
The Dynamic Sensor Data Description and
Data Format Conversion Language

Gergely Mezei1, Ferenc A. Somogyi1 and Károly Farkas2,3
1Department of Automation and Applied Informatics, Budapest Univ. of Technology and Economics, Budapest, Hungary

2Department of Networked Systems and Services, Budapest Univ. of Technology and Economics, Budapest, Hungary
3NETvisor Ltd., Budapest, Hungary

Keywords: Sensors, IoT, Compiler, Syntactic Interoperability, Data Transformation, Data Conversion.

Abstract: Nowadays the proliferation of IoT (Internet of Things) devices results in heterogeneous and proprietary sensor
data formats which makes challenging the processing and interpretation of sensor data across IoT domains.
To achieve syntactic interoperability (the ability to exchange uniformly structured data) is still an issue under
research. In this paper, we introduce our purpose developed new script language called Language for Sensor
Data Description (L4SDD) to achieve cross-domain syntactic interoperability. L4SDD defines a unified
output data format and specifies how the data is to be converted into this format from the various sensor
inputs. Besides the language itself, we also present the main features of the workbench created to edit and
maintain the scripts and introduce the IoT framework around the solution. The approach provides a high
performant, secure and easy-to-use solution to transform their data to an easily processed, self-describing,
universal data structure. Although the paper contains implementation details, the solution can be used in other,
similar projects as well. As a practical validation, we also illustrate our solution via a real-life case study.

1 INTRODUCTION

We have been a witness today to the proliferation of
IoT (Internet of Things) devices, solutions and use
case scenarios in a myriad of domains ranging from
smart home to production digitalization/industry 4.0.
However, these are usually proprietary systems and
solutions struggling with issues and challenges when
interoperability is required. A traditional field where
the ability of systems to exchange information, plays
an important role is data network communication.
Nevertheless, for using IoT data across domains and
scenarios, a broader, cross-domain definition of
interoperability is now required (Berrios et al., 2017).

The Virginia Modeling Analysis and Simulation
Center’s Levels of Conceptual Interoperability Model
(LCIM) (Andreas et al., 2013) defines three
categories of interoperability: technical, syntactic and
semantic (Joshi et al., 2017): (i) Technical
interoperability is the fundamental ability of a
network to exchange raw information. (ii) Syntactic
interoperability is the ability to exchange structured
data between two or more machines. Here, data
normalization is carried out. For instance, standard
data formats such as XML provide syntax that allows

systems to recognize the type of data being
transmitted or received. (iii) Semantic
interoperability enables systems to interpret meaning
from structured data in a contextual manner.

Although there is an urge to solve all three levels
of interoperability, but only the technical part is
solved in general.

We are currently working on an IoT framework
collecting data from sensors, transformation the data
to a universal format, storing the data in a database
and providing data analytics for the data collected.
The framework has many components, one of them is
responsible for the syntactic interoperability. In this
paper, we focus our attention on this topic and
introduce our solution to the well-known issues of
processing heterogeneous data uniformly.

To achieve syntactic interoperability, we have
defined a new script language for dynamic sensor
data description and data format conversion called
Language for Sensor Data Description (L4SDD). We
have built a compiler and a workbench for the
language, thus, now it acts as a complete framework
to define data transformations for IoT sensors.

338
Mezei, G., Somogyi, F. and Farkas, K.
The Dynamic Sensor Data Description and Data Format Conversion Language.
DOI: 10.5220/0006912203380346
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 338-346
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 THE BACKGROUND

2.1 The Framework

We have been developing a framework called the
Heterogeneus IoT Sensor DAta Management
and Integration Framework (HISDAMIF). The
framework implements functions to register and
manage sensors, handle sensor data collection,
conversion, interpretation, management, and storage.
The features are divided into two logical groups:
sensor management and message handling. Both
feature groups are supported by modules.

If a new sensor is introduced, the following
modules are used: (i) The device is registered via the
Sensor Registration module, which handles the
registration, the configuration, and monitoring of the
device. (ii) We create a message conversion
algorithm that transforms the sensor data into our
universal, self-describing data format. The algorithm
is created by using the Data Transformation
module, which is also responsible for registering the
data transformation algorithms in the system. (iii) The
Ontology module (based on our oneM2M Base
Ontology (OneM2M: Base Ontology, 2018)
implementation) is used to interpret the collected data
unambiguously. (iv) The sensor description
consisting of the three aforementioned part is stored
by the Inventory module that acts as a catalog of
sensors and data processing algorithms.

The second scenario is when a previously
registered sensor sends data. (i) The data is received
by the Sensor Data Management (SDM) module,
which queries the registered data transformation
algorithms (using the Inventory module). SDM
selects the algorithms applicable (based on a filtering
method as discussed later) and applies them. (ii) As
the result of data transformation, the heterogeneous
sensor data is converted to our universal format. We
store this data in a Hadoop-based database by using
the Data Storage module. IoT applications can be
built on top of this central data store.

In this paper, we focus mainly on the Data
Transformation module. We present the key to
flexible data transformation, and introduce our new,
purpose developed script language capable of
describing sensor data independently of its domain,
and also capable of defining the transformation logic.
The paper also presents the main aspects of the
workbench built around the language.

2.2 Syntactic Interoperability

It is rather challenging to support different formats of

Figure 1: Handling heterogeneous data sources.

data stemming from various IoT devices. In this case,
the data should be normalized or converted to a
common form, which can be read by all elements of
the system or even by different systems leading to
syntactic interoperability (Figure 1).

To achieve syntactic interoperability, first, we
tried to create a static description, namely a data
format definition to describe all variants of all sensor
messages. It is worth mentioning that most of these
sensors are capable of sending the data only in their
native format, i.e., they cannot convert the data to
XML or JSON. Although the static format description
seemed to be a good solution at first glance, we had
to realize that it fails when we want to apply it to
previously known industrial case studies borrowed
from real-life systems. The source of the problem was
that we had many cases, where the format was
dependent on a particular fragment of the data, or the
data had (pre)processing instructions for itself. For
example, we had to support five different encoding
based on the first two bytes of the data processed.
Another example is when the first field contained the
number of key-value pairs stored in the rest of the
message to process. We have realized that describing
complex dependencies between the fragments and
using dozens of alternative paths would result in a
highly verbose, overcomplicated static format
definition. Therefore, we have decided to create a
dynamic scheme that is easier to customize and more
expressive. This dynamic scheme, in this context,
refers to our purpose developed script language called
the Language for Sensor Data Description (L4SDD).

The Dynamic Sensor Data Description and Data Format Conversion Language

339

L4SDD not only defines an output data format but
also specifies how the data is to be calculated from
the various sensor inputs. The converted data can later
be directly stored in databases and processed by data
analysis techniques. The main goal of this paper is to
present this language and the workbench around the
language in detail. Although the discussion is based
on our concrete approach and implementation, the
ideas and solutions are generic, thus they are also
useful in other environments.

2.3 Related Approaches

In order to achieve syntactic interoperability in cross-
industry projects, we need a common data format
understandable, readable and writable by all
participants. In order to reach this goal, some of the
existing approaches focus on defining a universal
format applicable in all scenarios and domains. In our
case, this is not enough, since even if we succeed in
identifying such a format, the capabilities of the
sensor devices are strongly limited, and they cannot
convert the data to the desired format by themselves.
Thus, our goal was twofold: (i) a format that can
describe the format of all data independently of its
domain, and (ii) a solution to transform the original
data to this standard form.

The Data Distribution Service (DDS) (OMG: Data
Distribution Service, 2015) is a popular data-centric
publish-subscribe protocol defined by OMG. It is
created to handle communication between the
participants, but it would need to create adapters for
IoT devices. DDS offers a standard to describe the
data format, but data transformation is not considered.

The OPC-Unified Architecture (OPC-UA) (OPC-
Unified Architecture, 2015) is a popular machine-to-
machine protocol for industrial automation. Its basic
idea is promising, however, at the current stage, it is
rather a pre-release standard than a working, platform
independent solution. Most of the issues come from
various, incomplete implementations.

The Sensor Markup Language (SenML) (Network
Working Group: Sensor Markup Language, 2013) is
created to describe sensor measurements and devices,
which could fit into our scenario, but SenML allows
to use XML, JSON, Concise Binary Object
Representation (CBOR) and Efficient XML
Interchange (EXI) formats only. This is not suitable
in our case because of the limitation of the sensors.

The Data Format Description Language (DFDL)
(Open Grid Forum: Data Format Description
Language, 2014) (McGrath et al., 2009) is perhaps the
nearest to provide a solution to our challenges. It is a
modeling language for describing general text and

binary data in a standard way. The schemas in DFDL
allow any text or binary data to be read from its native
format and written into a destination language. The
standard has several implementations available, and
it can be integrated with several system technologies.
Even by understanding its promising capabilities, we
could not use DFDL. The most important reason for
this is that DFDL implementations have a concrete
platform to apply the conversion on. In contrast, the
implementation platform of our data conversion
framework must be modifiable (e.g., instead of Java,
we should be able to switch to a JavaScript platform).
Moreover, we wanted to optimize the conversion and
to ensure its safety. By defining a new script language
with limited, but efficient features and creating an
environment around it (e.g., compiler, execution
framework), we could achieve these goals easier.

3 THE LANGUAGE FOR SENSOR
DATA DESCRIPTION

By creating L4SDD, a new, purpose developed script
language, our primary aim was to devise a dynamic
data description solution. Before discussing the
language, it is useful to introduce, how the data
processing algorithm is applied in our framework.
When the script is created, it is compiled to source
code to the target platform, currently to JavaScript,
but it is configurable. The generated data processor
function is then registered by the framework. Later, if
the framework receives a sensor data message, the
registered data processors are queried. All processors
have a filter that decides, whether the processor is
applicable for the data, or not. If the answer of the
filter is positive, the data transformation is applied.

L4SDD scripts consist of several sections: (i) an
Output definition that describes the format of the
output data; (ii) a Filter definition that is used, when
the framework tries to find scripts applicable to the
specific data; (iii) a Mapping definition that defines
the conversion itself, namely how the output data is
produced from the input data; (iv) the script may also
contain a Params definition, where additional
parameters can be passed (e.g., the current location),
which can affect the result of Mapping. These
parameters are not sent by the sensor to the
framework, instead, the framework appends the
information as an additional input parameter for the
script when it is executed.

The Output and Params sections use the same
language elements and syntax (they are static format
descriptions), while the Filter and Mapping sections

ICSOFT 2018 - 13th International Conference on Software Technologies

340

also share their syntax (they are transformation logic
descriptors). The four sections together allow us to
specify the interpretation of all kinds of sensor data to
our universal, self-describing data format used in later
steps of data processing.

Figure 2: Steps of sensor data processing.

Figure 2 shows the typical steps of processing the
sensor data. First, the data is received by the Data
Processor Manager (DPM) inside the Sensor Data
Management module. DPM forwards the data to the
Filter algorithm (Step 2.1), which also receives
additional parameters (Step 2.2). It should be noted
that the section Params describes only the structure of
additional parameter data, the concrete values are
calculated by the Data Processor Manager. This later
relation is not shown in the figure for the sake of
simplicity. When the filter is processed, it sends back
its result (Step 3) to DPM. If the result is positive, the
data is forwarded to the Mapping algorithm (Step 4.1)
accompanied by parameters (Step 4.2). Finally, the
result of Mapping is sent to the Data Storage module.
It is worth noting that the format in Step 5 fits the
Output definition provided in the script.

The Output and Params sections describe the data
structure produced as the result/accepted as a
parametrization at the beginning respectively. The
syntax of these sections is relatively simple: we
define data tags with names and types. The type can
be one of the built-in types (e.g., integer, string or
DateTime), or a complex type composed from other
types hierarchically. A complex type is similar to a
struct in the C language. The multiplicity of the tags
can be altered by allowing optional multiplicity (the
tag can be omitted), and arrays. Fixed-length and
variable length arrays are both supported.

There are a few restrictions to follow as well: the
multiplicity of the outermost element of the hierarchy
must be exactly one, namely, it must not be optional
or an array, and it must have a name. This seems to
be a limitation, however, we can always create a
nesting (outermost) type and use an arbitrary
multiplicity within. Another restriction is that we do
not support empty hierarchies (hierarchies without
any data tag). These restrictions do not limit the

expressivity of the solution, however, they do
simplify the processing of the data.

3.1 The Data Transformation Logic

The dynamic part, i.e., the data transformation
description of L4SDD is a Java-like imperative
language with several restrictions (compared to Java),
but, on the other hand, supporting custom functions
in order to simplify the transformation.

3.1.1 The Type System

The language of L4SDD is strongly typed. It supports
many types known from programming languages,
such as integer, double, string or DateTime. We will
refer to these types like primitive types from now on
in order to distinguish them from complex types
composed of several fields. The users cannot define
new primitive types, but they are allowed to combine
existing types to create new complex types.
Moreover, we can also create arrays from any known
type. These arrays can be of fixed or variable length.
All types (primitive and complex) are able to serialize
and deserialize themselves to/from string format. The
conversion between the type and string is implicitly
supported thus simplifying value assignments.

3.1.2 Variables

The scripts have built-in variables accessible from the
Filter/Mapping sections of the script: (i) INPUT: Can
be accessed from both Filter and Mapping. The input
data of the script (the data to process) represented as
a variable. The type of the variable is byte array. (ii)
SOURCE: Can be accessed from both Filter and
Mapping. The source of the input data (i.e., the
identifier of the sensor sending the data) as a string.
(iii) OUTPUT: Can be accessed from Mapping only.
The structure of the output variable is specified by the
Output section. (iv) PARAMS: Can be accessed from
both Filter and Mapping. Parameters passed to the
script. The structure of the variable follows the
definition of the Params section.

Note that in Filter, we do not have an explicit
output variable, since Filter definitions consist of
assert statements. The result of Filter is true if none
of the assertions fails.

Besides these global variables, it is also possible to
define and use local variables. The scope of local
variables are handled as usual: they end at the end of
their defining block. The type of the local variables
can be any valid type according to the aforementioned
type system.

The Dynamic Sensor Data Description and Data Format Conversion Language

341

3.1.3 Language Statements

The language borrows several concepts and solutions
from modern programming languages such as Java.
These concepts include arithmetic, relational, bit and
logical operations, assignment, conditional branches
and loops (for, while). The language also supports a
foreach statement providing an easy to use way to
iterate through a collection. Specifying the type of the
iterator variable is not necessary in case of foreach,
since it can be resolved from the collection.

Compared to classic programming languages,
L4SDD is limited to several extents since it does not
support (i) user-defined functions in the scripts, (ii)
visibility settings of data tags in complex types, (iii)
reference types, (iv) custom primitive types (as
mentioned before) and custom error types.

The language also contains several special
constructs to simplify data processing. Since
processing of sensor data often requires working with
byte and bit arrays, the feature is supported by various
built-in functions. For example, the expression
Bit(x, 3, 4) returns the third to sixth bit of
variable x. For the sake of simplicity, this can also be
expressed by array indexers, such as x[3..6].

Besides byte arrays, the input data tend to contain
JSON or CSV (comma separated value) data
fragments. To support JSON, the language has a
function that produces a hierarchy of key-value pairs
based on a string representation of JSON-encoded
data. Similarly, there is a function that produces a
two-dimensional array from CSV data, where the
item/row separating characters can be specified. It is
also a common case that we encode key-value pairs
as CSV data. For example the string "ack":false,
"port":4, "cls":0 describes three pairs (the keys
are “ack”, ”port” and “cls”). Moreover, the two CSV
styles can also be mixed (some of the values have a
key, others have only an index).

Finally, it is a common task to extend an array
with a new element and to initialize it just before it is
added to the collection. In order to support this, we
have an Add function, which is somewhat
unconventional, since it also has a statement block
after the function call. When calling the function, we
can pass a variable that will point to the newly created
item. This variable can be an existing one (defined
previously somewhere earlier), or a new one (the
variable is then freed when the execution of the block
is ended). If an unhandled error occurs inside the
block, the new element is not added to the array.

3.1.4 Error Handling

Safety plays an important role in our project, thus
having a stable and safe error handling solution is also
important. The error handling follows the well-known
try-catch pattern. If an error occurs inside a try block,
the execution is stopped, and the appropriate catch
blocks are executed. However, L4SDD handles each
block automatically as a try block: the users can
attach error handling (catch) blocks to them matching
a specific type of error or specifying that all errors
must be caught. It is also possible to specify multiple
error types for a specific catch block.

If there is no matching catch block for the error,
then it is forwarded to the container block and so on,
until the outermost block is reached. The outermost
block automatically handles all unhandled errors and
creates a log message about them. If there is an
unhandled error in the Filter section, it returns false,
which means the automatic rejection of the message
(the script is not meant to process the data). Besides
the implicit “try” statement behavior of blocks,
assignments also act as try blocks. If the assignment
cannot be applied, the value of the destination
variable remains untouched, and no errors are thrown.
If the user wants to change this behavior, it is possible
by explicitly overriding it.

4 THE WORKBENCH

We have built a compiler for L4SDD based on Xtext
(Eysholdt and Behrens, 2010) (The Xtext
Framework, 2018). In order to make the definition of
L4SDD scripts as user-friendly as possible, we
provide a feature rich integrated development
environment (IDE) based on Xtext. Originally, we
were working with the standard, Eclipse-based
version of Xtext, but later we decided to switch to a
JavaScript-based web editor also based on Xtext. The
web-based editor (Figure 3) is reachable from
anywhere, and it is easier to integrate into our system.
The editor communicates with an Xtext servlet,
which contains the compiler, and does the parsing.
From the viewpoint of the user, there is no functional
difference compared to using a standard IDE. The
editor provided by Xtext supports many features that
make the editing process of the L4SDD scripts as
user-friendly as possible, e.g., syntax highlight,
semantic highlight, content assist, validation
(semantic analysis).

During the compilation process, we generate the
source code for the target language, which is currently
JavaScript. It is worth mentioning that we can also

ICSOFT 2018 - 13th International Conference on Software Technologies

342

Figure 3: L4SDD Web Editor.

simultaneously support code generation for
multiple target languages if needed. The types we
defined in L4SDD are all mapped to types in the
target language. This is done by a configurable type
system. Hierarchical types can also be mapped
(usually to classes or structures), if the target
language is object-oriented. In the cases of weakly-
typed target languages like JavaScript, there is no
need for the type conversion. L4SDD also supports
the mapping of commonly-used functions to the
target language. The functions of L4SDD are mapped
to custom functions in the target language with the aid
of our function mapping system similarly to type
mapping. Note that in this case, the implementation
of the functions must exist in the target language,
thus, a function library is required for each language
supported. The function library is written by hand by
the framework provider when the new target language
is added. For example, the Base64 function (the
purpose of which is to encode a binary array to
Base64) in L4SDD is mapped to the toBase64
function written in JavaScript as part of the
framework. The generated code then calls toBase64
everywhere Base64 is called in the script.

5 ANALYZING THE SOLUTION

Our original goal was to create a language that
supports the conversion of sensor data given in any
format to a common data format that is easily
processed in later steps. An additional goal was to
create a user-friendly workbench around the language
that allows the users to benefit from the advantages of
the language in a comfortable way. While these goals
are clearly reached by L4SDD and its workbench, the
solution has additional advantages as well.

Possibly the most important benefit is that the
scripts are not bound to a specific programming
library or even to an execution platform. While

L4SDD is similar to general purpose programming
languages and thus, easy to learn by programmers, the
scripts can be compiled into any modern
programming language. Currently, we produce
JavaScript code from the scripts, but if we would need
to use another language, we only need to replace the
code generator of our compiler. This means that we
can change the target platform without touching the
scripts. By taking into account how fast the evolution
of programming libraries are especially in web-based
areas, this advantage can efficiently simplify the
maintenance of the data transformation logic.

As the direct consequence of the previous benefit,
it is also possible to generate code for different
platforms from the same script. For example, we can
generate code for a JavaScript and a Java
environment simultaneously, thus, supporting several
environments at the same time. The key is the
separation of data processing logic and its
implementation.

The fact that we have full control over the
scripting language makes it possible to add efficient
features to the language. Currently, this is mainly
limited to bit, byte, JSON and CSV processing
functions, but later, we can extend the language based
on user feedback. Obviously, this would also be
possible in a general programming language by
creating utility functions, but in a purpose developed
script language, we have more flexibility (e.g., the
function Add) and more options to customize and
adapt to the user requests.

The usage of a purpose developed script language
not only simplifies the code generation, but it also
helps in avoiding dangerous, malicious codes. By
restricting the available functionality, we can
guarantee the safety of the scripts much easier. As
mentioned in the language description, safety is also
supported by custom error handling.

Safety is supported not only by the language itself
but also with the script management lifecycle. The
scripts must be editable by the users, but this does not
necessarily mean that the generated code must also be
shared with them. The users edit the scripts, then the
scripts are uploaded to the server. They are compiled
there, and the data transformation algorithm
(described by the script) is registered and later used
by the framework and not by the user. By hiding the
generated source code from the users, it is much
easier to avoid security issues, since the users do not
know how their script is implemented. They do not
even know to which programming language we
compile their scripts. Moreover, this also allows us to
replace the target platform any time, transparently.

The Dynamic Sensor Data Description and Data Format Conversion Language

343

By completely controlling the compiling process
and hiding the generated source code from the user,
we can also add debugging and logging instructions
to the code if it is required, for example, while testing.
This solution also makes it possible to map usual
function calls, create statistics from them and
optimize the generated code based on the results.

To sum it up, by following our approach, the users
obtain a high performant, secure and easy-to-use
solution to transform their data to an easily processed,
self-describing, universal data structure.

6 CASE STUDY

In the following, we illustrate our approach on a
simple, smart parking scenario. In this scenario, we
use the Libelium Smart Parking sensor solution
(Libelium Smart Parking, 2018). We apply the
sensors to detect available parking slots in a parking
area based on the measured values.

Our goal is to convert the data sent by the parking
sensors to a common data format. The raw sensor data
of our example can be seen in Code 1. For the sake
of understandability, we omit some details

{"ack":false,freq":"868.1",snr":"8.5",
"deveui":"00-00-00-00-00-1a-fb-1d",
"data":"ArEDwQAAAAsAAAA=", ... }

Code 1: Raw sensor data.

The data in the frame are described in JSON,
because our system appends extra information
(metadata) to the raw data sent by the sensor. The raw
data can be found in the highlighted data field. The
sensor does not maintain a strict ordering between the
fields, their order may change between messages.
Most of the data (e.g., ID, frequency) can be
converted without further processing. However, the
raw data parts are sent in a hexadecimal format that
needs to be processed. Moreover, it can happen that
different sensors (or the same sensor at different
intervals) send the data in different structures. We can
solve this problem by writing multiple scripts, or by
processing the data dynamically, based on the
markers in it (not used in the presented example).
The first step of data conversion is the format
description, namely, how we describe the input data
in our universal schema. This is accomplished in the
Output section. The schema description for the
parking sensor example can be seen in Code 2. The
type definitions in the description (e.g., byte, int) are
specific to L4SDD, and they can be mapped to types
in the target language that we generate the code for.

OUTPUT {
 deviceEui : byte[32];
 raw:
 {
 type : int;
 occ : int;
 meas : float;
 };
 freq : float;
 snr : int; }

Code 2: The Output definition.

The second step is to define the processing logic
in the script. The purpose of the Filter section (Code
33) is to check if the data can be processed by the
script. Here, we check the first byte of the raw data,
which identifies the message type sent by the sensor.

FILTER {
var decData = Base64(INPUT.data);
Assert (decData [0] & 0xF == 2){…} }

Code 3: The Filter definition.

Then, the Mapping section (Code 4) contains the
processing logic for the script. In the example, we
process the raw data by using standard instructions in
the L4SDD language. The rest of the data can be
directly copied to the output without processing.

MAPPING {
 var item = JSON(INPUT);
 OUTPUT.deviceEui = item.deveui;
 var raw = Base64(item.data);
 OUTPUT.raw.type = Int(SStr(…));
 OUTPUT.raw.occ = (Int(SStr(…) === 1);
 OUTPUT.raw.meas = raw[2]*256+raw[3];
 OUTPUT.freq = item.freq;
 OUTPUT.snr = item.lsnr; }

Code 4: The Mapping definition.

The third step of the data conversion is the code
generation for the target language(s). Later, the
system will execute this generated code on the data
accepted by the Filter. Currently, we generate
JavaScript code (referred to as L4JS), but the code
generation can easily be extended to other languages,
e.g. to Java.

A snippet of the generated code of our example
can be seen in Code . Filter and Mapping are both
mapped to a JavaScript function (isAccepted and
processData). The system calls these functions with
the specific sensor data.

ICSOFT 2018 - 13th International Conference on Software Technologies

344

function isAccepted(input) {
 let decData = Base64(input.data);
 if ((decData [0] & 0xF) != 2)
 { return false; }
 return true; }

function processData(input, params,
 message) {
 let item = JSON(message);
 let raw = Base64(item.data);
 strOutput.deviceEui = item.deveui;
 strOutput.raw.type = Int(…);
 strOutput.raw.occ = ((Int(…))===1);
 strOutput.raw.meas =
 raw[2]* 256 + raw[3];
 strOutput.freq = item.freq;
 strOutput.snr = item.lsnr;
 return structuredOutput; }

Code 5: The generated source code.

Finally, Code 6 depicts the structured JSON
output for the parking sensor example, containing the
value information. The type information (which
contains the structure of the output) is omitted. We
can use this information later, durint the storage of the
data.

{"deviceEui":"00-00-00-00-00-1a-fb-1d",
"raw": {
 "type": 2,
 "occ": false,
 "meas": 961},
"freq":"868.1",
"snr":"8.5" }

Code 6: The structured output.

In the example, the structure and syntax of the
generated L4JS code are very similar to that of the
L4SDD script, since the example is simple. However,
in case of more sophisticated, real-life scenarios,
L4SDD can also simplify the syntax of the script.

7 CONCLUSIONS

With the steeply growing popularity of IoT devices,
there is an increasing need to simplify interoperability
between these devices. Defining a universal data
format is not enough since most of the sensors do not
support adapting to a specified format. Our research
aims to create a new method that includes a universal
self-describing data format and a transformation
language able to convert data of all kinds to this
format. Our solution is based on a new language

referred to as the Language for Sensor Data
Description. The paper elaborated on the main
properties of the language and also discussed its
environment, the workbench and showed how the
language fits into the ecosystem of our generic IoT
framework.

Our current results are promising, but we have
many plans for the future. Currently we are working
on a debugging system for the script to simplify
finding and correcting the errors in the script. We also
plan to add semantic interpretation of the input data
(supporting semantic interoperability) and to apply
more case studies in real, industrial environments.
Moreover we plan to give access for a wider audience
to use and therefore test our solution.

ACKNOWLEDGEMENTS

The work presented in this paper has been carried out
in the frame of project no. 2017-1.3.1-VKE-2017-
00042 and performed in the frame of the FIEK_16-1-
2016-0007 project, both implemented with the
support provided from the National Research,
Development and Innovation Fund of Hungary,
financed under the 2017-1.3 and the FIEK_16
funding scheme respectively.

REFERENCES

Andreas, T., Diallo, S. Y. & Turnitsa, C. D., 2013. Apply-
ing the Levels of Conceptual Interoperability Model in
Support of Integratability, Interoperability, and Compo-
sability for System-of-Systems Engineering. System-
ics, Cybernetics And Informatics , 5(5), pp. 65-74.

Berrios, V. et al., 2017. Cross-industry semantic
interoperability, part one. [Online] http://www.
embedded-computing.com/embedded-computing-
design/cross-industry-semantic-interoperability-part-
one [Accessed 20 04 2018].

Eysholdt, M. & Behrens, H., 2010. Xtext: Implement Your
Language Faster Than the Quick and Dirty Way.
Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems
Languages and Applications Companion, pp. 307-309.

Joshi, R., Mellor, S. & Didier, P., 2017. The Industrial
Internet of Things Volume G5: Connectivity
Framework. s.l.: Industrial Internet Consortium.

Libelium Smart Parking, 2018. [Online] http://www.
libelium.com/downloads/documentation/plug_and_sen
se_smart_parking_technical_guide.pdf [Accessed 20
04 2018].

McGrath, R. E., Kastner, J. & Myers, J. F. M., 2009.
Experiments in Data Format Interoperation Using
Defuddle, Illinois: University of Illinois.

The Dynamic Sensor Data Description and Data Format Conversion Language

345

Network Working Group: Sensor Markup Language, 2013.
SENML. [Online] https://tools.ietf.org/html/draft-
jennings-senml-10

OMG: Data Distribution Service, 2015. DDS. [Online]
https://www.omg.org/spec/DDS/1.4/PDF [Accessed 20
04 2018].

OneM2M: Base Ontology, 2018. [Online] www.
onem2m.org [Accessed 20 04 2018].

OPC-Unified Architecture, 2015. OPC-UA. [Online]
https://opcfoundation.org/developer-tools/specification
s-unified-architecture [Accessed 20 04 2018].

Open Grid Forum: Data Format Description Language,
2014. DFDL. [Online] https://www.ogf.org/ogf/
doku.php/standards/dfdl/dfdl [Accessed 20 04 2018].

The Xtext Framework, 2018. http://www.eclipse.org/Xtext/.
[Online] www.eclipse.org/Xtext/ [Accessed 20 04
2018].

ICSOFT 2018 - 13th International Conference on Software Technologies

346

