
Cost-efficient Datacentre Consolidation
for Cloud Federations

Gabor Kecskemeti1, Andras Markus2 and Attila Kertesz2

1Department of Computer Science, Liverpool John Moores University, U.K.
2Software Engineering Department, University of Szeged, 6720 Szeged, Dugonics ter 13, Hungary

Keywords: Cloud Computing, Datacentre Consolidation, Simulation.

Abstract: Cloud Computing has become mature enough to enable the virtualized management of multiple datacentres.
Datacentre consolidation is an important method for the efficient operation of such distributed infrastructures.
Several approaches have been developed to improve the efficiency e.g. in terms of power consumption, but
only a few attention has been turned to combining pricing methods with consolidation techniques. In this
paper we discuss how we introduced cost models to the DISSECT-CF simulator to foster the development
of cost efficient datacentre consolidation solutions. We also exemplify the usage of this extended simulator
by performing cost-aware datacentre consolidation. We apply real world traces to simulate cloud load, and
propose 7 strategies to address the problem.

1 INTRODUCTION

Cloud computing enabled the virtualized manage-
ment and sharing of software and hardware solutions,
including computing and storage resources and ap-
plication runtimes. The elasticity of Infrastructure as
a Service (IaaS) clouds allows commercial providers
to better exploit their datacentres as well as increase
their incomes. Datacentre consolidation is a techni-
que that helps achieving these goals. Related works
in datacentre load balancing and consolidation have
already shown that multi-objective proposals can hin-
der performance and increase the problem complex-
ity, therefore innovative solutions are needed to deal
with multiple and complex aims.

In this paper, we investigate novel, cost-aware Vir-
tual Machine (VM) consolidation methods for cloud
datacentres using the DISSECT-CF simulator (Kec-
skemeti, 2015), which is a generic tool for investi-
gating infrastructure clouds. We discuss how to in-
troduce cost models to the DISSECT-CF simulator
to investigate cost efficient datacentre consolidation
techniques. We also propose 7 different strategies to
perform VM consolidation, and present how to use
the extended simulator by performing cost-aware da-
tacentre consolidation by evaluating these algorithms.
We apply real world traces to simulate cloud load du-
ring the experiments.

The structure of the paper is the following. First,

in Section 2, we discuss state of the art approa-
ches in the field. In Section 3, we introduce the
cost models applied in the DISSECT-CF simulator.
Section 5 discusses our experiments and measure-
ment results achieved with the extended simulator. Fi-
nally, Section 6 concludes our work.

2 RELATED WORK

Ahmad et al. presented a survey on datacenter con-
solidation solutions in (Ahmad et al., 2015). They
argued that virtual machine (VM) migration and dy-
namic voltage frequency scaling (DVFS) methods
are generally used to achieve server consolidation,
which help to achieve resource management goals
like load balancing and power management, though it
also affects application performance. They concluded
the survey that the unpredictable nature of worklo-
ads and the inability to accurately predict application
demands call for dynamic, lightweight and adaptive
VM migration designs to improve application perfor-
mance. Filho et al. (Filho et al., 2018) published anot-
her survey in this field. They state that VM placement
and migration are the major challenging issues in ma-
nagement of virtualized datacenters, and many pro-
posals apply different approaches ranging from linear
programming, to genetic algorithms. They also sho-
wed that multi-objective proposals can reduce perfor-

Kecskemeti, G., Markus, A. and Kertesz, A.
Cost-efficient Datacentre Consolidation for Cloud Federations.
DOI: 10.5220/0006775302130220
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 213-220
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

213

Figure 1: The architecture of the DISSECT-CF simulator .

mance and increase the problem complexity, therefore
innovative solutions are needed to deal with multiple
and complex aims. Our proposed simulation environ-
ment aims at providing a way for investigating certain
policies to achieve these goals.

Concerning simulations, the CloudSim toolkit has
been widely used to propose and evaluate certain heu-
ristics for datacenter consolidation, such as in (Abdul-
lah et al., 2017) and (Kertesz et al., 2016). Though
these solutions provide load balance improvements,
they do not take into account and do not apply provi-
der pricing.

3 OUR PROPOSED COST MODEL
FOR CLOUD DATACENTRE
MANAGEMENT

DISSECT-CF is a compact open source (DISSECT-
CF, 2017) simulator focusing on the internals of IaaS
systems. Figure 1 presents its architecture including
our extensions (denoted with grey colour). There are
six subsystems (encircled with dashed lines) imple-
mented, each responsible for a particular functiona-
lity: (i) event system – the primary time reference;
(ii) unified resource sharing – models low-level re-
source bottlenecks; (iii) energy modelling – for the
analysis of energy-usage patterns of resources (e.g.,
NICs, CPUs) or their aggregations; (iv) infrastructure
simulation – for physical/virtual machines, sensors
and networking; (v) cost modelling – for managing
IoT and cloud provider pricing schemes, and (vi) in-
frastructure management – provides a cloud like API,
cloud level scheduling, and IoT system monitoring
and management.

In a recent work (Markus et al., 2017), we intro-
duced the following new components to model IoT
Cloud systems: Sensor, IoT Metering and IoT Con-
troller. Sensors are essential parts of IoT systems,

and usually they are passive entities (actuators could
change their surrounding environment though). Their
performance is limited by their network gateway’s
(i.e., the device which polls for the measurements and
sends them away) connectivity and maximum update
frequency. Our network gateway model builds on
DISSECT-CF’s already existing Network Node mo-
del, which allows changes in connection quality as
well. In our model, the Sensor component is used
to define the sensor type, properties and connections
to a cloud system. IoT Metering is used to define and
characterize messages coming from sensors, and the
IoT Controller is used for sensor creation and mana-
gement.

To incorporate cost management, we enabled de-
fining and applying provider pricing schemes both for
IoT and cloud part of the simulated environments.
These schemes are managed by the IoT and Cloud
Pricing components of the Cost modeling subsystem
of DISSECT-CF, as shown in Figure 1.

3.1 Configurable Cost Models based on
Real Provider Schemes

In order to enable realistic datacentre consolidation
simulations, we considered four of the most popu-
lar, commercial cloud providers, namely: Amazon,
MS Azure, IBM Bluemix and Oracle. Most providers
have a simple pricing method for VM management
(beside thaditional virtual machines, some provide
containers, compute services or application instances
for similar purposes). The pricing scheme of these
providers can be found on their websites. We conside-
red the Azure’s application service (Azure, 2017), the
Bluemix’s runtime pricing sheet under the Runtimes
section (IBM, 2017), the Amazon EC2 On-Demand
prices (Amazon, 2017), and the Oracle’s compute ser-
vice (Oracle, 2017) together with the Metered Servi-
ces pricing calculator (Oracle Calculator, 2017). The
cloud-related cost is based on either instance prices
(Azure and Oracle), hourly prices (Amazon) or the
mix of the two (Bluemix) provider uses both type of
price calculating. For example, Oracle charges depen-
ding on the daily uptime of our application as well as
the number of CPU cores used by our VMs.

Figure 2 shows the XML structure and the cost va-
lues for the applied categories we designed to be used
in the simulator. This configuration file contains some
providers (for example the amazon element starting in
the second line), and the defined values are based on
the gathered information from the providers’ public
websites discussed before. We specified 3 different
sizes for applicable VMs (named small, medium and
large).

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

214

<cloudproviders>
<amazon>
<medium>
<ram>8589934592</ram>
<cpucores>2</cpucores>
<instance-price>18.15</instance-price>
<hour-per-price>0.094</hour-per-price>

</medium>
</amazon>
<oracle>
<medium>
<ram>16106127360</ram>
<cpucores>2</cpucores>
<instance-price>139</instance-price>
<hour-per-price>0</hour-per-price>

</medium>
<large>
<ram>16106127360</ram>
<cpucores>4</cpucores>
<instance-price>268</instance-price>
<hour-per-price>0</hour-per-price>

</large>
</oracle>
<bluemix>
<large>
<ram>4294967296</ram>
<cpucores>8</cpucores>
<instance-price>0</instance-price>
<hour-per-price>0.296</hour-per-price>

</large>
</bluemix>

</cloudproviders>

Figure 2: Cost model of Cloud providers.

This XML file has to contain at least that size ca-
tegory to be used for the experiments. As we can see
from the fourth line to the seventh line, a category de-
fines a virtual machine with the given ram and cpuco-
res attributes, and we state the virtual machine prices
with the instance-price and hour-per-price attributes.
If we select the amazon provider with small category,
then in the scenarios a virtual machine will have 1
CPU core and 2 GB of RAM, and the usage of this
virtual machine will cost 0.296 Euro per hour.

4 CONSOLIDATOR
ALGORITHMS

Data-centre consolidation techniques are heavily used
in commercial clouds. Consolidation is built on the
migration capabilities of virtual machines, where vir-
tualised workload is moved around in the data-centre
according to the cloud operator’s goals. In the past ye-
ars, there were several approaches proposed for con-
solidating the virtualised workloads of clouds. Most

of them were evaluated with simulations. When
analysing cost models, the effects of consolidation
could not be avoided. Although, the foundations for
these consolidator algorithms were laid down in our
DISSECT-CF simulator from the beginning (Kecske-
meti, 2015). Even with the addition of more precise
live-migration modelling (Maio et al., 2016), the con-
solidation algorithms were not present in the simula-
tor.

There are two distinct approaches possible to im-
plement a consolidation algorithm in DISSECT-CF:
(i) create an alternative physical machine (PM) con-
troller which utilizes consolidator related techniques
as well or (ii) create an independent consolidator
which builds on top of the other infrastructure ma-
nagement components of the simulator. While both
approaches could apply the same policies and enact
the same goals of a cloud provider, they should be im-
plemented differently. In the first case, the PM con-
troller should extend its possible actions from swit-
ching on/off PMs to migrating VMs as well. In the
second case, the consolidator is dedicated to only de-
cide on migration related actions. This is beneficial
as the consolidator algorithm could collaborate with
multiple PM controller strategies without the need for
a complete rewrite of the consolidation approach. As
this second approach is more generic, thus we present
it in this paper in more detail. Note, the source of the
presented approach is publicly available in the source
repository of DISSECT-CF (DISSECT-CF, 2017).

Figure 3 shows how the extension was imple-
mented. The main addition of the simulator is the
Consolidator class, which is to be extended by any
new consolidation policies in the future. This abstract
class handles the basic connection of the future con-
solidators to the IaaSService by monitoring the VM
related activities on the cloud. It is also responsible
for managing the frequency with which the consoli-
dation policy is run (to be implemented by third par-
ties in the doConsolidation() function). In general,
it ensures that the custom consolidator policy is only
invoked if there are any VMs in the cloud at any par-
ticular time. To do so, the consolidator monitors the
PMs and observes how they are managed by PM con-
trollers and utilised by the VM schedulers.

The simulator also offers a consolidation policy
called SimpleConsolidator. This policy packs the
VMs to the smallest amount of PMs as follows.

1. Creates an ordered list (P := {p1, p2, ...pn}) of
the PMs (e.g., p1) currently running in the IaaS
(where the number of running PMs in the IaaS is
n). This list has the least used PMs in the front and
the heaviest used ones at the tail: u(p1)≤ u(p2)≤
... ≤ u(pn). Where we denote the utilisation of a

Cost-efficient Datacentre Consolidation for Cloud Federations

215

IaaSService Consolidator

SimpleConsolidator

1 0..1toConsolidate

PhysicalMachine

VirtualMachine

managed

hosted

observed

#doConsolidate()

Abstract, expects
implementors to

provide consolidation
policy and goals

Figure 3: Consolidation related extension of DISSECT-CF.

PM with the function : u : P→ R. Note: the utili-
sation is determined solely on the resource alloca-
tions for the VMs hosted on each PM and it is not
dependent on the instantaneous resource usage of
any of the VMs in the cloud.

2. Picks the least used not yet evaluated PM (pi). If
there are no more PMs to evaluate, we terminate
the algorithm.

3. Picks a VM (vx) hosted by pi. Where vx ∈ h(pi)
and the function h : P→ 2V defines the set of VMs
which are hosted by a particular PM. This set is a
subset of all VMs (V) in the IaaS service.

4. Picks the heaviest used (but not completely utili-
sed) and not yet tested PM (pk). Where we have
the following limits for k: i+1≤ k ≤ n.

5. Checks if the new PM has enough free resour-
ces to host the VM: r f (pk, t) ≥ r(vx, t), where
r f : P×R → R3 and r : V ×R → R3. The r f
function tells the amount of free resources avai-
lable at the specified host at the specified time
instance t. Also, the r function tells the amount
of resources needed by the virtual machine at the
specified time instance. The resource set is mo-
delled by a triplet of real numbers: (i) number of
CPU cores, (ii) per core processing power and fi-
nally (iii) memory.

• If the check was successful, then the VM is re-
quested to be migrated from the host pi to pk.
Then continue on with a new VM pick.

• If the check fails, we repeat with all untested
PMs. If no more PMs are around to test, we
pick another VM from the list of h(pi). If there
are no more VMs to pick, we return to step 2.

Thus we can summarize the algorithm as packing the
VMs to the heaviest loaded PMs with a first fit appro-
ach. This approach is efficient with the PM controller
called SchedulingDependentMachines which swit-
ches off all unused machines once they become freed
up (in this case once all their VMs migrate away).

5 EVALUATION

During our implementation and evaluation, where ap-
plicable, we used publicly available information to
populate our experiments. In the next subsection we
introduce the applied workloads, then discuss the pro-
posed algorithms and scenarios, and the achieved re-
sults.

5.1 Workloads

Though virtual machine management log-based tra-
ces would be the best candidates for analysing cloud
characteristics, traces collected from other large-scale
infrastructures like grids could also be appropriate.
Generally two main sources are used for this purpose:
the Grid Workloads Archive (GWA (GWA, 2017))
and the Parallel Workloads Archive (PWA, 2017). For
this study we used traces downloadable from GWA
(namely: AuverGrid, DAS2, Grid5000, LCG, Nor-
duGrid and SharcNet).

We used the JobDispatchingDemo from the
DISSECT-CF examples project1, to transform the
jobs listed in the trace to VM requests and VM activi-
ties. This dispatcher asks the simulator to fire an event
every time when the loaded trace prescribes. Also, the
dispatcher maintains a list of VMs available to serve
job related activities (e.g., input & output data trans-
fers, cpu and memory resource use). Initially the VM
list is empty. Thus the job arrival event is handled
with two approaches: (i) if there is no unused VM in
the VM list that has sufficient resources for the pres-
cribed job, then the dispatcher creates a VM accor-
ding to the resource requirements of the job; alterna-
tively, (ii) if there is an unused VM with sufficient
resources for the job, then the job is just assigned to
the VM. In the first approach, the job’s execution is
delayed until its corresponding VM is spawned. In
both cases, when the job finishes, it marks the VM
as unused. This step allows other jobs to reuse VMs
pooled in the VM list. Finally, the VMs are not kept
for indefinite periods of time, instead they are kept
in accordance with the billing period applied by the
cloud provider. This ensures, that the VMs are held
for as long as we paid for them but not any longer. So
if there is no suitable job coming for a VM within its
billing period, then the VM is terminated and it is also
removed from the VM list.

5.2 Scenarios

In the following we list the pricing strategies availa-
ble at the moment. They are applicable alone or in

1https://github.com/kecskemeti/dissect-cf-examples

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

216

combination as required.

S1 - Fixed Pricing. It uses a constant price for every
VM request. This pricing strategy does not consi-
der any factors in its price:

M f ix = mc, (1)

where M f ix is the price (i.e money) returned, and
mc is the constant base price which is configurable
for every simulation.

S2 - Resource Constraints Aware Pricing. It im-
plements a linear relationship between the price
of a VM and the amount of resources the VM
needs. The higher the resource needs are, the
more the user should pay.

Mrcaw(rcores,rmem,rproc) =

mc
rcpu ∗ rproc ∗ rmem

rMAX
cpu ∗ rMAX

proc ∗ rMAX
mem

,
(2)

where the triple < rcores,rmem,rproc > represents
the resources requested by the customer for its
VM. The triple < rMAX

cpu ∗ rMAX
proc ∗ rMAX

mem > repre-
sents the properties of the largest resource amount
any PM has in the cloud provider. Note that all
the resource values are represented as the provi-
der sees them fit, for the purpose of the paper we
assumed they are all positive real numbers (e.g.,
rcores ∈ R+). Thus, this pricing model, charges
mc if the user requests the largest still serviceable
resource set.

S3 - Quantized Pricing. It applies a pricing strategy
similar to Mrcaw. But instead of scaling the price
by a continuous function, we apply a transforma-
tion which transforms (T : R3→ R3) the original
request from the user to some preset values. When
defining a quantized pricing, one must define this
transformation only, then we can apply the Mrcaw
model to find out the actual price.

Mquant(rcores,rmem,rproc) =

Mrcaw(T(rcores,rmem,rproc))
(3)

This is the technique that is used by most of cloud
providers nowadays. In those cases, the providers
are often restricting the amount of resources one
can request as well. An example transformation
function could be:

Tex =

if rmem <= 2∧ rcores <= 1
r′mem = 2,r′cores = 1,rproc = 1

if 2 < rmem <= 8∧1 < rcores <= 2
r′mem = 8,r′cores = 2,rproc = 1

otherwise
r′mem = 32,r′cores = 8,rproc = 1

(4)
The simulator implements a pricing model which
can be configured to load a particular transforma-
tion function for a particular cloud provider. The
limits for the transformation functions are stored
in an XML file representing certain commercial
provider cost models. Later in the measurements
we apply the cost model presented in Section 3.

S4 - PM Utilization Aware Pricing. This strategy
also offers a linear pricing approach. In contrast
to the resource constraints aware pricing model,
this time, we adjust the price based on the number
of PMs in use at cloud provider:

Mutaw = mc
|PU |
|P|

, (5)

where the PU is the set of PMs that host any VMs:
PU = {∀px ∈ P : u(px) 6= 0}. Thus the more ex-
ploited the cloud provider is, the more the user
should pay.

S5 - Load Dependent Pricing. This works similarly
to the PM utilization aware pricing. At the cost
of additional monitoring requirements, it imple-
ments the same policy with a more fine grained
utilization calculation:

Mld = mc
∑∀p∈P R(p)

∑∀p∈P RMAX (p)
, (6)

where R(p) represents the average amount of re-
sources utilised in the last hour from particular
physical machine, while RMAX (p) defines the to-
tal amount of resources the PM could offer in
the same hour. Thus, this pricing model consi-
ders how well the VMs actually use the resources
and if the VMs are not highly used (even though
they are hosted at the cloud at the moment), then
the prices will be lowered (this will attract further
users and enable the provider to use under provisi-
oning for those VMs that are just paid for but not
used at the moment).

S6 - Reliability Aware Pricing. It alters the price
based on the ratio of successfully and unsuccess-
fully hosted VMs at the cloud. A VM is classified
unsuccessfully hosted if it is terminated because

Cost-efficient Datacentre Consolidation for Cloud Federations

217

of a physical machine failure, and not because of
a user’s request.

Mrel = mc
|Vf |
|V |

, (7)

where Vf is the set of VMs which failed due to a
hardware issue at the provider side.

S7 - Profit Margin Focused Pricing. It tries to price
resources so the profit margin index (i) of the
cloud provider stays in a predefined range (i.e.
Imin < i < Imax).

Mmargin(t0) = mc (8)

Mmargin(tx) =

Mmargin(tx−1) ·

0.9, if i(tx)< Imin

1.1, if i(tx)> Imax

1, otherwise
,

(9)

where the function i(t) determines the current (or
at a given time, represented by t) profit margin
index of a provider. This technique tries to adopt
the prices to make sure the provider is profitable
even in competitive environments.

5.3 Results

As mentioned before, we investigated how policies
considering pricing information can affect consolida-
tion processes. We used 6 different trace files from
real world distributed systems to simulate load on
the cloud datacentres we aim to consolidate. We
also designed 7 different strategies to perform cost-
aware consolidation. In overall, the consolidation al-
gorithms succeeded to balance the load over the sy-
stem, and in most cases energy and money can be sa-
ved by applying them. In the following we highlight
the most interesting results.

We have performed numerous experiments by
executing the above listed strategies for all previously
mentioned trace files. Concerning experiments run
on the Grid5000 load, Figure 4 and Figure 5 depict
the tradeoff of energy gains and runtime expansions
for the given strategies (”S2 + S6” means we applied
both strategies, ”S5 + selling” means we applied the
S5 strategy and sold the shut down PMs to gain mo-
ney). By migrating certain VMs to other physical ma-
chines to balance the load, we managed to reduce the
power consumption, however the migration processes
took some time which appears in the overall runtime.
From the results we can see that the S6 strategy is the

Figure 4: Energy consumption of experiments with the
Grid5000 trace.

Figure 5: Runtime of experiments with the Grid5000 trace.

Figure 6: Energy consumption of experiments with
Grid5000 for different cloud provider pricing with the S3
strategy.

most efficient for reducing power consumption, and
still it is the fastest solution.

Figure 6 and Figure 7 depicts the results of our S3
strategy that enables to load and apply different pro-
vider pricing schemes. From these results we can see
that the highest energy gains could be achieved with
the Amazon pricing scheme for this load condition,
while the worst result came from applying the Oracle
pricing.

We also experienced that the load types represen-
ted by the traces highly affect the results. Figure
8 presents measurements performed under different

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

218

Figure 7: Runtime of experiments with Grid5000 for diffe-
rent cloud provider pricing with the S3 strategy.

Figure 8: Load and energy balance for different load condi-
tions with the S2 + S6 strategy.

load conditions with the combined S2 + S6 strategy.
The depicted balance represents the possible gains of
using consolidation in terms of cost (i.e. money) and
energy.

6 CONCLUSIONS

In this paper we addressed the problem of datacen-
tre consolidation. Though several approaches have
been developed to improve the utilization efficiency
of datacentres, only a few attention has been tur-
ned to combining pricing methods with consolidation
techniques.

We presented an extension of the DISSECT-CF
simulator to foster the development of cost efficient
datacentre consolidation solutions. We also showed
how to apply real world traces to simulate cloud load,
and proposed 7 different cost-based strategies to ad-
dress the problem. Our results have approved that
cost-aware datacentre consolidation is a valid appro-
ach and can result in significant cost and energy gains.

ACKNOWLEDGEMENTS

The research leading to these results was supported by
the UNKP-17-4 New National Excellence Program
of the Ministry of Human Capacities of Hungary,
and by the Hungarian Government and the European
Regional Development Fund under the grant num-
ber GINOP-2.3.2-15-2016-00037 (”Internet of Living
Things”).

REFERENCES

Amazon pricing website. Online:https://aws. amazon.com/
ec2/pricing/on-demand/.

DISSECT-CF website. Online: https://github.com/
kecskemeti/dissect-cf. Accessed at January, 2017.

Grid Workloads Archive website. Online: http://gwa.ewi.
tudelft.nl/. Accessed at September, 2017.

IBM Bluemix pricing sheet. Online: https://www.ibm.com/
cloud-computing/bluemix. Accessed at January,
2017.

MS Azure price calculator. Online: https://azure.
microsoft.com/ en-gb/pricing/calculator/. Accessed at
January, 2017.

Oracle pricing website. Online: https://cloud.oracle.com/
en US/ opc/ compute/compute/pricing. Accessed at
January, 2017.

Orcale Metered Services pricing calculator. Online:
https://shop.oracle.com/cloudstore/index.html?
product=compute. Accessed at January, 2017.

Parallel Workloads Archive website. Online: http://
www.cs.huji.ac.il/labs/ parallel/workload/. Accessed
at September, 2017.

Abdullah, M., Lu, K., Wieder, P., and Yahyapour, R. (2017).
A heuristic-based approach for dynamic vms conso-
lidation in cloud data centers. Arabian Journal for
Science and Engineering, 42(8):3535–3549.

Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Yous-
afzai, A., and Xia, F. (2015). A survey on virtual ma-
chine migration and server consolidation frameworks
for cloud data centers. Journal of Network and Com-
puter Applications, 52(Supplement C):11 – 25.

Filho, M. C. S., Monteiro, C. C., Inacio, P. R., and Freire,
M. M. (2018). Approaches for optimizing virtual ma-
chine placement and migration in cloud environments:
A survey. Journal of Parallel and Distributed Compu-
ting, 111(Supplement C):222 – 250.

Kecskemeti, G. (2015). DISSECT-CF: a simulator to foster
energy-aware scheduling in infrastructure clouds. Si-
mulation Modelling Practice and Theory, 58P2:188–
218.

Kertesz, A., Dombi, J. D., and Benyi, A. (2016). A pliant-
based virtual machine scheduling solution to improve
the energy efficiency of iaas clouds. Journal of Grid
Computing, 14(1):41–53.

Cost-efficient Datacentre Consolidation for Cloud Federations

219

Maio, V. D., Kecskemeti, G., and Prodan, R. (2016). An
improved model for live migration in data centre si-
mulators. In 2016 IEEE/ACM 9th International Con-
ference on Utility and Cloud Computing (UCC), pages
108–117.

Markus, A., Kertesz, A., and Kecskemeti, G. (2017). Cost-
aware iot extension of dissect-cf. Future Internet,
9(3).

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

220

