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Abstract: This paper presents a genetic-based approach to determine optimal values of frequency and transmission 
power in beacon-based ad-hoc networks. The approach has been evaluated through simulations, and it has 
demonstrated to be more efficient than a dynamic control of frequency and transmission power, with 
reduction of up to 73% in packet collisions and with reduction of packet losses of up to 63% in an urban 
scenario. The approach and the results presented in this paper represent our initial efforts towards a more 
efficient control of beacon frequency and transmission power, which can exploit the benefits of a genetic-
based approach but that can be applied in runtime in practical scenarios. 

1 INTRODUCTION 

Intelligent transportation systems (ITSs) refer to the 
integration of information and communication 
technologies with transport infrastructures. The goal 
is to design novel applications to enhance road 
safety and traffic efficiency (Maimaris, 2016). To 
this end, modern vehicles are equipped with multiple 
sensors such as global positioning system (GPS) 
receivers, proximity sensor, cameras, among others. 
These sensors are used for different applications 
such as parking assistance, lane keeping, pedestrian 
detection. In this regard, information exchange 
among vehicles is essential to expand the scope of 
these applications. However, in order to provide 
information to each vehicle, especially those that are 
not in the field of vision of drivers, it is of 
paramount importance the design of timely efficient 
dissemination approaches.  

A prominent approach to message dissemination 
relies on the deployment of vehicular ad hoc 
networks (VANETS). In a VANET, the vehicles are 
equipped also with On-Board Units (OBUs) and air 
interfaces allowing the information exchange via 
either vehicle-to-vehicle (V2V) or vehicle-to-
infrastructure (V2I) communication paradigms 
(Fazio, 2013; Reis, 2014). VANETs operate on the 
dedicated short-range communication (DSRC) 

spectrum at 5.9 GHz to be used exclusively for V2V 
and V2I communications (Zhu, 2003). DSRC relies 
on several standards designed for vehicular 
communications, including the IEEE 802.11-OCB1 
operation mode, formerly known as IEEE 802.11p 
(IEEE, 2016), which defines physical (PHY) and 
medium access control (MAC) layers for Wireless 
Access in Vehicular Environments (WAVE) (IEEE, 
2017). 

VANETs can be considered as a subset of mobile 
ad-hoc networks (MANETs), but they have specific 
characteristics that distinguish them (Dorronsoro, 
2014) in terms of topology changes, low link 
availability, communication paradigms, etc. An open 
research challenge in VANETs is how to provide 
cooperative knowledge among vehicles, which in 
turn is a basic requirement of multiple applications 
of road safety and traffic management. This 
cooperative knowledge is built upon the periodic 
exchange of messages called beacons, which contain 
important data, about the status of the vehicle, such 
as position, speed, and acceleration (ETSI, 2014). 
The beaconing process, allows the receiver vehicles 
to create a Local Dynamic Map (LDM) based on 
surrounding environment information, which is 
essential for the proper performance of cooperative 
awareness applications, which also require high 
reliability and low delays. However, the wireless 
cooperation between vehicles is a challenging 
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problem due to a large amount of dynamic data. In a 
VANET, the problem becomes more stringent due to 
the mutual interferences (Cailean, 2014).  

It is worth noting that, while a fixed beacon 
transmission rate can easily increase the channel 
load and saturate the network, especially in 
scenarios with high vehicle density (Schmidt, 2010), 
a reduction of the beacon transmission rate may 
result in a reduction of quality and freshness of the 
information (Jiang, 2008). Consequently, the 
position errors can impact the proper performance of 
cooperative safety applications, which rely on real-
time accurate information. In this context, the 
Vehicle Safety Communications Consortium 
(CAMP, 2005), specifies 10 beacon/s as the 
minimum beacon rate required by several 
cooperative safety applications, while others can 
demand up to 50 beacons/s. 

In this regard, defining the beacon 
communication parameters that can meet the 
requirements of all applications for all potential 
scenarios is a very complex task, since the beacon 
requirements depend on application type (Sepulcre, 
2011a) and vehicular context (Sepulcre, 2011b). 
Therefore, it is essential to define the most relevant 
metric for safety-critical applications. In this sense, 
in previous work (Bolufé, 2017; Ortega, 2018) we 
proposed the position error as the priority metric, 
due to its impact on the timely detection of 
potentially dangerous situations. More specifically, 
in (Bolufé, 2017), we proposed an algorithm that 
dynamically adjusts the beacon rate based on vehicle 
movement status. This approach was experimentally 
evaluated in (Ortega, 2018), using test bed 
equipment for vehicular communications. The 
objective of these previous works is twofold. On the 
one hand, these previous works assess the dynamic 
adjusting of the beacon rate to achieve a target 
position error, that can meet the requirements of 
cooperative safety applications. On the other hand, 
driven by the vehicle movement status, the approach 
adjusts the transmit power considering the channel 
load and the beacon rate with the aim of reducing 
packet collisions.  

More recently, in (Bolufé, 2018), we propose the 
use of a novel joint power & rate control distributed 
algorithm in cooperative vehicular networks. 
Simulation results show that the dynamic control of 
beacon transmission rate limits the average position 
error, and the use of maximum transmit power leads 
to an increase of packet collisions. However, the 
joint power & rate control allows reducing the 
packet collisions. Although the approach in (Bolufé, 
2018) outperforms other beaconing strategies in 

terms of a trade-off between the main performance 
metrics, we believe that the fine-tuning, by 
evolutionary algorithms, of this joint power & rate 
control will allow obtaining better results.  

This paper presents our initial efforts toward 
intelligent tuning of frequency and transmission 
power adjustment in beacon-based VANETs. This 
paper presents an approach to exploit the benefit of 
genetic algorithms in the setting of beacon rate and 
power transmission parameters. More specifically, 
the contributions of this work are as follows: 
• We propose the use of genetic algorithms (GA) 

to search for beacon rate and power 
transmission parameters that outperform other 
approaches in terms of packet losses, packet 
delivery, and number of collisions.  

• To the best knowledge of the authors, this study 
presents the first reference to the use of GAs in 
the beaconing process. 

This paper is organized as follows. Section 2 
presents the state of the art. Section 3 presents the 
baseline approach to adapt beacon rate and power 
transmission parameters. Section 4 presents our 
initial approach towards intelligent control of rate 
and power transmissions. Section 5 presents 
simulation results. Section 6 concludes the paper.  

2 STATE OF THE ART 

Adaptive beacon techniques have been the subject of 
research since the last decade, all in all, assuming 
simplified scenario conditions. The main goal of 
these techniques is to adapt the beacon rate and 
power effectively considering the channel load and 
specific application requirements. To address this 
problem, different adaptive beacon strategies have 
been proposed (Shah, 2016; Zemouri, 2014; 
Sepulcre, 2016; Aygun, 2016). These strategies 
combine the control of beacon rate and transmission 
power, according to the channel load and specific 
application requirements. In (Zemouri, 2014) the 
transmission rate is adapted to meet the channel 
requirements in terms of collision rate and channel 
busy ratio (CBR), while the transmit power is 
adjusted according to the required awareness level. 
In the algorithm of Sepulcre et al. (Sepulcre, 2016), 
the packet rate of each vehicle is set according to the 
minimum beacon rate required by each application 
and it is set according to the required packet 
reception rate at the application warning distance. 
The algorithm, of Aygun et al. (Aygun, 2016), 
adapts the transmit power in order to reach a desired 
awareness ratio at the target distance while adjusting 
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the beacon rate to limit the current channel busy 
ratio. However, all these approaches do not consider 
the vehicle movement status and the vehicular traffic 
dynamics, factors that affect the system 
performance. 

Optimization methods can be broadly classified 
into two main classes: exact and approximate (Talbi, 
2009). On one hand, exact methods ensure finding 
the optimal solution to the optimization problem. 
However, their complexity and high computational 
demand are not suitable to tackle real-world 
optimization problems. Alternatively, evolutionary 
algorithms (EAs), which are population-based 
metaheuristics, allow obtaining acceptable solutions 
in a reasonable time (Dorronsoro, 2014). EAs have 
been widely used in many scientific domains such as 
ad-hoc networking (Reina, 2016). Depending on the 
execution mode, the EAs can be deployed in 
VANETs following an off-line or an on-line 
approach. While off-line approaches help to search 
for the best suitable parameters configuration, a 
special care must be taken in highly dynamic 
scenarios. On the other hand, online approaches are 
expected to adapt their behavior (i.e., find the best 
parameter solutions) during runtime. 

In this regard, EAs have been employed in 
optimization processes to finding optimum topology 
in MANETs (Reina, 2016) as well as to optimize the 
deployment of Road Side Units (RSUs) to maximize 
the coverage (i.e., number of vehicles covered) in a 
given area (O. Dengiz, 2011). More specifically, in 
(Galaviz-Mosqueda, 2016), the authors proposed a 
component-based methodology using GAs for the 
membership functions tuning problem for 
broadcasting protocols in VANETs. Other recent 
examples of the use of GAs in VANETs are on 
optimizing the topology connectivity (Dorronsoro, 
2009), realistic vehicular mobility models 
(Seredynski, 2012), optimize routing protocols 
(Toutouh, 2012), and optimizing broadcasting (Jafer, 
2016; Jafer, 2017). 

 

Figure 1: PTi as a function of Li and Rbi, according to (2). 

From the aforementioned ideas, it is clear that 
genetic algorithms have been applied for optimizing 
different parameters in VANETs and MANETs. 
However, to the best knowledge of the authors, this 
study presents the first reference to the use of GAs 
in the beaconing process. 

3 DYNAMIC CONTROL OF 
TRANSMISSION 
PARAMETERS 

This section aims to describe the Dynamic Control 
of Beacon Transmission Rate and Power (DC-
BTR&P) algorithm developed in (Bolufé, 2018). 
Due to its enhanced performance, the DC-TR&P 
algorithm will be used as the baseline approach for 
intelligent tuning of transmission rate and power 
(described in Section 4).  

The DC-BTR&P approach adjusts the beacon 
transmission parameters to meet the position 
accuracy requirements of cooperation aware 
applications. DC-BTR&P is capable of adapting to 
the vehicular traffic dynamics and to the vehicle 
movement status reducing interferences 
guaranteeing the vehicle's minimum warning range. 
The DC-BTR&P algorithm uses the position error as 
a priority metric due to its impact on vehicular 
systems ability to detect and mitigate potentially 
dangerous traffic situations in real-time. The beacon 
rate is computed by the vehicle ni as a function of its 
velocity (vi) and acceleration (ai) expressed as:  

( ) ( ) 0422 =−+++ iDibDiibi EtvItavIa
ii

(1)

, where Ibi is the beacon interval of ni (equivalent to 
the inverse of beacon transmission rate Rbi); tD is the 
transmission delay, which is equal for all vehicles by 
assuming beacons of the same size and equal data 
rate; and Ēi is the average position error computed 
by surrounding vehicles. Once the beacon rate has 
been set, DC-BTR&P adapts the beacon transmit 
power according to the relative channel load and the 
preset beacon rate, in order to decrease packet 
collisions. The beacon transmit power is adjusted by 
ni using the expression (2). 
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, where PTmin is the transmit power required by ni to 
generate a minimum warning range, PTmax is the 
maximum transmission power allowed, Lo is the 
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normalized critical channel load, Li is the normalized 
relative channel load on ni and β is the weight factor, 
which controls the impact of the beacon rate on the 
transmission power. Li is computed considering the 
impact of multiple transmitters, and the distance to 
each neighbor vehicle. It should be noted that (2) 
controls the beacon transmission power between 
minimum and maximum transmit power values, 
being PTi = PTmin for Li = Lo, and PTi = PTmax for Li ≈ 
0 and Rbi = 1 beacon/s. Figure 1 shows the transmit 
power according to the normalized relative channel 
load and beacon transmission rate, with PTmin = 7 
dBm, PTmax = 20 dBm, Lo = 0.4, and β = 2. Note that 
the transmit power decreases when the normalized 
relative channel load or/and the beacon transmission 
rate increases, while a minimum warning range is 
guaranteed. 

4 INTELLIGENT CONTROL OF 
BEACON TRANSMISSION 
RATE AND POWER 

This section firstly provides an overview of 
fundamental concepts of GAs. Then, we elaborate 
on the integration of GAs towards providing 
intelligent tuning of frequency and power 
parameters in a beacon-based ad-hoc networking 
scenario. 

4.1 Fundamentals of GAs 

The genetic algorithm is based on the evolution 
process of living beings. In which, over generations, 
the populations evolve following the principles of 
natural selection (the survival of the fittest) 
postulated by Darwin. This algorithm was proposed 
by Goldberg and Holland in 1998 (Goldberg, 1998).  

The baseline procedure of a GA is depicted in 
Fig. 2. The initial population is randomly created as 
a set of candidate solutions, where an objective 
function is used a fitness measure. Based on this 
fitness, the better individuals (solutions) have a 
higher probability to be selected to the next 
generation by applying recombination and mutation. 
The recombination process is applied to two selected 
individuals (parents), resulting in two new solutions. 
On the other hand, the mutation process is applied to 
one individual and it results in one new solution. 
Therefore, by applying recombination and mutation 
processes, the algorithm produces a set of new 
solutions, called children. Based on their fitness, 
these children compete for a place in the next 

generation. This procedure can be iterated until a 
solution is found or a previously set of generations 
limit is reached. 

Initial 
population

Evaluation

Selection

Crossover

Mutation

Stop 
criterion

No

1 0 1 1 F(1,0,1,1)= 11

1 0 1 1

Chromosome

1

N 0 0 1 1

Gen

1 0 1 1

1 0 0 0

1 1 0 0

1 1 1 1

Parents

Children

1 0 1 1 1 1 1 1

Bit Inversion

Yes
1 0 1 1

Final solution

F(1,1,1,1)= 15

Individual 1
Individual 2
Individual 3
Individual 4

 

Figure 2: General scheme of a genetic algorithm. 

4.2 GA-based Control of Beacon 
Transmission Rate and Power  
(GA-BTR&P) 

This section presents our initial GA-based 
Transmission Rate and Power (GA-BTR&P) control 
approach. GA-BTR&P adjusts the transmission rate 
and power at once, taking into account deterministic 
rules based on the vehicle travel speed. For this 
purpose, we performed a discretization of the travel 
speed values in 10 possible ranges, which are shown 
in Table 1. It should be mentioned that the Vmax 
value is the maximum possible travel speed of a  
 

Table 1: Ranges of the travel speeds for deterministic 
rules. 

Speed Range (i) Vehicle speed (Vk) 
1 0   - 10  km/h 
2 11 - 20  Km/h 
3 21 - 30  Km/h 
4 31 - 40  Km/h 
5 41 - 50  Km/h 
6 51 - 60  Km/h 
7 61 - 70  Km/h 
8 71 - 80  Km/h 
9 81 – 90  Km/h 
10 91 -  Km/h 
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vehicle (Vk) during a given simulation. The Fig. 3 
shows the GA-BTR&P flow diagram to obtain the 
values of frequency  and power transmission  
of the vehicle k (vehk). 

 
**Vk is the speed of the vehicle k (vehk) 

Figure 3: Deterministic & rule-based definition of 
frequency and power transmission values. 

The GA-BTR&P approach considers the range of 
the travel speed to determine the values of frequency 
Xi,k and power transmission Yi,k, for the  speed range 
of vehicle k (vehk). It is important to mention that the 
values of the variables Xi,k, and Yi,k are determined 
(i.e. optimized) with the genetic algorithm. For this 
reason, we propose the encoding presented in Fig. 4 
for the vehicles. Each vehicle is represented by a set 
of 20 variables: 10 related to the frequency and 10 
related to the power transmission. We consider one 
variable of frequency and one variable of power 
transmission for each range  of vehicle speed 
presented in Table 1. 

X1,k X2,k X3,k X4,k X5,k X6,k X7,k X8,k X9,k X10,k Y1,k Y2,k Y3,k Y4,k Y5,k Y6,k Y7,k   Y8,k Y9,k  Y10,k

Transmission 
frequencies.

Transmission
power.

Vehiclek

 

Figure 4: Proposed vehicle encoding. 

Each population individual is represented by a 
set of k vehicles, where k is the total number of 
vehicles in the scenario as it is graphically shown in 
Figure 5.  It should be mentioned that each vehicle 
consists of a set of 20 variables (see vehicle 
encoding in Fig. 4). 

(Individual of the population)

Vehicle1 Vehicle2 … Vehiclek

 

Figure 5: Proposed individual encoding. 

In order to lay down the concepts of our GA-
based approach, we make use of a simulation 
platform where the GA-based approach can iterate 
and refine (i.e. optimize) the values for transmission 
rate and power. For this purpose, we use the 
OMNet++ simulation platform, although our 
approach can be applied to other platforms. Figure 6 
represents the optimization scheme for k vehicles 
where each vehicle has 20 candidate variables, 10 
for transmission power transmission and 10 for 
beacon rate (see encoding in Fig. 4). The 
performance of each population individual (i.e. the 
set of k*20 variables) is evaluated through 
OMNet++ simulations. The performance of each 
population individual is evaluated in an urban 
mobility scenario for which the optimization 
procedure is executed. In each simulation (i.e. 
evaluation), the number of packet collisions is used 
to calculate the fitness value. A lower number of 
collisions represents a greater fitness value of the 
population individual. Each evaluation of the 
population individual is followed by the selection, 
recombination, and mutation processes of the 
genetic algorithm until the stop criterion is met. At 
the end of the evolutionary process, the best 
parameters of frequency and transmission power for 
each speed range of each vehicle are obtained for a 
given urban mobility scenario. 

Initial population

Evaluation

Selection

Crossover

Mutation

Stop 
criterion

Individual

Parameters

OMNET simulator

Scenario

Metrics (number of collisions)

Best parameters

Vehicle1 Vehicle2 … Vehiclek

YesNo

 

Figure 6: GA-based simulation platform. 

5 SIMULATION RESULTS AN 
TECHNICAL DISCUSSION 

This section compares the performance of the 
baseline DC-BTR&P algorithm with our GA-based 
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Transmission Rate and Power (GA-BTR&P) control 
approach. 

5.1 Simulation Setup 

Our simulations are intended to evaluate the 
performance of the above approaches to disseminate 
cooperative knowledge. The simulations were 
performed considering a scenario with a grid-shaped 
square of five streets on each side. The square has 
sixteen blocks of 200m per side. Each street is 
crossed by a car with the direction shown in Fig. 7. 
The maximum speed of the vehicles was set to 
100km/h, with an acceleration and deceleration of 2 
m/s2 and 4.5 m/s2 respectively. The simulation 
parameters are summarized in Table 2.  

Table 2: Simulation parameters. 

Parameter Value 
Map shape grid 

Number of streets 5 x 5 
Dimensions 0.8 km x 0.8 km 

Maximum speed 100 km/h (27.8 m/s) 
Acceleration 2 m/s2 

Number of vehicles 10 
Vehicle travel time ≈ 80 sec 

 

Figure 7: Simulation map with directions of vehicles. 

5.2 Comparative Results 

This section compares the performance of the DC-
BTR&P and GA-BTR&P approaches. Namely, we 
evaluate their performance in terms of number of 
collisions and packet delivery, which in turn are 
representative parameters that allow for efficient 
cooperative knowledge. Table 3 shows the 

performance of the transmission rate and power 
parameters defined by both, the DC-BTR&P and 
GA-BTR&P approaches.  

Table 3: Performance comparison for cooperative 
knowledge. 

Metric DC-BTR&P GA-BTR&P 

Packets Sent 4051 4052 

Lost packets 49 18 

Delivery effectiveness 
98.79% 99.55% 

Number of collisions 48 13 

In more detail, Table 4 shows the actual values 
of the vehicles in our simulations for each metric. 
The results demonstrate that our GA-based approach 
can reduce the number of collisions up to a 73% and 
the packet losses can be reduced up to a 63% in this 
urban scenario. These results demonstrate that the 
performance of a dynamic allocation of beacon 
transmission rate and power certainly can be 
enhanced with the use of an intelligent approach, i.e. 
based on a genetic algorithm. Nevertheless, there are 
important aspects that need to be considered 
regarding these partial conclusions. These are 
discussed in the next section.  

Table 4: Values produced for each vehicle in simulations. 

Metric
 
 

Vehicle 

Packets 
Sent 

Packets lost Number of 
collisions 

DC 
BTR&P

GA 
BTR&P

DC 
BTR&P 

GA 
BTR&P 

DC 
BTR&P

GA 
BTR&P

Veh[0] 396 396 3 2 3 1 

Veh [1] 397 397 1 0 1 0 

Veh [2] 
396 396 3 0 3 0 

Veh [3] 432 432 5 2 5 2 

Veh [4] 395 395 13 3 12 2 

Veh [5] 398 398 1 1 1 0 

Veh [6] 398 398 1 1 1 0 

Veh [7] 420 421 15 6 15 5 

Veh [8] 397 397 2 0 2 0 

Veh [9] 422 422 5 3 5 3 

TOTAL 4051 4052 49 18 48 13 

5.3 Technical Discussion 

The results presented in Section 5.2 are encouraging, 
they demonstrate that there is still a reasonable 
margin to enhance the performance of the DC-
BTR&P by means of an intelligent approach. 
Moreover, there are important aspects that deserve 
special attention in this respect. 
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On the one hand, the DC-BTR&P approach is a 
distributed beaconing algorithm that performs 
transmission frequency (Ftx) and transmission 
power (Ptx) adjustments in each vehicle. In the 
implementation of this algorithm, each vehicle 
calculates the Ftx according to its speed and the 
average position error limit perception of its 
neighbors. Then the transmitter vehicle calculates 
the probability of successful reception of its 
neighbors and with the Ftx already calculated, the 
Ptx of the same vehicle is calculated. Before sending 
a beacon, each vehicle makes these calculations to 
minimize the average position error (dynamically 
adjusting the Ftx) and to reduce the number of 
collisions (by adjusting the Ptx).  

On the other hand, the GA-BTR&P approach 
uses a genetic algorithm to find in each vehicle, the 
best values of Ftx and Ptx to achieve a reduction in 
the number of collisions in the scenario for the speed 
ranges of each vehicle. Nevertheless, this approach 
has to execute a number of iterations, which in turn 
makes it computationally expensive so that, it 
difficult to be applied to practical scenarios. A trade-
off solution that can exploit the benefits of our GA-
BTR&P approach in favor of a fast and more 
efficient version of the DC-BTR&P approach will be 
the basis of our future work.  

6 CONCLUSIONS AND FUTURE 
WORK 

This paper has presented our initial steps towards 
intelligent tuning of frequency and transmission 
power adjustment in beacon-based ad-hoc networks. 
A genetic-based beacon control has been proposed 
and simulation results have demonstrated that an 
intelligent-based approach can outperform a 
dynamic control in terms of a number of collisions 
(with reductions up to 73%) and packet losses (with 
reductions up to 63%) in our urban simulation 
scenario. Nevertheless, this advantage can be 
considered relative, as an intelligent-based approach 
like the one described in this paper can be 
computationally prohibitive for real scenarios due to 
time constraints. In this regard, we are currently 
developing a trade-off solution, where the genetic-
based approach can be used to produce values of 
frequency and transmission power that can take into 
account a target average error together with the 
number of collisions. This way, the genetic 
algorithm can be used to produce a regression-based 
polynomial function that could be used to estimate 

the beacon frequency for a given vehicle speed, 
which in turn could be used by the DC-BTR&P 
approach to produce frequency values to enhance its 
performance closer to the performance of the GA-
BTR&P approach but in runtime.  
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APPENDIX I. GLOSSARY OF 
ACRONYMS  

Channel Busy Ratio (CBR) 
Dedicated Short-Range Communication (DSRC) 
Dynamic Control of Beacon Transmission Rate and 
Power (DC-BTR&P) 
European Telecommunications Standards Institute 
(ETSI) 
Evolutionary Algorithm (EA) 
Genetic Algorithm (GA) 
Genetic Algorithm-based Transmission Rate and 
Power (GA-BTR&P) 
Global Positioning System (GPS) 
Local Dynamic Map (LDM) 
Mobile Ad-hoc Networks (MANETs) 
On-Board Units (OBUs) 
Physical Layer (PHY) 
Road Side Units (RSUs) 
Transmission Frequency (Ftx) 
Transmission Power (Ptx) 
Vehicle-to-Infrastructure (V2I) 
Vehicle-to-Vehicle (V2V) 
Vehicular Ad-hoc Networks (VANETS) 
Wireless Access in Vehicular Environments 
(WAVE) 
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