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Abstract: The big data explosion opens unprecedented analysis and inference possibilities that may even enable mod-
eling the world and forecasting its evolution with great accuracy. The dark side of such a data bounty is that
it complicates the preservation of individual privacy: a substantial part of big data is obtained from the dig-
ital track of our activity. We focus here on the privacy of subjects on whom big data are collected. Unless
anonymization approaches are found that are suitable for big data, the following extreme positions will become
more and more common: nihilists, who claim that privacy is dead in the big data world, and fundamentalists,
who want privacy even at the cost of sacrificing big data analysis. In this article we identify requirements
that should be satisfied by privacy models to be applicable to big data. We then examine how well the two
main privacy models (k-anonymity and ε-differential privacy) satisfy those requirements. Neither model is
entirely satisfactory, although k-anonymity seems more amenable to big data protection. Finally, we highlight
connections between the previous two privacy models and other privacy models that might result in synergies
between them in order to tackle big data: the principles underlying all those models are deniability and permu-
tation. Future research attempting to adapt the current privacy models for big data and/or design new models
will have to adhere to those two underlying principles. As a side result, the above inter-model connections
allow gauging what is the actual protection afforded by differential privacy when ε is not sufficiently small.

1 INTRODUCTION

Big data have become a reality with the new millen-
nium. Almost any human activity leaves a digital
trace that is collected and stored by someone (sen-
sors of the Internet of Things, social apps, machine-
to-machine communication, mobile video, etc.). As
a result, data from several different sources are avail-
able, and they can be merged and analyzed to gen-
erate knowledge. Big data differ from conventional
data (small data) in several aspects, including their
huge volume, their velocity (frequent updates or even
continuous production) and their variety (they may in-
clude complex and unstructured data).

Even though big data are extremely valuable in
many fields, they increasingly threaten the privacy
of individuals on whom they are collected (often un-
awares of these). Thus, among the three dimensions
of privacy (subject privacy, user privacy and owner
privacy (Domingo-Ferrer, 2007)), we focus here on
subject privacy and in particular in the anonymization
approach to it. Statistical disclosure control (SDC,

(Hundepool et al., 2012)) tries to enable useful in-
ferences on subpopulations from a data set, while
preserving the privacy of the subjects to whom the
records in the set correspond. Researchers have de-
signed a good number of techniques to limit disclo-
sure risk in data releases that refer to individual sub-
jects, the so-called “microdata”. These techniques
have the common feature to keep original data se-
cret and replace them with a modified version, which
is called the anonymized version. In the last twenty
years, on the other hand, several privacy models have
been proposed. Instead of determining the specific
transformation that must be applied to original data,
a privacy model specifies a condition that, if satis-
fied by the anonymized data set, guarantees that the
disclosure risk is kept under control. Privacy models
normally have one or several parameters that deter-
mine how much disclosure risk is acceptable. Current
models have been designed for a single data set, and
they have several shortcomings in a big data scenario.
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1.1 Contribution and Plan of this Paper

Unfortunately, SDC methods and privacy models in
the literature have been designed with small data in
mind, whereas the requirements of big data are differ-
ent. The following extreme positions are becoming
more and more common in front of the tension be-
tween subject privacy and big data analytics:
• Nihilists. They claim that no privacy is possi-

ble with big data. Some of them (typically gov-
ernments1) claim that privacy needs to be sac-
rificed to security; others (typically corporations
and some researchers2) claim that privacy is a
hindrance to business and progress; yet others
(typically Internet companies) do not make many
claims but offer enticing and free services that re-
sult in privacy being overridden; finally, others
claim nothing and offer nothing but gather, pack-
age and sell as many personal data as possible
(data brokers (FTC, 2014)).

• Fundamentalists. They prioritize privacy, what-
ever it takes in terms of utility loss. Players in
this camp are basically a fraction of the academics
working in security and privacy.
While fundamentalists are unlikely to prevail over

nihilists, they could make themselves more use-
ful if they invested their research effort in finding
anonymization solutions that are tailored to the nat-
ural requirements of big data.

In Section 2 of this paper, we try to identify the
main requirements of big data anonymization. Then
we examine how well the two main families of pri-
vacy models satisfy those requirements: we deal with
k-anonymity in Section 3 and with differential privacy
in Section 4. Seeing that neither family is completely
satisfactory, we explore connections of k-anonymity
and differential privacy with other privacy models
in Section 5; we characterize those connections in
terms of two principles, deniability and permutation.
In Section 6 (conclusions and future research), we
conclude that focusing on these two principles is a
promising way to tackle the adaptation of current pri-
vacy models to big data or the design of new privacy
models.

1In 2009 the UK Cabinet Office’s former security and
intelligence co-ordinator, Sir David Omand, warned: “citi-
zens will have to sacrifice their right to privacy in the fight
against terrorism”. Also, in April 2016, the European Par-
liament backed the EU directive enabling the European se-
curity services to share information on airline passengers.

2E.g. Stephen Brobst, the CTO of Teradata, stated: “I
want to know every click and every search that led up to that
purchase... interactions are orders of magnitude larger than
the transactions... the interactions give you the behavior”,
The Irish Times, Aug. 7, 2014.

2 BIG DATA ANONYMIZATION
REQUIREMENTS

Leveraging the potential of available big data to im-
prove human life and even to make profit is perfectly
legitimate. However, this should not encroach on the
subjects’ privacy. Released big data should be pro-
tected, that is, transformed so that: i) they yield statis-
tical results very close to those that would be obtained
if the original big data were available, but ii) they do
not allow unequivocal reconstruction of the profile of
any specific subject.

SDC methods (Hundepool et al., 2012) (for ex-
ample, noise addition, generalization, suppression,
lower and upper recoding, microaggregation and oth-
ers) specify transformations whose purpose is to limit
the risk of disclosure. Nevertheless, they do not
prescribe any mechanism to assess the disclosure
risk that remains in the transformed data. In con-
trast, privacy models (such as k-anonymity (Samarati
and Sweeney, 1998) and differential privacy (Dwork,
2006), as well as l-diversity (Machanavajjhala et al.,
2007), t-closeness (Li et al., 2007) and probabilis-
tic k-anonymity (Soria-Comas and Domingo-Ferrer,
2012), among others) specify some properties to be
met by a data set to limit disclosure risk, but they
do not prescribe any specific SDC method to satisfy
those properties. Privacy models seem more attrac-
tive, because they state the privacy level to be attained
and leave it to the data protector to adopt the least
utility-damaging method. The reality, however, is that
most privacy models were designed to protect a single
static data set and they have notorious shortcomings if
used in a big data context.

For a privacy model to be useful for big data,
it must be compatible with the volume, the veloc-
ity and the variety of this kind of data. To assess
this compatibility, we propose to take into account to
what extent the model satisfies the following proper-
ties (the last three of them described in (Soria-Comas
and Domingo-Ferrer, 2015)):
• Protection. Anonymized big data should not al-

low unequivocal reconstruction of any subject’s
profile, let alone re-identification. While protec-
tion was also essential in anonymization of small
data, it is more difficult to achieve in big data: the
availability of many data sources on overlapping
sets of individuals implies that a lot of attributes
may be available on a certain individual, which
may facilitate her re-identification.

• Utility for exploratory analyses. Anonymized big
data that are published should yield results simi-
lar to those obtained on the original big data for a
broad range of exploratory analyses. While utility
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was also important in traditional anonymization of
small data, it is more complicated to obtain useful
anonymized big data, because they tend to be an-
alyzed in ways that cannot be anticipated at the
time of anonymizing them.

• Composability. A privacy model is composable if
its privacy guarantees are preserved (possibly in a
limited way) after repeated application. To put it
otherwise, a privacy model is not composable if
independently published data sets, each of which
satisfies the model, can lead to a violation of the
model when pooled together. Composability is es-
sential for the privacy guarantees of the model to
survive in a big data context, where data collec-
tion is not centralized, but distributed among sev-
eral data sources. If one of the collectors cares
about privacy and decides to use a specific pri-
vacy model, the guarantees of this model should
be preserved (at least to some extent) after data
fusion.

• Computational cost. This cost measures the
amount of computation needed to satisfy the re-
quirements of the privacy model. As said above,
normally several alternative SDC methods are
available to satisfy a certain privacy model. Thus,
the cost will depend on the selected method. It is
very important that the model be attainable with
some efficient method, given the huge amount of
big data. Ideally, the cost of the method ought to
be linear or loglinear in the data set size. Meth-
ods with quadratic or superquadratic costs are not
suitable. Anyway, there are options to reduce
the computational cost of a method that would
be too costly if directly used: one strategy is
to use blocking to split the data set into smaller
blocks and anonymize these separately. Obvi-
ously, blocking may have negative utility and pri-
vacy implications, so its application should be
carefully pondered.

• Linkability. In big data, the information on an in-
dividual subject is collected from several sources.
Hence, the ability to link records that correspond
to the same individual or to similar individuals is
basic to build big data. To preserve the privacy of
subjects, each source ought to anonymize its data
before releasing them. However, if each source
independently anonymizes data, merging the data
anonymized by different sources can become dif-
ficult if not impossible. This would reduce very
substantially the variety of analyses that can be
conducted on the data and, therefore, the knowl-
edge obtainable from them. To be useful for big
data, a model should allow the analyst to link in-
dependently anonymized data that correspond to

the same subject. Note that, if records referred
to the same subject are linked, the information on
that subject is increased. This is a threat to privacy
and, hence, the linkage accuracy should be lower
in anonymized data sets than in original data sets.

3 BIG DATA ANONYMIZATION
UNDER K-ANONYMITY

k-Anonymity aims to limit an attacker’s ability to re-
identify the record corresponding to a certain target
subject. On the one hand, the data set to be protected
contains confidential attributes, such as medical data,
financial data, religion, sexual orientation, etc. (if it
did not include confidential attributes, there would
be no need to protect it!). On the other hand, the
data set contains attributes that we will collectively
name quasi-identifier; no value of any single quasi-
identifier attribute in a record identifies its subject,
but the combination of values of all quasi-identifier
attributes may. For example, age, gender, zipcode
and education level are a reasonable quasi-identifier,
because in a certain zipcode there may be a single
woman over 70 that holds a PhD. In fact, the attack
model assumes that the attacker can at least identify
the subject of some of the records using the quasi-
identifier attributes: a way to do this is for the at-
tacker to have access to an external database that con-
tains the quasi-identifier attributes together with iden-
tifiers (name, passport number, etc.) for some of the
subjects of the released dataset. In this case, he will
manage to link the values of confidential attributes in
some records of the released data set with some iden-
tifiers, which results in re-identification and undesired
disclosure. To bring the re-identification probability
down to 1/k, k-anonymity requires that each combi-
nation of values of the quasi-identifier attributes be
shared by a group of at least k records in the protected
data set (this group is called k-anonymous class).

Even in the traditional scenario of protecting a sin-
gle static data set, deciding which attributes the data
protector should include in the quasi-identifier is not
obvious. To avoid mistakes, the protector should ex-
actly know the attacker’s background knowledge, but
he does not know it.

In a big data scenario, satisfying the protection re-
quirement is still more complicated, because the at-
tacker may have a lot of background knowledge. An
option to play it safe is to consider that all attributes,
including the confidential ones, are part of the quasi-
identifier.

Beyond the inconvenience of establishing a quasi-
identifier, k-anonymity has another problem: al-
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though it protects against re-identification, it may
be insufficient to protect against attribute disclosure.
This is the case when the values of a confidential at-
tribute in the records of a k-anonymous class are iden-
tical or very similar. If the attacker manages to link
his target subject to that class, then, even if he cannot
ascertain which of the k records of the class is the tar-
get subject’s, he will learn the value of the subject’s
confidential attribute. This is also disclosure. Several
k-anonymity extensions have been proposed to rem-
edy this, such as l-diversity (Machanavajjhala et al.,
2007) or t-closeness (Li et al., 2007).

In what concerns the utility requirement, a big data
scenario in which data from many subjects are to be
anonymized may allow forming k-anonymous classes
whose subjects are more homogeneous than in a small
data scenario with fewer subjects. Thus, even if ex-
ploratory analyses cannot be anticipated at the time
of anonymization, ceteris paribus more homogeneous
classes will yield better utility.

Regarding composability, k-anonymity was de-
signed to protect a single data set and, in princi-
ple, it is not composable. If several independently
anonymized k-anonymous data sets have been re-
leased that share some subjects, the attacker can lever-
age the so-called intersection attack to rule out some
of the records in a k-anonymous class as not cor-
responding to the target subject. To achieve some
composability, the protectors of several k-anonymized
data sets ought to coordinate so that, for the subjects
shared by two data sets, their k-anonymous classes
contain the same k subjects. In a big data environ-
ment, this coordination is not easy but it is not impos-
sible. If it is not feasible, and/or the various data sets
independently grow with time, the strategies sketched
in (Domingo-Ferrer and Soria-Comas, 2016) can be
used.

As to computational cost, k-anonymity is usu-
ally reached by modifying the values of the quasi-
identifier attributes either by a combination of gener-
alizations and suppressions (Samarati and Sweeney,
1998), or by microaggregation (Domingo-Ferrer and
Torra, 2005). Although finding the optimal modifi-
cation (to minimize information loss) results in NP
problems, heuristics and blocking strategies allow
reaching complexities O(n lnn) where n is the num-
ber of records. Therefore, k-anonymity is reasonably
computable for big data.

Finally, regarding linkability, assume we have two
independently k-anonymized data sets that have some
subjects in common. We need to see whether the
records of a subject that is known to be in both
files can be linked. The answer is that at least
the k-anonymous classes of the subject in both data

sets can be linked. If the two data sets share also
some confidential attributes, the accuracy of the link-
age can improve, because one can use the values of
those attributes to link specific records within each k-
anonymous class.

In summary, in a big data scenario, k-anonymity
offers a composable privacy guarantee as long as
the protectors of data sets that share subjects coor-
dinate or follow suitable strategies (Domingo-Ferrer
and Soria-Comas, 2016). On the other hand, there are
heuristics that allow reaching k-anonymity at quasi-
linear cost in the number of records. At the same time,
it is possible to link the information of the same sub-
ject in several independently k-anonymized data sets,
at least at the level of a k-anonymous class (and in
some cases at the record level). Also, utility improves
when parameter k is smaller and/or the set of sub-
jects is larger, because less modification of the origi-
nal records is needed to reach k-anonymity. Nonethe-
less, reducing k also reduces protection. All in all,
with some coordination effort, k-anonymity can be a
starting point to anonymize big data.

4 BIG DATA PROTECTION
UNDER DIFFERENTIAL
PRIVACY

A randomized query function F gives ε-differential
privacy (DP) if, for all data sets D1, D2 such that one
can be obtained from the other by modifying a single
record (neighboring data sets), and all S⊂ Range(F),

Pr(F(D1) ∈ S)≤ exp(ε)×Pr(F(D2) ∈ S). (1)

A common SDC method to enforce DP is Laplace
noise addition. Although the original definition above
was for interactive queries to databases, DP was later
extended for anonymizing data sets (Soria-Comas et
al., 2014), (Xiao et al., 2010), (Xu et al., 2012),
(Zhang et al., 2014).

Protection under DP is very good if ε is small,
because in that case Expression (1) ensures that the
presence or absence of any single individual cannot
be noticed from the anonymized output.

The biggest problem of DP is that it offers very
poor utility for exploratory analyses fot the values of
ε that are required to ensure a good privacy (typically
below 1, see Section 5 below). Indeed, enough noise
must be added to make the presence or absence of any
individual unnoticeable, and this includes any outly-
ing individual that can potentially be part of the data
set. Thus, for small ε, the noise to be added is huge.

Regarding composability, DP offers strong prop-
erties (McSherry, 2009):
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• Sequential composition. If, for the same subset of
subjects, data sets Di are released with i ∈ I, each
of which is εi-diferentially private, the pooled re-
leased data sets offer ∑i∈I εi-differential privacy.
That is, when several differentially private data
sets on a set of subjects are collated, differential
privacy is not broken, but the level of privacy is
reduced.

• Parallel composition. If several ε-differentially
private data sets Di are released, for i∈ I, each one
referring to a disjoint set of subjects, all those data
sets taken together are ε-differentially private.

As to computational cost, DP is attained by adding
noise to original data. The cost of adding noise is
linear in the number n of records, that is, O(n).

Finally, in what concerns linkability, if we have
two differentially private data sets in which noise has
been added to all values of all attributes, in general it
is not possible to link the records in both data sets that
correspond to the same subject. However, if both data
sets share some attributes that have been left unmod-
ified (e.g. because they are not deemed confidential),
then the values of those attributes can be used to link
the records corresponding to the same subject.

Thus, differential privacy has some interesting
properties for big data: good composability, good
computational cost, and linkability if there are shared
and unmodified attributes across several data sets.
The killing problem is the lack of utility of DP data,
especially for data uses that could not be anticipated
by the data protector.

Some authors have suggested computational pro-
cedures different from mere noise addition to im-
prove the utility of differentially private data (Cor-
mode et al., 2012), (Zhang et al., 2014), (Sánchez
et al., 2014), (Sánchez et al., 2016b). Unfortunately,
these more sophisticated procedures are computation-
ally more demanding than simple noise addition and
they provide rather small utility increases, insufficient
for exploratory analyses of reasonable quality. The
reason is that, as explained above, the very definition
of differential privacy requires destroying the infor-
mation of each record so that its presence or absence
cannot be noticed.

5 CONNECTIONS BETWEEN
PRIVACY MODELS

Since none of the two big families of privacy mod-
els is entirely satisfactory for big data, let us exam-
ine their connections and underlying principles. That
may shed light on possible ways to adapt or replace
them.

We will show that the following privacy models
are interconnected around the principles of deniabil-
ity and permutation: randomized response (RR), post-
randomization (PRAM), differential privacy (DP) and
t-closeness. Specifically, we will characterize RR
in terms of deniability and then we will show that
PRAM can be view as RR done by the data controller.
Then we will use the connection between RR and DP
to explain the effect of taking large ε in DP in terms
of deniability. After that, we will use the connection
between DP and t-closeness to explain DP in terms
of the intruder’s knowledge gain on the sensitive at-
tribute. Finally, we will present PRAM in terms of
the permutation paradigm; since PRAM is connected
to RR, and RR to DP and t-closeness, it will turn out
that all those models can in fact be viewed as permu-
tation. This is a novel result.

5.1 Randomized Response, Plausible
Deniability and PRAM

Let X be an attribute containing the answer to a sen-
sitive question. If X can take r possible values, then
the randomized response Y (Greenberg et al., 1969)
reported by the respondent instead of X is computed
using

P =




p11 · · · p1r
...

...
...

pr1 · · · prr




where puv = Pr(Y = v|X = u), for u,v∈ {1, . . . ,r} de-
notes the probability that the randomized response is
v when the respondent’s true attribute value is u.

Let π1, . . . ,πr be the proportions of respondents
whose true values fall in each of the r categories
of X ; let λv = ∑r

u=1 puvπu for v = 1, . . . ,r, be the
probability of the reported value Y being v. If we
define λ = (λ1, . . . ,λr)

T and π = (π1, . . . ,πr)
T , then

λ = PT π. Furthermore, if λ̂ is the vector of sample
proportions corresponding to λ and P is nonsingular,
it is proven in (Chaudhuri and Mukherjee, 1988) that
an unbiased estimator of π can be obtained as

π̂ = (PT )−1λ̂.

Privacy Guarantees of RR. The privacy guaran-
tees RR offers to respondents are plausible deniability
and secrecy:

• By the Bayes’ formula:

p̂vu = Pr(X = u|Y = v) =
puvπu

∑u′=1 pu′vπu′
.
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• Given a reported Y = v, deniability can be mea-
sured as

H(X |Y = v) =−
r

∑
u=1

p̂vu log2 p̂vu.

• If the probabilities within each column of P are
identical, then p̂vu = πu, for u,v ∈ {1, . . . ,r}, and
H(X |Y = v)=H(X) for any v, and thus H(X |Y )=
H(X) (Shannon’s perfect secrecy).

• The price paid for perfect secrecy is a singular ma-
trix P, so no unbiased estimator π̂ can be com-
puted.

Randomized Response: a Local Version of PRAM.
Matrix P looks exactly as the PRAM transition ma-
trix (Gouweleeuw et al., 1998). The main difference
is that in RR randomization is done by the respon-
dent, whereas in PRAM it is done by the data con-
troller. Thus, RR is a local anonymization method
avant la lettre: when RR was invented, the no-
tion of anonymization did not exist, let alone local
anonymization.

5.2 Randomized Response and
Differential Privacy

(Wang et al., 2016) show that RR is ε-differentially
private if

eε ≥ max
v=1,...,r

maxu=1,...,r puv

minu=1,...,r puv
. (2)

We can assert that:
• If the maximum ratio between the probabilities in

a column of P is bounded by eε, the influence of
the real value X on the reported value Y is limited.

• When ε = 0, in bound (2), the probabilities within
each column of P are identical, and RR provides
perfect secrecy. Thus, DP with strictest privacy
(ε = 0) offers perfect secrecy.

Explaining Large ε in DP using Deniability.
When one takes not-so-small ε, the intuition of DP
is unclear: it is no longer tenable that the presence
or absence of any single record is unnoticeable. The
connection of DP with RR and hence with deniability
helps understand what large ε implies.
Example 1. if ε = 2, in some columns of P the
probability ratio may be as large as e2 = 7.389. If
r = 2, one might have a column with p1v = 0.7389
and p2v = 0.1. Thus, after reporting Y = v, the most
likely value is X = 1 and there is only a small margin
to deny it. Thus, clearly ε = 2 does not seem to offer
enough privacy.

5.3 Differential Privacy and t-closeness

A data set is said to satisfy t-closeness if, for each
group of records sharing a combination of quasi-
identifier attributes, the distance between the distri-
bution of the confidential attribute in the group and
the distribution of the attribute in the whole data set is
no more than a threshold t.

Given two random distributions F1 and F2, con-
sider the distance

d(F1,F2) = max
i=1,2,··· ,t

{
PrF1(xi)

PrF2(xi)
,

PrF2(xi)

PrF1(xi)

}
. (3)

In Expression (3), we take the quotients of proba-
bilities to be zero if both PrF1(xi) and PrF2(xi) are
zero, and to be infinity if only the denominator is
zero. In (Domingo-Ferrer and Soria-Comas, 2015),
we showed the following connection between ε-DP
and t-closeness:

Proposition 1. Let kI(D) be the function that returns
the view on subject I’s sensitive attributes given a
data set D. If D satisfies exp(ε/2)-closeness when us-
ing the distance in Expression (3), then kI(D) satisfies
ε-differential privacy. In other words, if we restrict
the domain of kI to exp(ε/2)-close data sets, then we
have ε-differential privacy for kI .

Proposition 1 can explain DP in terms of the
intruder’s knowledge gain on the sensitive attribute
value of a target respondent if the intruder can deter-
mine the respondent’s cluster.

Example 2. Take DP with ε = 2. By the proposition,
the probability weight attached to a certain value of a
sensitive attribute X can grow by a factor e≈ 2.718 if
the target individual’s cluster is learnt by the intruder.

To decide whether a probability has grown too
much, consider that the reported value v is the clus-
ter identifier and probabilities p̂vu = Pr(X = u|Y = v),
for u = 1, . . . ,r are the probabilities assigned by the
cluster-level distribution to the values of the sensi-
tive attribute within the cluster. Determining the real
X given the reported Y becomes determining the tar-
get respondent’s sensitive value X given the target re-
spondent’s cluster Y . We can use a deniability argu-
ment to assess whether the cluster-level distribution is
too inhomogeneous:

Example 3. Take ε = 2 and assume the sensitive
attribute can take r = 5 different values, with uni-
form data set-level distribution (prob. 1/5 for each
value). A cluster-level distribution with one value
having relative frequency 1/5× exp(1) = 0.5436 and
the remaining four values 0.1141 satisfies exp(1)−
closeness. The cluster-level distribution makes guess-
ing the sensitive attribute value much easier than the
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data set-level distribution (thus ε = 2 does not offer
enough protection).

In Example 1, we used the connection between
differential privacy and randomized response to illus-
trate the weak privacy protection by differential pri-
vacy when ε is not sufficiently small. Example 3 pro-
vides yet another way to assess the effects of taking
large ε in differential privacy, this time based on the
connection with t-closeness.

5.4 PRAM and the Permutation
Paradigm

Reverse Mapping. In (Domingo-Ferrer and Mu-
ralidhar, 2016), the following procedure was de-
scribed:
Require: Original attribute X = {x1,x2, · · · ,xn}
Require: Anonymized attribute Y = {y1,y2, · · · ,yn}

for i = 1 to n do
Compute j = Rank(yi)
Set zi = x( j) (where x( j) is the value of X of rank
j)

end for
return Z = {z1,z2, · · · ,zn}

The Permutation Paradigm. The output Z is a per-
mutation of X and has the same rank order as Y . Thus
any anonymization procedure can be viewed as a per-
mutation (X into Z) followed by residual noise addi-
tion (Z into Y ) that does not alter ranks.

PRAM and the Permutation Paradigm. PRAM
does not permute attribute values in the data set,
rather it permutes in the domain of attributes. Hence,
PRAM should be viewed in terms of the permutation
paradigm as permutation plus noise. Hence, RR can
also be viewed as permutation, and so can DP and
t-closeness.

6 CONCLUSIONS AND FURTHER
RESEARCH

There is a debate on whether big data are compati-
ble with the privacy of citizens. We have stated the
desirable properties of privacy models for big data
(protection, utility, composability, low computation
and linkability). We have examined how well the two
main privacy models (k-anonymity and ε-differential
privacy) satisfy those properties. None of them is en-
tirely satisfactory, although k-anonymity seems more
amenable to big data anonymization. We have high-
lighted connections between the main privacy models

that might result in synergies between them in order
to tackle big data: the principles underlying all those
models are deniability and permutation.

Future research will have to deal with adapting the
current privacy models for big data and/or designing
new models. When tackling this endeavor, it will es-
sential to adhere to the above-mentioned principles of
deniability and permutation.
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