
A MapReduce Approach for Mining Multi-Perspective Declarative
Process Models

Christian Sturm, Stefan Schönig and Stefan Jablonski
University of Bayreuth, Germany

Keywords: Process Mining, Process Discovery, Multi-Perspective Process Model, Declare, MapReduce, Business
Process Management.

Abstract: Automated process discovery aims at generating a process model from an event log. Such models can be
represented as a set of declarative constraints where temporal coherencies can also be intertwined with de-
pendencies upon value ranges of data parameters and resource characteristics. Existing mining tools do not
support multi-perspective constraint discovery or are not efficient enough. In this paper, we propose an effi-
cient mining framework for discovering multi-perspective declarative models that builds upon the distributed
processing method MapReduce. Mining performance and effectiveness have been tested on several real-life
event logs.

1 INTRODUCTION

Process mining is the area of research that embraces
the automated discovery, conformance checking and
enhancement of process models. Automated process
discovery aims at generating a process model from
an event log consisting of traces, such that each trace
corresponds to one execution of the process. Each
event in a trace consists as a minimum of an event
class (i.e., the activity to which the event corresponds)
and a timestamp. In some cases, other information
may be available such as the performer of the acti-
vity as well as data produced by the event in the form
of attribute-value pairs. Discovery is of particular va-
lue for processes that offer various options to execute
them. Those processes are often referred to as flex-
ible, unstructured or knowledge-intense. Frequently,
procedural process models resulting from discovery
are colloquially called Spaghetti models due to their
complex structure (van der Aalst, 2011). Discove-
red process models can alternatively be represented
as a set of declarative constraints, i.e., rules for di-
rectly representing the causality of the behaviour (Pi-
chler et al., 2011). The advantages of declarative
languages such as Declare (Pesic et al., 2007) or
DPIL (Zeising et al., 2014) have been emphasized
in the literature. It is also well known that behavi-
our is typically intertwined with dependencies upon
value ranges of data parameters and resource charac-
teristics (de Leoni et al., 2016). Therefore, Declare

has been extended towards Multi-Perspective Declare
(MP-Declare) (Burattin et al., 2015). However, state-
of-the-art mining tools such as MINERful (Di Cic-
cio and Mecella, 2013; Di Ciccio and Mecella, 2015)
and DeclareMiner (Maggi, 2013) do not support MP-
Declare at this moment. In (Schönig et al., 2016) a
first approach to enable the discovery of MP-Declare
constraints has been proposed. However, it has not
been investigated how this complex mining task can
be performed in an efficient way.

In this paper, we address this open research pro-
blem by proposing an efficient mining framework for
discovering MP-Declare models that leverages latest
big data analysis technology and builds upon the dis-
tributed processing method MapReduce. We intro-
duce parallelizable algorithms for discovering com-
monly used types of MP-Declare constraints. The
proposed solution, however, can be applied to all ot-
her MP-Declare constraint types as well. In contrast
to related solutions, the proposed framework consi-
ders traces in one direction solely which leads to a
crucial benefit w.r.t. performance. Mining perfor-
mance and effectiveness have been tested on several
real-life event logs.

The paper is structured as follows. Section 2 in-
troduces the language and semantics of MP-Declare.
Section 3 describes the distributed framework we pro-
pose to speed up multi-perspective process discovery.
Section 4 describes the implementation approach that
we developed. Section 4.2 presents the evaluation of

Sturm, C., Schönig, S. and Jablonski, S.
A MapReduce Approach for Mining Multi-Perspective Declarative Process Models.
DOI: 10.5220/0006710305850595
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 585-595
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

585

our technique with real-life cases. Section 5 discus-
ses related work before Section 6 that concludes the
paper.

2 RESEARCH BACKGROUND

In this section, we first illustrate the research problem
that we are addressing and summarize concepts of
Declare, MP-Declare and MP-Declare mining.

2.1 Declarative Process Modelling

Declarative constraints are strong in representing the
behaviour of flexible business processes. Modeling
languages like Declare (Pesic et al., 2007) describe
a set of constraints that must be satisfied throughout
the process. Constraints, in turn, are based on tem-
plates. Templates are patterns that define paramete-
rized classes of properties, and constraints are their
concrete instantiations. Semantics of such langua-
ges are formalized using logics such as Linear Tem-
poral Logic over finite traces (LTL f) (Montali et al.,
2010). Standard Declare only defines constraints like
response (G(A→ FB)) or alternateResponse (G(A→
X(¬AUB))) that exclusively focus on behavioural as-
pects. Here, the F, X, G, and U LTL f future opera-
tors have the following meanings: formula Fψ1 me-
ans that ψ1 holds sometime in the future, Xψ1 means
that ψ1 holds in the next position, Gψ1 says that ψ1
holds forever in the future, and, lastly, ψ1Uψ2 means
that sometime in the future ψ2 will hold and until that
moment ψ1 holds (with ψ1 and ψ2 LTL f formulas).
The O, Y and S LTL f past operators have the follo-
wing meaning: Oψ1 means that ψ1 holds sometime in
the past, Yψ1 means that ψ1 holds in the previous po-
sition, and ψ1Sψ2 means that ψ1 has held sometime
in the past and since that moment ψ2 holds. Consi-
der, for example, the response constraint G(A→ FB).
It indicates that if A occurs, B must eventually fol-
low. Therefore, this constraint is fully satisfied in
traces such as t1 = 〈A,A,B,C〉, t2 = 〈B,B,C,D〉, and
t3 = 〈A,B,C,B〉, but not for t4 = 〈A,B,A,C〉 because,
in this case, the second occurrence of A is not follo-
wed by a B. In t2, it is vacuously satisfied (Burat-
tin et al., 2012), i.e., in a trivial way, because A ne-
ver occurs. An activation activity of a constraint in
a trace is an activity whose execution imposes, be-
cause of that constraint, some obligations on the exe-
cution of other activities (target activities) in the same
trace. For example, A is an activation activity for
the response constraint G(A → FB) and B is a tar-
get, because the execution of A forces B to be exe-
cuted, eventually. An activation of a constraint le-

ads to a fulfilment or to a violation. Consider, again,
G(A→FB). In trace t1, the constraint is activated and
fulfilled twice, whereas, in trace t3, it is activated and
fulfilled only once. In trace t4, it is activated twice
and the second activation leads to a violation (B does
not occur subsequently).

A central shortcoming of languages like Declare
is the fact that templates are not capable of expres-
sing the connection between execution order of acti-
vities and other perspectives of the process. Consider
the example of a loan application process. An analyst
would be interested to learn about constraints such as
the following:
1. Activation conditions: When a loan was requested

and account balance > 4,000 EUR, the loan was
subsequently granted in 95% of the cases.

2. Correlation conditions: When a loan was re-
quested, the loan was subsequently granted and
amount requested = amount granted in 95% of
the cases.

3. Target conditions: When a loan was requested, the
loan was subsequently granted in 95% of the cases
by a specific member of the financial board.

4. Temporal conditions: When a loan was requested,
the loan was subsequently granted within the next
30 days in 95% of the cases.
The importance of more complex constraints that

integrate activation, correlation, target and temporal
dependencies has been emphasized by prior research
and has led to the definition of a multi-perspective
version of Declare (Burattin et al., 2015), multi-
perspective Declare (MP-Declare) formally defined
using LTL f .

2.2 Mining Metrics

In this subsection, we describe the metrics that we use
to discriminate those constraints that are fulfilled in
the majority of cases in the event log, from those that
are rarely satisfied, namely support and confidence.
We consider two notions of support already defined
in the literature, namely the event-based support (Di
Ciccio and Mecella, 2015) and the trace-based sup-
port (Maggi et al., 2011).
Support. It is the number of fulfilments of a
constraint divided by the number of occurrences
of the condition of a constraint. In the exam-
ple of Section 2.1, the four occurrences of A fulfil
response(A,B), out of which 2 occur in t1, 1 in t3 and
1 in t4. Thereupon, it scales the number of events ful-
filling the constraint by the number of events that fulfil
the activation only. In the example, the five occurren-
ces of A satisfy the activation. Therefore, the event-

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

586

based support of response(A,B) is equal to 4/5, na-
mely 0.8.
Confidence. It is the product of support and the
fraction of traces in the log where the condition (im-
plications) or the constrained activity (not implica-
tions) occurs. In the example, the confidence is
4/5×3/4 = 0.6, A occurs in 3 traces over 4.

The work conducted in (Schönig et al., 2016) ad-
dressed the discovery of MP-Declare models. This
research showed that the discovery of MP-Declare
allows for the acquisition of knowledge that goes
beyond classical declarative mining. However, it has
not been investigated how this complex mining task
can be performed in an efficient way. Until now, no
scalable and high performant mining approach that
can fully support MP-Declare is available.

3 MAP-REDUCE FOR MINING

In this section, we describe an efficient framework
for discovering MP-Declare constraints. After giving
insights into the internal infrastructure, we explain
the parallelisable discovery algorithms for commonly
used MP-Declare constraints that are used to disco-
ver models under consideration of further perspecti-
ves. In contrast to former solutions, this framework
can be used out of the box and the algorithm has to
consider the traces in one direction solely which le-
ads to a crucial benefit with regard to performance.

3.1 Architecture and Infrastructure

The basic idea of the algorithm builds upon the
MapReduce computation model. One key advantage
is the inbuilt opportunity for executing the calculati-
ons in parallel, which gives an enormous performance
boost, also in view of the analysis of an event log. At
first, the scaffolding of the MapReduce algorithm is
described briefly w.r.t. the discovery of a process mo-
del described later on. In the next section, we use an
example log containing two traces defined in Equa-
tion 1.

t0 = 〈a,b,b,c〉 t1 = 〈a,c,d〉 (1)

MR-I

trace0

trace1

trace2

tracen

MR-
II

memory

σ

η

ε

σ

η

ε

Support

Confidence

Figure 1: Infrastructure of the calculation.

To compute the support and confidence metrics, two
MapReduce jobs are required, MR-I and MR-II (cf.
Figure 1).

3.1.1 MR-I

In the map-phase of MR-I, key-value pairs are crea-
ted from the given event data, i.e., a single trace of a
log file. Each of the key-value pairs is assigned to a
number for further processing. In the case of process
discovery, this number is always 1. The challenge is
to generate these key-value pairs and map them to 1
in order to address the logic for the MP-Declare con-
straints.
Example: Given a trace t0 = 〈a,b,b,c〉. In the
scope of the response template, the trace is mapped
to four different key-value pairs in the map phase:
((a,b),1),((a,c),1),((b,c),1),((b,c),1). The keys
are exactly those event pairs which fulfil the response
template: a is followed by b and c, the first b is
followed by c and the second b is followed by c. The
underlying mapping algorithm containing the logic
for all constraint templates is described in Section 3.3.

The reduce-phase finally obtains the key-value
pairs that have been produced. The reduce-function
must be declared by the user once again. In the
case of constraint checking this phase depicts a
summation of values. To continue the example
above, the result of the reducer with trace t0 is:
((a,b),1),((a,c),1),((b,c),2).

σ-function. The support metric is defined as the
number of fulfilments of a constraint divided by the
number of occurrences of the activation. The MR-I
job in the example above calculates exactly the num-
ber of fulfilments, thus the numerator of the sup-
port formula. In the following we use a function
σγ : E ×E → N, where E are events, for describing
this figure, e.g. in t0: σresponse(b,c) = 2. γ is the set of
constraints.

η-function. To calculate the support of a constraint,
the number of occurrences of the activation is neces-
sary. For forward constraints ({∗}response), this is
the first event in the constraint template, e.g., b in the
constraint response(b,c). We define the number of
occurrences of events as η : E → N, for instance in
trace t0: η(b) = 2. In order to obtain the correct va-
lues for the η-function, for each event e in the trace a
key-value pair (e,1) is additionally emitted in the map
phase, e.g., for t0: (a,1),(b,1),(b,1),(c,1) which is
reduced to (a,1),(b,2),(c,1).

A MapReduce Approach for Mining Multi-Perspective Declarative Process Models

587

ε-function. A third value is necessary for determi-
ning the confidence, namely the amount of traces in
which a given event occurs. We introduce the function
ε : E → N, which holds this information. Taking into
account the second trace t1 (cf. Equation 1), MR-I
outputs ε(c) = 2 or ε(d) = 1, as c occurs in t0 and
t1, whereas d occurs in t1 solely. Transferring this to
MR-I, for each unique event e a key-value pair (e,1)
has to be produced, neglecting multiple occurrences
of events, e.g., for trace t0: (a,1),(b,1),(c,1).

The Tables 1 and 2 shows the complete result of
MR-I for the input log (cf. Equation 1) conside-
ring two constraint templates: response and chainRe-
sponse. The output of all mappers serves as the input
for the reducers.

Table 1: Output of the Mapper in MR-I.

Trace σR σCR η ε

a,b,b,c ab,1 bc,1 ab,1 a,1 a,1
ac,1 bb,1 b,1 b,1
bb,1 bc,1 b,1 c,1
bc,1 c,1

a,c,d ac,1 ac,1 a,1 a,1
ad,1 cd,1 c,1 c,1
cd,1 d,1 d,1

Table 2: Output of the Reducer in MR-I.

σR σCR η ε

ab,1 bc,2 ab,1 ac,1 a,2 a,2
ac,2 ad,1 bb,1 cd,1 b,2 b,1
bb,1 cd,1 bc,1 c,2 c,2

d,1 d,1

3.1.2 MR-II

Two MapReduce jobs are performed where the event
log only serves as input for the first MapReduce job.
The output values of MR-I are used in MR-II to cal-
culate support and confidence. Note that these cal-
culations had to be extracted to a separate job be-
cause every single trace of the provided log needs to
be tackled first in MR-I in order to obtain the σ-, η-
and ε-functions. This makes MR-II mandatory; ho-
wever, with a look on the performance, support and
confidence can be computed in parallel again.

Using the functions introduced above, the sup-
port of a constraint response(b,c) can be computed
as SR(b,c) =

σR(b,c)
η(b) = 2

2 = 1 (cf. Equation 2), thus as
the fraction between the fulfilments of the constraint
and the amount of its activations. Remember that
forward constraints (FWD = {∗}response) are acti-
vated with e1 (Equation 2) and backward constraints
(BWD= {∗}precedence) are activated with e2 (Equa-
tion 3).

SFWD(e1,e2) =
σFWD(e1,e2)

η(e1)
(2)

SBWD(e1,e2) =
σBWD(e1,e2)

η(e2)
(3)

The confidence of a constraint for an event pair
(e1,e2) is the product of the support of (e1,e2) with
the ratio between the amount of traces in the log in
which event e1 occurs (or e2 in case of backward con-
straints) and the total number of traces in the log, de-
noted as |l| in Equation 4 and 5.

CFWD(e1,e2) = SFWD(e1,e2) ·
ε(e1)

|l|
(4)

CBWD(e1,e2) = SBWD(e1,e2) ·
ε(e2)

|l|
(5)

In the running example, the confidence of the con-
straint response(b,c) is calculated as CR(b,c) =

SR(b,c) · (ε(b)
|l|) = 1 · 1

2 = 0.5.
In terms of MapReduce, the MR-II is structured

rather trivial. In the map-phase, the output of MR-I
is conducted directly to the reducer neglecting η and
ε, i.e., all key-value pairs of the σ-function of all con-
straints are emitted and obtained by the reducer. The
reduce-function then consults the DB (cf. Section
3.2) to look up the relevant η- and ε-value for a gi-
ven key and calculates the corresponding support and
confidence values (acc. to Equations 2, 3, 4 and 5).

3.2 Algorithm Overview

This section provides an overview on the algorithm
for declarative process model discovery (Algorithm
1).

Algorithm 1: Overview.

1 for Trace t in l do
2 KVP = mapToKVPairs(t)
3 DB = accumulateKVPairs(DB, KVP)
4 end
5 for Constraint c do
6 for Entry e in DB.σ.c do
7 calcSupportAndConfidence(e, c)
8 end
9 end

Given a log l with traces t, a first step is to cre-
ate the key-value pairs KV P (MR-I-Mapper). These
include the KV Ps for each constraint (σ) and for the
functions η and ε. These values are then accumulated
into a database DB (MR-I-Reducer). The DB con-
tains information about the three functions. For the

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

588

σ-function, it holds a list for each constraint separa-
tely and furthermore the entries of the lists compri-
sing tuples (EventTuple, f ul f ilments). This DB is
then used in MR-II. For each constraint c, each tuple
in the σc-list is considered (MR-II-Mapper). The dis-
covered EventTuple and the corresponding amount
of fulfilments is then used to calculate support and
confidence by consulting the corresponding η- and ε-
values relevant to the EventTuple (MR-II-Reducer).

3.3 Mapping MP-Declare Templates

We have to apply the logic of MP-Declare constraints
into the MR-I mapping function to emit the necessary
KV Ps and calculate the correct values for support and
confidence. For this purpose, we developed and deri-
ved algorithms from the support functions introduced
in (Di Ciccio and Mecella, 2015). Therefore, we defi-
ned specific σγ functions for each of the MP-Declare
relation constraints. Note that all the algorithms are
working at only one trace instead of the whole log
file, which ensures the capability of parallelization.

For reasons of readability, we use an abbreviated
form for representing the event data in this section.
We let the set of activities be {a,b,c,d}. Further on,
we restrict to one single perspective, e.g., the organi-
zational perspective, thus the defined resources which
can execute the activities are {x,y,z}. For instance,
trace t1 in Equation 6 holds the information, that in
the beginning a was executed by x, subsequently c
was executed by z and so forth. In the end, the case is
closed when again a was executed by x.

t1 = 〈ax,cz,by,bx,dz,by,ax〉 (6)

The structure of the algorithm is built upon a nes-
ted for-loop, so that for each event in a given trace,
every successor is considered. Henceforth i denotes
the loop control variable for the outer loop and j is
the counter variable for the inner loop.

In the case of t1 (cf. Equation 6), all successors
for ax are addressed in the inner loop (i = 0), whereas
in the next step (i = 1) all successors for cz are con-
sidered and so forth. While iterating over the trace,
different representations of the events are requested to
match the multiperspective constraint templates. We
denote the events for the outer loop as ieΓ and for the
inner loop as eΓ

j , where Γ takes either A (activation)
or T (target).
For instance, for i = 2 and j = 5 and in search of
activation constraints (i.e. A = (task,resource) and
T = (task)) following representations are detected:
1eA = cz, 1eT = c, eA

4 = dz and eT
4 = d.

In the following, we analyse the example trace
t1 (cf. Equation 6) and mark the pivot situati-
ons which are characteristic for each constraint tem-
plate with 1R,2R, ... for response, 1AR,2AR, ... for
alternateResponse and so forth.

3.3.1 Response

The initial assignment of (i, j) is (0,1), thus the events
ax and cz are considered. For activation constraints,
the activating event holds the additional condition so-
lely; hence, response(ax,c) is investigated in this first
case. This constraint, activated with 0eA (ax) is fulfil-
led with eT

1 (c) and thus σR(ax,c) is incremented by 1.
Also for (0eA,eT

2) the value for σR(ax,b) is incremen-
ted. In the next step, i.e., (0eA,eT

3), the σ-value must
not be modified, as the constraint response(ax,b),
activated with the event 0eA was already fulfilled with
eT

2 (cf. 1R in Table 3). Similar are the cases 2R to 5R.

Table 3: MR-I results for response constraints (activation).

c b b d b a
ax 3 3 1R 3 2R 3
cz 3 3R 3 4R 3
by 3 3 5R 3
bx 3 3 3
dz 3 3
by 3

For target constraints like response(a,cz) the ad-
ditional condition appears on the right-hand side.
That means, the events in the outer loop must ma-
tch the target template: ieT . Referring to Table 4, in
the cases 6R and 7R, σR(a,by) and σR(c,by) respecti-
vely must not be increased, as the constraints are also
already fulfilled (with eA

3 = by).

Table 4: MR-I Results for response constraints (target).

cz by bx dz by ax
a 3 3 3 3 6R 3
c 3 3 3 7R 3
b 3 3 3 3
b 3 3 3
d 3 3
b 3

3.3.2 AlternateResponse

The alternateResponse template shares the pivot
constellations for (i, j) for already fulfilled con-
straints similar to the response template (cf. 1AR
to 5AR in Table 5). For instance, the constraint
alternateResponse(ax,b) enforces that if the event a

A MapReduce Approach for Mining Multi-Perspective Declarative Process Models

589

occurs and is executed by x than the event b follows,
and there is no recurrence of x executing a in between.
In the case i = 0, this constraint is activated by 0eA

(ax) and fulfilled with the event eT
2 (b). Therefore, ad-

ditional events b must be ignored (e.g. eT
3).

Besides the already-fulfilled-errors, another class
of error type is introduced: violations. Con-
sider 6AR in Table 5. In this case, the con-
straint alternateResponse(by,a) is checked. Alt-
hough this constellation have not been occurred so
far for this activation, the value σAR(by,a) must
not be modified, because it is violated by eA

5 (by):
The activating event (by) recurs before a occurs.
This is forbidden within the alternateResponse tem-
plate. Note, that the resource is also decisive, thus
alternateResponse(by,d), activated with 2eA is fulfil-
led with eT

4 , although the event b recurs. However,
this is executed by x and so the constraint is not vio-
lated (marked with an asterisk in Table 5.)

Table 5: MR-I res. for alternateResponse constraints (act.).

c(z) b(y) b(x) d(z) b(y) a(x)
ax 3 3 1AR 3 2AR 3
cz 3 3AR 3 4AR 3
by 3 3∗ 5AR 6AR
bx 3 3 3
dz 3 3
by 3

The analysis of the target constraints (cf. Table.
6) shows the following anomalies: 7AR and 8AR are
excluded because of the already-fulfilled-case and the
cases 9AR to 12AR are excluded because of violations.
For instance, 9AR to 11AR are activated with the event
2eA (b) and as the first event in the inner loop is also
b (represented with the activation template, i.e. the
activity solely (eA

3)), all constraints with succeeding
events in the inner loop are violated.

Table 6: MR-I res. for alternateResponse constraints (tar.).

cz bx by dz by ax
a 3 3 3 3 7AR 3
c 3 3 3 8AR 3
b 3 9AR 10AR 11AR
b 3 3 12AR
d 3 3
b 3

3.3.3 ChainResponse

The logic for the chainResponse template is quite tri-
vial and is located outside the inner loop. For each
event ieA, the direct successor i+1eT is considered and
σCR(ieA,i+1 eT) is incremented by one. Examples are

an activation constraint like chainResponse(ax,c) or
a target constraint like chainResponse(a,cz).

Table 7: MR-I res. for chainResponse constraints.

cz by bx dz by ax
ax 3
cz 3
by 3
bx 3
dz 3
by 3

3.3.4 Precedence

Intuitively, one would iterate starting from the latest
event for the backward constraints, e.g. the first (i, j)-
tuple would be (5,6) going on with (4,6), i.e. the con-
straints precedence(eT

5 ,6 eA) and precedence(eT
4 ,6 eA)

respectively. The former describes that whene-
ver a occurs and was executed by x, then b has
to precede (in the case of activation constraints
precedence(b,ax)). Referring to the later, an exam-
ple for a target constraint is if a occurs in a trace,
then b has to precede and this has to be executed by y
(precedence(by,a)).
For the sake of a performance boost, we propose
an algorithm, which handle the backward constraints
also by iterating through the events in a forward di-
rection. To do so, the events of the outer loop (i) fills
the role of the target events and the events of the inner
loop (j) are now the activating events.
Consider Table 8. The first constraint under in-
vestigation will be precedence(a,cz), activated with
eA

1 (cz) and fulfilled with 0eT (a). After than,
precedence(a,by) is inspected. This one now is acti-
vated with eA

2 (by) but also fulfilled with the same ou-
ter loop event 0eT (a).
Interesting is the outer loop event 2eT (b) (cf. third
row in Table 8). In the case eA

4 (dz), the value for
σP(b,dz) must not be modified (1P). The reason is
that this constraint, activated with dz is fulfilled with
the outer loop event 4eT and thus, fulfilled in future
(marked with an asterisk in Table 8).

Table 8: MR-I results for the precedence constraint template
(activation).

cz by bx dz by ax
a(x) 3 3 3 3 3 3
c(z) 3 3 3 3 3
b(y) 3 1P 2P 3P
b(x) 3∗ 3 4P
d(z) 3 3
b(y) 3

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

590

The target constraints show similar behaviour.
Whenever the event ieT occurs also in the inner
loop in eT

j , then the rest of the inner loop is neg-
lected because the events are fulfilled later on, like
precedence(by,a) (5P) is fulfilled in the asterisk-
marked cell in Table 9.

Table 9: MR-I results for the precedence constraint template
(target).

c(z) b(y) b(x) d(z) b(y) a(x)
ax 3 3 3 3 3 3
cz 3 3 3 3 3
by 3 3 3 5P
bx 3 3 3
dz 3 3
by 3∗

3.3.5 AlternatePrecedence

In addition, the alternatePrecedence constraints, as
they are also backward constraints, are activated
with the second given event in the template. The
(activation) constraint alternatePrecedence(a,by) at
the marker 1AP in Table 10 is violated because of the
event eA

2 (by). Recurrences of the activating event are
forbidden within the alternatePrecedence template.
Similar is the case at 2AP.
Consider now case 3AP with the constraint
alternatePrecedence(b,dz). σAP(b,dz) must
not be incremented there, because this constraint
activated with eA

4 (dz) is fulfilled with the event 3eT

in the next run of the outer loop (note the asterisk
in Table 10). Similar are the cases 4AP to 6AP. In

Table 10: MR-I results for the alternatePrecedence con-
straint template (activation).

cz by bx dz by ax
a 3 3 3 3 1AP 3
c 3 3 3 2AP 3
b 3 3AP 4AP 5AP
b 3∗ 3 6AP
d 3 3
b 3

Table 11, the constraints at the cases 7AP to 11AP are
violated, because of the reoccurrence of the events eA

3
(b) and eA

5 (b) in the events eA
2 and eA

3 .

3.3.6 ChainPrecedence

The chainPrecedence constraint template is im-
plemented similar to the chainResponse tem-
plate. However, the events of the constraints
are integrated in reversed order starting with

Table 11: MR-I results for the alternatePrecedence con-
straint template (target).

c b b d b a
ax 3 3 7AP 3 8AP 3
cz 3 9AP 3 10AP 3
by 3 3 11AP 12AP
bx 3 3 3
dz 3 3
by 3

chainPrecedence(c,ax) (activation constraint) and in
general terms σCR(i+1eT ,i eA) is increased.

3.4 Pivot Characteristics Overview and
Resulting Algorithm

The anomalies detected in the previous section can be
traced to three certain pivot characteristics we have to
take care. They include already fulfilled (a), violation
(v) and fulfilled later (f), whereby the first one corre-
sponds to forward constraints and latter appears only
on backward constraints. In this section, the four ano-
maly classes are identified, described and the occur-
rence of problems regarding the classes are resolved.
Class I (1R − 7R,1AR − 5AR,7AR − 8AR). These si-
tuations occur when a pair of events is considered,
where the activating event was already fulfilled in
this case with a previous event. For instance, in a
trace 〈ax,b?,b?〉, the constraint R(ax,b) is fulfilled
with the first event b and must not be considered in
the next step (j = 2). For this activation constraint,
the additional perspective of the fulfilling event is
not crucial (note the ?). A similar case for a tar-
get constraint is 〈a?,bx,bx〉 where R(a,bx) is fulfilled
when reading the second bx in the inner loop. Also
the alternateResponse template suffers from this ano-
maly: assuming a trace 〈ax,ax,b?,ax,b?〉, the value
for σAR(ax,b) referring to the constraint AR(ax,b)
would be incremented with the first b and the second
b. Note that in this class it is forbidden for ax to recur
as this would cause a violation (cf. Class II).
Solution. The problem is that the events in the inner
loop filtered by the target template eT

j are recurring.
To prevent these Class I-failures, all events eT

j are sto-
red in a list L and σ is only incremented if the current
eT

j is not in L.
Class II (6AR,9AR−12AR). Class II-errors hits the

alternateResponse template solely. The definition of
this template forbids the activating event to recur be-
fore the second event appears. As an example serves
the trace 〈ax,ax,b?〉 with the constraint AR(ax,b) for
an activation constraint and 〈a?,a?,b〉 with AR(a,bx)
for a target constraint respectively.

A MapReduce Approach for Mining Multi-Perspective Declarative Process Models

591

Algorithm 2: Discovery of relational MP-Declare
constraints.

Input: Trace t
Output: DB

1 for i← 0 to trace.events.Count do
2 List<Event> eR, eAR, eAP;
3 bool bAR, bP, bAP = false;

4 db.η(ieA);

5 db.η(ieT);

6 db.ε(ieA);

7 db.ε(ieT);
8 for j← i+1 to trace.events.Count do

; /* Response */

9 if !eR.Contains(eT
j) then

10 db.σ.R(ieA, eT
j);

11 eR.Add(eT
j);

12 end
; /* AlternateResponse */

13 if !bAR ∧ !eAR.Contains(eT
j) then

14 db.σ.AR(ieA, eT
j);

15 eAR.Add(eT
j);

16 if eA
j = ieA then

17 bAR ← true;
18 end
19 end

; /* Precedence */
20 if !bP then
21 db.σ.P(ieT , eA

j);

22 end
23 if ieT = eT

j then
24 bP ← true;
25 end

; /* AlternatePrecedence */

26 if !bAP ∧ !eAP.Contains(eA
j) then

27 db.σ.AP(ieT , eA
j);

28 eAP.Add(eA
j);

29 end
30 if ieT = eT

j then
31 bAP ← true;
32 end
33 end
34 if i < |t|−1 then
35 db.σ.CR(ieA, i+1eT);

36 db.σ.CP(i+1eA, iTe);
37 end
38 end

Solution. If the activating event ieA recurs in the inner
loop as event eA

j , then all succeeding constraints in the
inner loop are violated by this recursion and thus the
inner loop can be cancelled for this template.

Class III (1P− 5P,3AP− 6AP,12AP). These ano-
maly is similar to Class I but for backward constraint
templates. Some constraints must not be considered
because they will be fulfilled later on. For instance,

in a trace 〈b?,b?,ax〉 in the first outer loop run it is
checked if the first b? fulfils a constraint P(b,ax). Ho-
wever, this is not true because this certain constraint
is fulfilled in the second outer loop run.
Solution. The problem here is that the event of the
outer loop ieT recurs in the inner loop event eT

j . That
means that the succeeding inner loop events are ful-
filled later on with succeeding outer loop events. In
case of a recurrence, the consideration of succeeding
events in this inner loop run can be cancelled.

Class IV (1AP−2AP,7AP−11AP). Similar to Class
II, errors corresponding to Class IV handle violati-
ons of constraints, viz. from the alternatePrecedence
template in this particular case. In a trace 〈a?,bx,bx〉
the activation constraint alternatePrecedence(a,bx),
activated with the second bx event is violated, as bx
recurs, before the fulfilling event a preceds.
Solution. As a solution, we store all events eA

j in a
list. If a next event eA

j with a greater j occurs, the
consideration of alternatePrecedence templates can
be cancelled for a certain i.

4 IMPLEMENTATION

In this section, we particularly describe the imple-
mentation of MapReduce MP-Declare mining. As the
algorithm is built upon the MapReduce computation
paradigm, we took care to exploit this chance of paral-
lelism by spreading the workload on multiple threads
of a multicore CPU. As a first step, the XES log file
has to be loaded into the applications memory. This is
done by reading the file with the .NET LIBARY and
parsing the information into POCOs. This step is also
used to collect meta information about the event log
to provide the user for instance a list of available per-
spectives but also some information on the expected
performance of the analysis by means of the figures
described in Section 4.2. As soon as the user has cho-
sen the perspectives to consider, i.e. he has built the
mining template (e.g. task∧ resource→ task), a first
parallel processing step builds the three characteristic
functions σ, η and ε in MR-I. With the parallel exten-
sions of the Language Integrated Query-.NET com-
ponent (PLINQ: Parallel.ForEach();) we dele-
gate the whole parallelization and task generation on
to the framework itself and abstract from low level
programming issues with all the upcoming advanta-
ges. We just had to take care of race hazards when
joining to the global database (cf. lock-keyword).
After then, when each of the traces has been consi-
dered and the characteristic functions are completed,
the MR-II function can be invoked. Again, this step
is executed in parallel with PLINQ.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

592

4.1 Performance Influence Factors

Distribution of the Events. The most relevant index
number for a performance analysis is the amount of
loop runs the algorithm has to complete as they rise
in a quadratic manner with the amount of events in a
trace. For a trace with n events, the amount of loop
runs Lt follows the formula in Equation 7.

Lt = (n−1)+ ...+1 =
n · (n−1)

2
=

n2−n
2

(7)

That means, the higher the amount of traces with a
huge amount of events in a log file, the higher is
the computation time. For instance, first assume a
log file containing 100 traces with a total amount of
1500 events, evenly distributed with 15 events per
trace. Then the number of loop runs comes up to
152−15

2 = 105 for each trace, or summed up for the
whole log 105 · 100 = 10500. Now consult a log file
also with 100 traces, but now with 10 traces contai-
ning 90% of the events (945 events per trace) and the
remaining 90 traces with the remaining 12 events per
trace1. Then the total amount of loop runs is calcula-
ted as 10 · 9452−945

2 +90 · 122−12
2 = 4460400+5940 =

4466340, which is more than 400 times higher than in
the evenly distributed log. Hence, the crucial factor,
i.e. the total number loop runs, can then be defined
as the sum of the loop runs of each single trace (cf.
Equation 8).

∑
Trace t

|t|2 · (|t|−1)
2

(8)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0

1

% of Traces

%
of

E
ve

nt
s

Figure 2: This caption has one line so it is centered.

Consider Table 12. Four real-life event logs were
analysed while the traces where rearranged in descen-
ding order by the amount of events. It can clearly
be seen that in the Hospital Log (blue line), half of
the traces contains nearly all captured events (94%).
Half of the events are included in the first 130 traces
(11.4% of all traces). This raises the necessary loop

1round up for simplicity

runs to about 33 · 106. In contrast, in the Municipa-
lity Log (red line), the first half of the traces contains
only about 64% of the events and 50% of the events
are recorded in the first 438 traces (36% of all traces),
similar to the Loan Application Log and the Traffic
Log.

Since now, we have not seen a chance in breaking
the quadratic dependency but as stated, compared to
(Di Ciccio and Mecella, 2015) or (Sturm et al., 2017)
we introduced an algorithm which is not in need of
a two-directional investigation of the traces and thus
saves half of the necessary loop runs.
Amount of Traces and Events. Apart from the
dependency of the distribution of the events within
the log discussed above, our implementation could
handle log files with up to 150000 Traces or 1000000
captured events. Table 12 shows that the absolute
amount of events and traces does not have a strong
impact on the performance. For instance, the Traffic
Log inherits nearly 600000 events and 150000 traces
but is analysed within a mere fraction of time compa-
red to logs either with less traces or less events.
Amount of Discovered Constraints. In order to in-
vestigate a performance restriction caused by a huge
amount discovered constraints, we set the threshold
of support and confidence on a minimal level, for in-
stance 0.05 and 0.02 instead of 0.5 and 0.2. Shown
with the Hospital Log, there is no noticeable change
in performance when discovering about 35000 con-
straints instead of 2000. Therefore, this is not worth
to be further analysed.

4.2 Performance Evaluation

We evaluated the effectiveness of our approach w.r.t.
to several real-life event logs. We first evaluated
our approach for the discovery of MP-Declare con-
straints using the Hospital Log2, which records the
treatment of patients diagnosed with cancer from a
large Dutch hospital. In 5 of the traces at least one
event does not include the additional perspective data
(from org:resource) and thus they had to be excluded
from the investigation. Furthermore, we applied our
approach to the publicly available real-life event log
(Traffic Log3) of an Italian local police office for ma-
naging fines for road traffic violations. This log file
barely contains additional perspective data in a con-
sistent way, so the lifecycle:transition attribute was
considered as additional perspective, but the seman-
tics does not affect the performance anyway. Additi-

2https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-
803b-0d1120ffcf54

3https://doi.org/10.4121/uuid:270fd440-1057-4fb9-
89a9-b699b47990f5

A MapReduce Approach for Mining Multi-Perspective Declarative Process Models

593

Table 12: Real-Life Event Logs under investigation.

Log Name Events Traces Events/Traces Loop Runs Runtime in s
Traffic Log 561470 150370 3 0,97 133

Municipality Log 52217 1199 43 1,28 153
Loan Application Log 1202267 31509 38 26,73 697

Hospital Log 149489 1138 131 33,17 761

onally, we applied our approach to an event log per-
taining to an administrative process in a Dutch mu-
nicipality (Municipality Log4) as well as a log file
containing Loan Application5 information. All four
event logs have been analysed w.r.t. all six descri-
bed MP-Declare templates. The time measurements
in Table 12 considers activation conditions solely, but
the same tendencies could be recorded for target con-
ditions.

500

1000

0.97 12.8 26.4 33.1

Loop Runs ·106

Se
co

nd
s

Figure 3: Performance of sequential execution compared to
parallel execution.

The benchmark shows the expected behaviour
with respect to the proposed performance influencing
figures. Mapped into the coordinate system shown in
Figure 3 with the total loop runs on the abscissa and
the elapsed time on the ordinate one can clearly see
the dependency. Furthermore, the impact of paralleli-
zation is revealed. When working on the Traffic Log
(0.97), there is almost no difference between the se-
quential (dashed line) and the parallel execution (solid
line). The performance gain through the distributed
computing is cancelled out by the additional workload
for task generation and joining the MR-I mapping re-
sults. Nevertheless, with more challenging log files in
terms of loop runs (e.g. the Hospital Log (33.1)), the
parallelization is exploited more and more efficiently.

5 RELATED WORK

Several approaches have been proposed for the disco-
very of declarative process models. In (Maggi et al.,

4https://doi.org/10.4121/uuid:31a308ef-c844-48da-
948c-305d167a0ec1

5https://doi.org/10.4121/uuid:5f3067df-f10b-45da-
b98b-86ae4c7a310b

2011), the authors present an approach that allows the
user to select from a set of predefined Declare templa-
tes the ones to be used for the discovery. Other appro-
aches to improve the performances of the discovery
task are presented in (Di Ciccio et al., 2015b; Wes-
tergaard et al., 2013). Additionally, there are post-
processing approaches that aim at simplifying the re-
sulting Declare models in terms of redundancy elimi-
nation (Maggi et al., 2013a; Di Ciccio et al., 2015a)
and disambiguation (Bose et al., 2013). An approach
similar to the SQL-based one used in this paper is pre-
sented in (Räim et al., 2014) and is based on tempo-
ral logic query checking. In (Westergaard and Maggi,
2012), the authors define Timed Declare, an extension
of Declare that relies on timed automata. In (Maggi,
2014), an approach for analysing event logs with Ti-
med Declare is proposed. The DPILMiner (Schönig
et al., 2016) exploits a discovery approach to incorpo-
rate the resource perspective and to mine for a set of
predefined resource assignment constraints. In (Mon-
tali et al., 2013), the authors introduce for the first
time a data-aware semantics for Declare and (Maggi
et al., 2013b) first covered the data perspective in de-
clarative process discovery, although this approach
only allows for the discovery of discriminative acti-
vation conditions. (Schönig et al., 2016) proposes an
approach to enable the discovery of MP-Declare con-
straints by querying event logs given in relational da-
tabases with SQL. Here, a performance evaluation has
not been described.

6 CONCLUSIONS

In this paper, we proposed an efficient framework for
the discovery of MP-Declare models based on the dis-
tributed processing method MapReduce. We introdu-
ced parallelizable algorithms for discovering six com-
monly used types of MP-Declare constraints. The
mining performance and effectiveness have been tes-
ted with real-life event logs. The experiments show
that our technique solves this complex mining task in
reasonable time. The approach at hand represents a
step into the direction of integrating process and data
science and depicts a customisable and high perfor-
mant declarative process mining technique. For fu-
ture work, we plan to consider also correlation and

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

594

time conditions as well as an additional integration
of all MP-Declare constraints. Furthermore, we will
examine how to improve performance even more,
for instance with alternative MapReduce frameworks
which can be set up and tested with the proposed al-
gorithms.

REFERENCES

Bose, J. C., Maggi, F. M., and van der Aalst, W. (2013). En-
hancing Declare Maps Based on Event Correlations.
In Business Process Management, pages 97–112.

Burattin, A., Maggi, F. M., and Sperduti, A. (2015). Con-
formance checking based on multi-perspective decla-
rative process models. CoRR, abs/1503.04957.

Burattin, A., Maggi, F. M., van der Aalst, W. M., and Sper-
duti, A. (2012). Techniques for a Posteriori Analy-
sis of Declarative Processes. In EDOC, pages 41–50,
Beijing. IEEE.

de Leoni, M., van der Aalst, W. M. P., and Dees, M. (2016).
A general process mining framework for correlating,
predicting and clustering dynamic behavior based on
event logs. Inf. Syst., 56:235–257.

Di Ciccio, C., Maggi, F. M., Montali, M., and Mendling,
J. (2015a). Ensuring model consistency in declarative
process discovery. In BPM, volume 9253 of Lecture
Notes in Computer Science, pages 144–159. Springer.

Di Ciccio, C. and Mecella, M. (2013). A two-step fast algo-
rithm for the automated discovery of declarative work-
flows. In CIDM, pages 135–142. IEEE.

Di Ciccio, C. and Mecella, M. (2015). On the discovery
of declarative control flows for artful processes. ACM
TMIS, 5(4):1–37.

Di Ciccio, C., Schouten, M. H. M., de Leoni, M., and Mend-
ling, J. (2015b). Declarative process discovery with
MINERful in ProM. In BPM Demos, pages 60–64.

Maggi, F., Bose, R., and van der Aalst, W. (2013a). A
knowledge-based integrated approach for discovering
and repairing declare maps. In CAiSE.

Maggi, F. M. (2013). Declarative process mining with the
declare component of prom. In BPM Demo sessions
2013, 26-30, 2013.

Maggi, F. M. (2014). Discovering metric temporal busi-
ness constraints from event logs. In BIR, volume 194
of Lecture Notes in Business Information Processing,
pages 261–275. Springer.

Maggi, F. M., Dumas, M., Garcı́a-Bañuelos, L., and Mon-
tali, M. (2013b). Discovering data-aware declarative
process models from event logs. In BPM, pages 81–
96.

Maggi, F. M., Mooij, A., and van der Aalst, W. (2011).
User-Guided Discovery of Declarative Process Mo-
dels. In CIDM, pages 192–199.

Montali, M., Chesani, F., Mello, P., and Maggi, F. M.
(2013). Towards data-aware constraints in declare. In
SAC, pages 1391–1396. ACM.

Montali, M., Pesic, M., van der Aalst, W. M. P., Chesani,
F., Mello, P., and Storari, S. (2010). Declarative Spe-
cification and Verification of Service Choreographies.
ACM Transactions on the Web, 4(1).

Pesic, M., Schonenberg, H., and van der Aalst, W. M. P.
(2007). Declare: Full support for loosely-structured
processes. In IEEE International EDOC Conference
2007, pages 287–300.

Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling,
J., and Reijers, H. A. (2011). Imperative versus de-
clarative process modeling languages: An empirical
investigation. In BPM Workshops, pages 383–394.

Räim, M., Di Ciccio, C., Maggi, F. M., Mecella, M.,
and Mendling, J. (2014). Log-based understanding
of business processes through temporal logic query
checking. In OTM Conferences, volume 8841, pages
75–92. Springer.

Schönig, S., Cabanillas, C., Jablonski, S., and Mendling, J.
(2016). A Framework for Efficiently Mining the Or-
ganisational Perspective of Business Processes. Deci-
sion Support Systems.

Schönig, S., Di Ciccio, C., Maggi, F. M., and Mendling,
J. (2016). Discovery of multi-perspective declara-
tive process models. In Service-Oriented Computing,
ICSOC, Banff, Canada, pages 87–103.

Sturm, C., Schönig, S. S., and Ciccio, C. D. (2017). Dis-
tributed multi-perspective declare discovery. In BPM
Demos.

van der Aalst, W. (2011). Process Mining: Discovery,
Conformance and Enhancement of Business Proces-
ses. Springer.

Westergaard, M. and Maggi, F. M. (2012). Looking into the
future: Using timed automata to provide a priori ad-
vice about timed declarative process models. In OTM,
volume 7565 of LNCS, pages 250–267. Springer.

Westergaard, M., Stahl, C., and Reijers, H. (2013). Un-
constrainedMiner: Efficient Discovery of Generalized
Declarative Process Models. BPM CR, No. BPM-13-
28.

Zeising, M., Schönig, S., and Jablonski, S. (2014). Towards
a Common Platform for the Support of Routine and
Agile Business Processes. In Collaborative Compu-
ting: Networking, Applications and Worksharing.

A MapReduce Approach for Mining Multi-Perspective Declarative Process Models

595

