 

also find it to be realistic. A definition and description 

for realism would enable the reader and any future 

users to contextualize elements and relate them to the 

SDG author’s desired outcomes. This paper seeks 

such a definition, as well as a method for achieving 

and validating results in SDG. Comprehensive and 

systematic classification and validation is necessary 

to facilitate the repeating of experiments and validate 

whether the authors actually achieved their objectives 

(Crawford and Stucki, 1990, Creswell, 2003).  

This paper investigates the property of realism in 

synthetic data within the healthcare domain. This 

research provides a framework that can be used in SDG 

to ensure: (a) realism is a properly considered 

component in the development and testing of the 

algorithm, generation method and outputs; (b) quality 

of documentation, and; (c) a basis for validating and 

substantiating the claim that synthetic data is a realistic 

substitute for the real data it is intended to replace. 

3 RELATED WORKS 

In order to understand the concept of realism, its 

utility and validation in SDG, this section reviews 

works that; (a) discussed realism and/or a need for 

synthetic data to be realistic, and; (b) provided some 

discourse on validation approaches for synthetic data.  

A search was conducted to identify works concerning 

synthetic data generation (n = 7,746). The search was 

narrowed further to works that also used the terms 

realistic (n = 290) or realism (n = 6). This included 

works that identified realism as a primary concern in 

the generation of any synthetic data (Bozkurt and 

Harman, 2011, Houkjaer et al., 2006, Tsvetovat and 

Carley, 2005) or that discussed developing synthetic 

data that would be realistic, sufficient to replace or be 

representative of real data (Mouza et al., 2010, 

Jaderberg et al., 2014, Richardson et al., 2008, 

Sperotto et al., 2009). Given the low number of works 

that specifically mentioned the terms realistic and 

realism, a selection of the excluded works was further 

reviewed. This review found that around one third of 

SDG articles use functionally similar terminology 
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such as authentic (Barse et al., 2003) and accurate to 

real structures (Ascoli et al., 2001). 

3.1 Realism in SDG 

In order to be an accurate replacement for real data, 

synthetic data must be realistic (Sperotto et al., 2009). 

The presence of realism should only be asserted if it 

is verified (Penduff et al., 2006, Putnam, 1977). The 

property of realism is seen to bring a greater degree 

of accuracy, reliability, effectiveness, credibility and 

validity (Bozkurt and Harman, 2011). Realism is 

therefore desirable; an important property needed of 

most synthetic data (Bozkurt and Harman, 2011, 

Mouza et al., 2010, Alessandrini et al., 2015, Bolon-

Canedo et al., 2013). Researchers should ascertain the 

elements of realism in the data they seek to synthesize 

(Laymon, 1984, McMullin, 1984). 

Few authors provide a definition or foundation for 

understanding realism (n = 2). In both cases this is 

limited and vague, implying only that the aim of 

realism was to be that the synthetic data needed to be 

a representative replacement for real data (Sperotto et 

al., 2009) and comparably correct in size and 

distribution (Killourhy and Maxion, 2007). Neither 

article discussed validating for realism in the 

synthetic data they created. 

3.2 Validation of Synthetic Data 

The focus for the majority of SDG articles captured 

in this review was on the synthetic data, rather than 

on thoroughly documenting the generation method or 

validation. The limited validation methods observed 

consisted of comparisons between either the entire 

dataset or attributes selected from it and minor 

observations from the real data (Bozkurt and Harman, 

2011) or provide imperfect graphical and statistical 

comparisons which the authors admit only provide 

indirect visual or structural comparison to a low 

probability, and not true algorithm validation (Ascoli 

et al., 2001, Efstratiadis et al., 2014, Gafurov et al., 

2015). Some focused on simply reporting the 

performance of their method or discussing efficiency 

of algorithms used to create synthetic data (Agrawal 

et al., 2015). The majority of authors often included 

no discussion of validation at all (Brinkhoff, 2003, 

Brissette et al., 2007, Giannotti et al., 2005). 

The term validation is representative of acts 

which seek to prove accuracy and comparability, but 

its meaning and use are often misunderstood (Carley, 

1996, Oreskes et al., 1994, Oxford, 2016). The way 

validation is used in contemporary literature more 

correctly describes two related but separate concepts; 

validation and verification (Oreskes et al., 1994). 

Validation assesses functional correctness and 

internal consistency while verification seeks 

comparability of the synthetic data with observation 

(Oreskes et al., 1994). A number of validation 

approaches are regularly used and documented within 

related fields such as Computational Modelling 

(Carley, 1996), however no complete, applicable or 

reusable validation approaches were observed across 

the SDG literature reviewed. 

4 MATERIALS AND METHODS 

In the case of synthetic data, realism can be identified 

as the sum of two levels of knowledge. The first level 

is the extrinsic or overt knowledge; the structure. The 

data fields and general statistical values easily 

realised from observational data or other inputs being 

used in the generation process: that is, the observable 

quantitative and qualitative aspects of the input data.  

The second level is intrinsic or covert knowledge. 

The relationships, concepts, rules and representations 

drawn out from within the input data. The method 

proposed in this research utilizes established 

Knowledge Discovery in Database (KDD) processes, 

extended through application of Human Computer 

Interaction (HCI)-KDD principles, Concept 

Hierarchies (CH), Formal Concept Analysis (FCA) 

and identification of Characteristic and Classification 

rules that inherently describe the data.  

Ensuring realism can mean different things for 

data synthesis in the domain of healthcare. Strict 

realism requires adherence to structural, statistical 

and conceptual qualities of patient records. In the 

healthcare context, there is an additional realism 

element in the manner that information within the 

synthetic patient record is recorded using medical 

language, terminology and logic, especially in the 

narrative of clinicians within the patient notes. We 

recognize that this realism element is difficult to 

reproduce and it is accordingly not covered in the 

focus of this paper. Our solution to this problem is 

appropriate synthetic patient narrative scripted by 

practicing clinicians for application to particular 

medical events (McLachlan et al., 2016). 

5 THE ATEN FRAMEWORK 

The ATEN Framework (Figure 1) is an SDG lifecycle 

that provides researchers with a structured approach 

for SDG projects including identifying and validating 
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realism. The ATEN Framework is composed of the 

THOTH, RA and HORUS approaches that 

respectively provide for: (a) an approach to 

generating synthetic data; (b) an approach to defining 

and describing the elements of realism, and; (c) an 

approach for validating synthetic data. ATEN was a 

syncretized deity from the thirteenth century BC, 

elevated for a time as the single central god of 

Egyptian religion (Gore, 2001). ATEN, whose name 

was abbreviated from Ra-Horakhty or Ra-Horus-

Aten (meaning Ra, who is Horus of the two horizons) 

represented the synthesis of a number of gods from 

Egyptian mythology (Gunn, 1923, Wilkinson, 2008).  

 

Figure 1: The ATEN Framework. 

The THOTH approach describes the overarching 

SDG process from conceptualisation to generation. 

The primary focus of RA is knowledge discovery to 

classify and characterize the realistic elements of the 

input data including:  structures, statistics, rules and 

concepts. These elements are then made available to 

the generation process (THOTH) with the intention of 

ensuring that the synthetic data can be generated 

consistent with the knowledge discovered. The 

HORUS approach uses this knowledge to validate the 

realism in the resulting synthetic data. In this way, the 

RA approach identifies knowledge necessary for 

achieving realism in synthetic data, while HORUS 

considers whether realism has been achieved. The 

next three sections present the THOTH, RA, and 

HORUS approaches in greater detail. 

5.1 THOTH – The Enhanced Generic 

SDG Approach 

THOTH describes the four-step generic SDG 

approach observed in much of the SDG literature. The 

four steps shown in Figure 2 include (1) Identifying 

the need for synthetic data; (2) Gathering the required 

raw information, datasets and knowledge required to 

generate the synthetic data (and also input to RA); (3) 

Developing the algorithm or method that will perform 

the generation process, and; (4) The generation 

process. 

 

Figure 2: The four-step generic SDG approach. 

The enhanced THOTH approach incorporates 

additional steps shown in Figure 3 which characterise 

the synthetic-ness of the data required, and classify 

the generation method best suited to the task. The 

synthetic-ness of generated data can range from real 

data on which anonymisation processes may be 

performed, through to truly synthetic data which 

relied on no personally identifiable information 

during creation. The generation method is drawn 

from one of the five primary classification types 

identified in our research, shown in Table 1. 

Table 1: SDG Classification Models with examples from 

the literature. 

SDG Classification Model Example 

Data Masking Mouza et al, 2010 

Signal and Noise Whiting et al, 2008 

Network Generation Ascoli et al, 2001 

Random Generation Models Mwogi et al, 2014 

Probability Weighted Random 

Models 

Mwogi et al, 2014 

Houkjaer et al, 2006 

McLachlan et al, 2016 

5.2 The RA Approach – The Generic 

Approach to Realism in SDG 

RA provides a structured approach to discovering, 

classifying and characterizing knowledge and realism 

elements for use in SDG.  The process of RA, 

including the steps of enhanced knowledge discovery 

are both shown in Figure 4 and further elaborated in 

Table 2. While encompassing the entire KDD 

process, the structured enhancements prescribed by 

RA are contained within the Data Mining step. 

RA is built on the generic KDD process that 

identifies both the extrinsic and intrinsic realism 

elements. It follows a logical progression of steps that  
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Figure 3: The Enhanced THOTH Approach. 

 

Figure 4: Overview of the RA Approach to Realism in SDG. 

Table 2: Enhanced Knowledge Discovery Process further describing the RA Approach to realism in SDG as presented in 

Figure 4. 

Step Activity Tasks 

1 Develop and document information 

(overlaps with THOTH) 

Relevant prior knowledge;  

An understanding of the application domain, and;  

The goal(s) of the KDD process. 

2 Collect raw data (overlaps with THOTH) Selecting relevant datasets on which discovery is to be performed. 

3 Refining and Cleansing of Raw Data Cleanse and pre-process data to eliminate noise, and;  

Remove incomplete or inconsistent data from the target data pool. 

4 Create target data Integrate data from multiple sources;  

Transform raw data, for example: Clinical guidelines and health incidence 

statistics into consistent input data sets; 

Project data by identifying useful features for representing the data, for 

example: as CareMaps, and;  

Reduce the number of variables to those that are necessary for KDD process. 

5 KDD and Data Mining Identify data mining method to search for patterns within the target data 

(summarisation, classification, regression, clustering, web mining 

and others as described in Fayyad et al, 1996).  

Perform concept hierarchy analysis, formal concept analysis, rule 

identification of the methods used in HORUS 

6 Interpret and evaluate mined patterns Identify the truly interesting and useful patterns. 

7 Presentation Make the knowledge available for use in synthetic data generation 

 

are observable within the literature (Fayyad et al., 

1996, Fernandez-Arteaga et al., 2016, Holzinger et 

al., 2014, Mitra et al., 2002). The following 

subsections present the processes used as part of the 

KDD data mining in Step 5 of Table 2. 
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5.2.1 Extrinsic: Identifying Quantitative and 
Qualitative Properties 

Identifying and documenting the quantitative and 

qualitative properties of real data is the first step of 

knowledge discovery. The synthetic data generated 

must possess these properties to be a suitable 

replacement. Examples of quantitative and qualitative 

knowledge from the demographic portion of the EHR 

are shown in Tables 3 and 4. 

Table 3: An example of quantitative knowledge - Patient 

Ethnicity data. 

Patient Ethnicity (%) 

European 22.24 

Maori 25.13 

Pacific Islander 34.30 

Asian 16.14 

Other   2.11 

Not Stated   0.08 

5.2.2 Intrinsic: Concept Hierarchies 

Concept Hierarchies (CH) are a deduction of 

attribute-oriented quantitative rules drawn from large 

and very large datasets (Han et al., 1993). CH allow 

the researcher to infer general rules from a taxonomy 

structured as general-to-specific hierarchical trees of 

relevant terms and phrases, for example: “bed in ward 

in hospital in health provider in health district” (Han 

et al., 1993, Mitra et al., 2002, Sanderson and Croft, 

1999). Developing a concept hierarchy involves 

organizing levels of concepts identified within the 

data into a taxonomy, reducing candidate rules to 

formulas with a particular vocabulary (Han et al., 

1993). CH are used in RA to identify an entity type, 

the instances of that entity and how they relate to each 

other; they help to ensure the identification of 
 

Table 4: An example of qualitative knowledge - The 

structure and field definitions from the Patient 

Demographics table. 

Patient 

PK patientID INT 

  title TEXT(10) 

  lastName TEXT(30) 

  firstName TEXT(30) 

  dateOfBirth DATETIME 

  gender CHAR(10) 

  ethnicity CHAR(20) 

  primaryLanguage VARCHAR(100) 

important relationships in the data that can be used to 

synthesise meaningful results (Barnes, 1990). 

Once the concept hierarchy tree is identified, 

another pass across the source data should occur to 

count the occurrence of each of the specific terms. 

This second pass allows the researcher to enhance the 

concept hierarchy with statistics that can be used as 

knowledge to improve accuracy in the generation 

model. An example of a concept hierarchy enhanced 

with statistics is shown in Figure 5. 

 

Figure 5: Concept Hierarchy enhanced with statistics. 

5.2.3 Intrinsic: Formal Concept Analysis 

Formal Concept Analysis (FCA) is a method of 

representing information that allows the researcher to 

easily realise relationships between instances of an 

object and occurrences of a concept; for example: 

occurrences of various nosocomial infections across 

the different wards of a hospital. FCA starts with a 

formal context represented as a triple, where an object 

{G} and attribute {M} are shown with their incidence 

or relationship {I} (Ganter and Willie, 1997). A table 

is created displaying instances where a relationship 

exists between an object and corresponding 

attribute(s). 

Concept creation, represented as rules, occurs 

from the context table.  For example, one might seek 

to identify the smallest or largest concept structures 

containing one of the objects.  

The second step to FCA involves creating a 

concept lattice. A concept lattice is a mapping of the 

formal context, or intersections of objects and 

attributes. The concept lattice allows easy 

identification of sets of objects with common 

attributes as well as the order of specialisation of 
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objects with respect to their attributes (Rodriguez-

Jiminez et al., 2016). 

5.2.4 Intrinsic: Characterization and 
Classification Rules 

Characterization and classification rules come from 

within the target dataset and are used as constraints 

during the generation process. When applied in the 

generation process, these rules help to improve 

overall accuracy. 

Characterization Rules 

The development of characteristic rules entails 

three steps. First, data relevant to the learning process 

is collected. All non-primitive data should be mapped 

to the primitive data using the concept hierarchy trees 

as shown in Figure 5 (e.g. Forceps would be mapped 

to Assisted, Elective would map to Caesarean and so 

on). Second, generalization should be performed on 

components to minimize the number of concepts and 

attributes to only those necessary for the rule we are 

working to create. In this way, the Name attribute on 

a patient record would be considered too general and 

not characteristic to a set of data from which we could 

make rules about the treatment outcomes for a 

particular Ethnicity. The final step transforms the 

resulting generalization into a logical formula that 

identifies rules within the data. In the domain of 

midwifery, we might find that while only those 

pregnancies clinically described as low risk would 

receive intermittent fetal heart monitoring, clinical 

practice guidelines (CPGs) necessitate continuous 

monitoring for a higher risk pregnancy. Properties of 

this rule would be expressed as the sum of the four 

elements. The characteristic rule expressed in the 

conditional formula is shown in Figure 6 containing 

the values Sex:Female, Pregnant:Yes, Pregnancy 

Status:Low Risk, Fetal Heart Monitoring:Intermittent 

in Labour. 

  (midwiferyPatient(x)  ((Sex(x) = female) ^ 
(Pregnant(x) = Yes) ^ (pregnancyStatus(x) = Low Risk) ^ 

(fetalHeartMonitoring(x) = Intermittent))) 

Figure 6: Example of a Characteristic rule conditional 

formula from the domain of midwifery. 

Classification Rules  

Classification knowledge discovery discriminates 

the concepts of a target class from those of a 

contrasting class. This provides weightings for the 

occurrence of a set of attributes for the target class in 

the source dataset, and accounts for occurrences of 

attributes that apply to both the target and contrasting 

class. To develop a classification rule, first the classes 

to be contrasted, their attributes and relevant data 

must be identified. Attributes that overlap form part 

of the generalisation portion of the target class only. 

Attributes specific to a target class form the basis of 

classification rules. Figure 7 demonstrates an 

example of a classification rule showing that 100% of 

patients will undergo a caesarean procedure for the 

current birth if two or more of their previous births 

have also been by caesarean section. 

  (modeOfDelivery(x)  ((Multip(x) = Yes) ^ (Primip(x) 
= No) ^ (previousDelivery=CSect<2(x) = No) ^ 

(previousDelivery=CSect>=2(x) = Yes[d:100%]))) 

Figure 7: Example of a Classification rule conditional 

formula from the domain of midwifery. 

5.2.5 Summary and Conclusion 

The RA enhanced and extended KDD method 

identifies realistic properties from real data, providing 

improved input data quality, constraints and 

generation algorithms used to generate synthetic data. 

An obvious benefit is that generation methods 

using this knowledge should deliver data that is an 

accurate replacement for real data. Another benefit is 

a set of knowledge and conditions that can be used to 

validate realism in the generated data. Its use is 

discussed in the next section.  

5.3 The HORUS Approach to 
Validation of the Realism of 
Synthetic Data 

The validation approach incorporates five steps that 

analyse separate elements of the SDG method and 

resulting synthetic data. These steps are identified in 

the small boxes in Figure 8 and described in Table 5. 

Collectively, the five steps provide the information 

necessary for confirmation of whether synthetic data 

is consistent with and compares realistically to real 

data that the SDG model seeks to emulate. 

5.3.1 Input Validation 

Input validation concerns itself only with that 

knowledge presented in the form of data tables and 

statistics that come from the generation specification. 

The input validation process verifies each item, 

confirming that correct input data is being presented, 

ensuring smooth operation of the data synthesis 

process (Bex et al., 2006). Input validation is intended  
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Figure 8: The HORUS Approach to Realism validation showing touch points with THOTH and RA. 

Table 5: Activities and tasks in the HORUS Approach to synthetic data validation - a further elaboration of the HORUS 

Approach shown in Figure 8. 

Step Activity Task 

1 Input Validation Verify each piece of input data or information; 

Confirm correctness & validity of input data & information 

2 Realism Validation – I (RV1) Verify concepts & rules derived from the KDD process & health statistical information 

applied; 

Review & test premise & accuracy of each rule to ensure consistency with domain semantics 

Tests rules and semantics in real circumstances to eliminate irrelevancy due to interaction 

with observed data 

3 Method Validation Review method and compare with others found in literature; 

Ensures chosen method is appropriate for generating the synthetic data; and 

Verify that the algorithm for the method to be used has been correctly and completely 

constructed 

4 Output Validation Establish that output of the SDG model are consistent with observational data; and 

Ensure that synthetically generated data conforms to qualitative and quantitative aspects 

derived during the knowledge discovery phase. 

5 Realism Validation – II (RV2) Perform the same tasks as for Realism Validation – I (RV1) 

 

to prevent corruption of the SDG process (Laranjeiro 

et al., 2009). 

For example, CoMSER used CPGs along with 

treatment and outcome statistics. Input validation 

necessitated ensuring that statistics could be located 

or extracted that correctly applied to each part of the 

process described by the CPGs. Cross-validation of 

those statistics was performed through comparison to 

more than one source. Clinicians were involved to 

ensure that where any difference in terminology 

existed between input datasets, correct linkage had 

been applied (McLachlan et al., 2016). 

5.3.2 Realism Validation 1 

The first realism validation process verifies the 

concepts and rules derived from the HCI-KDD 

process, along with any statistical knowledge applied. 

Realism validation reviews and tests the premise and 

accuracy of each rule to ensure consistency with the 

semantics of any data or guidelines used in their 

creation, such as CPGs. Where required it tests them 

in real circumstances to ensure they are not rendered 

irrelevant through interaction with observed data. 

Where any knowledge is at issue, the researcher 

should return to the knowledge discovery phase. 

5.3.3 Method Validation 

Method validation reviews the efforts of others inside 

and outside of the research domain. Attention should 

be paid to methodological approaches common for 

the domain, as well as methods other domains have 

used for similar types of SDG. Assessing these 

methods ensures the chosen method is appropriate for 

generating the synthetic data. Method validation also 

verifies that the algorithm to be used has been 

correctly and completely constructed.   

5.3.4 Output Validation 

Output validation validates the output data and 

verifies its basic statistical content. This step 

demonstrates the difference between the terms 

validation and verification. Oreskes describes 

validation as ensuring the model is free from known 

or detectable flaws and is internally consistent 

(Oreskes et al., 1994). Verification seeks to establish 

that the output or predictions of the SDG model are 
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consistent with observational data. The output 

validation step ensures that the synthetically 

generated data conforms to the qualitative and 

quantitative aspects derived during the knowledge 

discovery phase. 

5.3.5 Realism Validation 2 

The second realism validation process performs all of 

the same tests as the first except that the tests are 

performed against the synthetic dataset. This ensures 

the synthetic data is consistent with the knowledge 

(rules, constraints and concepts) that were derived 

and used for its creation. The second realism 

validation step is the most important for establishing 

and justifying any claim that the synthetic data is a 

realistic and proper substitute for the real data it was 

created to replace. If a synthetic patient was treated in 

a manner that contradicted the principles or 

application of a CPG, this could invalidate the entire 

dataset. It is necessary for clinician validation to 

present the synthetic EHR in a clinician-familiar 

manner, as shown in Figure 9 from the CoMSER 

midwifery case study used in this work. 

 

Figure 9: Sample realistic synthetic EHR. 

5.3.6 Summary and Conclusion 

The HORUS validation approach establishes and 

justifies claims of realism in synthetic data. The 

efficiency of HORUS comes from utilising the 

knowledge extracted in the RA process. It is this 

approach which supports realism claims, as it is one 

which directly compares the extrinsic and intrinsic 

elements of synthetic data with knowledge and 

generation specifications previously learned from the 

real data. 

6 DISCUSSION 

Realism is a collection of two levels of knowledge: 

(1) the extrinsic knowledge, and (2) the intrinsic 

knowledge. The extrinsic knowledge includes the 

overt structural and readily observable statistical 

information, while the intrinsic knowledge provides a 

detailed picture of the covert concepts, relationships, 

and interdependencies contained within the input 

materials. The ATEN framework presented in this 

paper ensures a complete analysis of requirements, 

source data and the SDG method. More information 

can only improve the generation approach, and a 

better generation approach delivers better synthetic 

data. The knowledge that is extracted and 

documented also provides a solid base with which to 

validate the synthetic data that has been created, 

ensuring that it is an adequate replacement for real 

data. The elements of realism can be identified 

through the engagement of an extended knowledge 

discovery in databases (KDD) approach. This 

approach first establishes the quantitative and 

qualitative aspects of the input data (the extrinsic), 

and follows it with in-depth and structured 

investigation of the concepts, relationships and rules 

that exist within the data (the intrinsic). The intrinsic 

results are then integrated with statistics from the 

extrinsic phase for the purpose of realism in the 

synthetic data generation phase. 

The process of validating realism requires that 

each of the identified realism elements can be found 

in its correct form within the synthetic data. 

Validation follows the same flow as knowledge 

discovery, in that the quantitative and qualitative 

aspects are first assessed. If accurately established, 

each element of component knowledge that was 

established is verified. In this way the validation 

process is greatly simplified through the benefits 

gained by having identified the realistic elements of 

knowledge prior to generation. At any step of the 

validation process a return to one of the previous steps 

to address any identified issues is possible. If 

successful, validation supports claims of correctness 

of the SDG model, synthetic data and realism that 

exists within the data. As discussed, many authors do 

not describe validation of their SDG method and 

results. Validation of SDG methods would go some 

way to support the claims of realism that are 

encountered in the literature. Use of the complete 

realism identification and validation approach 

presented here will not only provide guidance 

throughout the SDG lifecycle, but also allow for 

demonstration of faithful adherence to established 

scientific methods. Finally, it empowers future SDG 

creators with the requisite knowledge to utilise the 

SDG method being described. 
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7 FUTURE WORK 

The most pressing direction for future work is further 

validation of the ATEN framework in different 

domains. A new SDG project should be 

commissioned and undertaken as two streams: the 

first would follow the common approach to SDG 

without benefit of the ATEN framework. The second 

would use the same raw input data but adhere to the 

ATEN framework’s approach. The resulting 

synthetic datasets should be comparatively validated 

to assess which is more successful through its 

proximity to real or observed data and its accuracy to 

being realistic. 

8 SUMMARY AND CONCLUSION 

The attainment and validation of realism in modern 

synthetically generated datasets represents a 

complicated challenge that is largely unaddressed in 

the literature. Many authors claim to have created 

realistic synthetic data yet few even discuss simple 

validation of their realism proposition. The ATEN 

framework presented in this paper is a new, complete, 

and comprehensive realism characterization and 

validation solution. If SDG approaches and methods 

in the literature had used and presented any one 

validation method, then their claims of having created 

realistic synthetic data could be given more credence. 

The approach presented is simple and not overly 

burdensome. Many of the component steps are 

activities that data synthesizers may already be 

undertaking, albeit unstructured or in an unconsidered 

way that is not deliberately aimed at attaining high 

levels of realism. 
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