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Abstract: Nowadays the proliferation of IoT (Internet of Things) devices results in heterogeneous and proprietary sensor 
data formats which makes challenging the processing and interpretation of sensor data across IoT domains. 
To achieve syntactic interoperability (the ability to exchange uniformly structured data) is still an issue under 
research. In this paper, we introduce our purpose developed new script language called Language for Sensor 
Data Description (L4SDD) to achieve cross-domain syntactic interoperability. L4SDD defines a unified 
output data format and specifies how the data is to be converted into this format from the various sensor 
inputs. Besides the language itself, we also present the main features of the workbench created to edit and 
maintain the scripts and introduce the IoT framework around the solution. The approach provides a high 
performant, secure and easy-to-use solution to transform their data to an easily processed, self-describing, 
universal data structure. Although the paper contains implementation details, the solution can be used in other, 
similar projects as well. As a practical validation, we also illustrate our solution via a real-life case study. 

1 INTRODUCTION 

We have been a witness today to the proliferation of 
IoT (Internet of Things) devices, solutions and use 
case scenarios in a myriad of domains ranging from 
smart home to production digitalization/industry 4.0. 
However, these are usually proprietary systems and 
solutions struggling with issues and challenges when 
interoperability is required. A traditional field where 
the ability of systems to exchange information, plays 
an important role is data network communication. 
Nevertheless, for using IoT data across domains and 
scenarios, a broader, cross-domain definition of 
interoperability is now required (Berrios et al., 2017). 

The Virginia Modeling Analysis and Simulation 
Center’s Levels of Conceptual Interoperability Model 
(LCIM) (Andreas et al., 2013) defines three 
categories of interoperability: technical, syntactic and 
semantic (Joshi et al., 2017): (i) Technical 
interoperability is the fundamental ability of a 
network to exchange raw information. (ii) Syntactic 
interoperability is the ability to exchange structured 
data between two or more machines. Here, data 
normalization is carried out. For instance, standard 
data formats such as XML provide syntax that allows 

systems to recognize the type of data being 
transmitted or received. (iii) Semantic 
interoperability enables systems to interpret meaning 
from structured data in a contextual manner.  

Although there is an urge to solve all three levels 
of interoperability, but only the technical part is 
solved in general.  

We are currently working on an IoT framework 
collecting data from sensors, transformation the data 
to a universal format, storing the data in a database 
and providing data analytics for the data collected. 
The framework has many components, one of them is 
responsible for the syntactic interoperability. In this 
paper, we focus our attention on this topic and 
introduce our solution to the well-known issues of 
processing heterogeneous data uniformly.  

To achieve syntactic interoperability, we have 
defined a new script language for dynamic sensor 
data description and data format conversion called 
Language for Sensor Data Description (L4SDD). We 
have built a compiler and a workbench for the 
language, thus, now it acts as a complete framework 
to define data transformations for IoT sensors. 
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2 THE BACKGROUND 

2.1 The Framework 

We have been developing a framework called the 
Heterogeneus IoT Sensor DAta Management  
and Integration Framework (HISDAMIF). The 
framework implements functions to register and 
manage sensors, handle sensor data collection, 
conversion, interpretation, management, and storage. 
The features are divided into two logical groups: 
sensor management and message handling. Both 
feature groups are supported by modules. 

If a new sensor is introduced, the following 
modules are used: (i) The device is registered via the 
Sensor Registration module, which handles the 
registration, the configuration, and monitoring of the 
device. (ii) We create a message conversion 
algorithm that transforms the sensor data into our 
universal, self-describing data format. The algorithm 
is created by using the Data Transformation 
module, which is also responsible for registering the 
data transformation algorithms in the system. (iii) The 
Ontology module (based on our oneM2M Base 
Ontology (OneM2M: Base Ontology, 2018) 
implementation) is used to interpret the collected data 
unambiguously. (iv) The sensor description 
consisting of the three aforementioned part is stored 
by the Inventory module that acts as a catalog of 
sensors and data processing algorithms.  

The second scenario is when a previously 
registered sensor sends data. (i) The data is received 
by the Sensor Data Management (SDM) module, 
which queries the registered data transformation 
algorithms (using the Inventory module). SDM 
selects the algorithms applicable (based on a filtering 
method as discussed later) and applies them. (ii) As 
the result of data transformation, the heterogeneous 
sensor data is converted to our universal format. We 
store this data in a Hadoop-based database by using 
the Data Storage module. IoT applications can be 
built on top of this central data store. 

In this paper, we focus mainly on the Data 
Transformation module. We present the key to 
flexible data transformation, and introduce our new, 
purpose developed script language capable of 
describing sensor data independently of its domain, 
and also capable of defining the transformation logic. 
The paper also presents the main aspects of the 
workbench built around the language.  

2.2 Syntactic Interoperability 

It is rather challenging to support different formats of  

 

Figure 1: Handling heterogeneous data sources. 

data stemming from various IoT devices. In this case, 
the data should be normalized or converted to a 
common form, which can be read by all elements of 
the system or even by different systems leading to 
syntactic interoperability (Figure 1).  

To achieve syntactic interoperability, first, we 
tried to create a static description, namely a data 
format definition to describe all variants of all sensor 
messages. It is worth mentioning that most of these 
sensors are capable of sending the data only in their 
native format, i.e., they cannot convert the data to 
XML or JSON. Although the static format description 
seemed to be a good solution at first glance, we had 
to realize that it fails when we want to apply it to 
previously known industrial case studies borrowed 
from real-life systems. The source of the problem was 
that we had many cases, where the format was 
dependent on a particular fragment of the data, or the 
data had (pre)processing instructions for itself. For 
example, we had to support five different encoding 
based on the first two bytes of the data processed. 
Another example is when the first field contained the 
number of key-value pairs stored in the rest of the 
message to process. We have realized that describing 
complex dependencies between the fragments and 
using dozens of alternative paths would result in a 
highly verbose, overcomplicated static format 
definition. Therefore, we have decided to create a 
dynamic scheme that is easier to customize and more 
expressive. This dynamic scheme, in this context, 
refers to our purpose developed script language called 
the Language for Sensor Data Description (L4SDD). 
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L4SDD not only defines an output data format but 
also specifies how the data is to be calculated from 
the various sensor inputs. The converted data can later 
be directly stored in databases and processed by data 
analysis techniques. The main goal of this paper is to 
present this language and the workbench around the 
language in detail. Although the discussion is based 
on our concrete approach and implementation, the 
ideas and solutions are generic, thus they are also 
useful in other environments. 

2.3 Related Approaches 

In order to achieve syntactic interoperability in cross-
industry projects, we need a common data format 
understandable, readable and writable by all 
participants. In order to reach this goal, some of the 
existing approaches focus on defining a universal 
format applicable in all scenarios and domains. In our 
case, this is not enough, since even if we succeed in 
identifying such a format, the capabilities of the 
sensor devices are strongly limited, and they cannot 
convert the data to the desired format by themselves. 
Thus, our goal was twofold: (i) a format that can 
describe the format of all data independently of its 
domain, and (ii) a solution to transform the original 
data to this standard form.  

The Data Distribution Service (DDS) (OMG: Data 
Distribution Service, 2015) is a popular data-centric 
publish-subscribe protocol defined by OMG. It is 
created to handle communication between the 
participants, but it would need to create adapters for 
IoT devices. DDS offers a standard to describe the 
data format, but data transformation is not considered.  

The OPC-Unified Architecture (OPC-UA) (OPC-
Unified Architecture, 2015) is a popular machine-to-
machine protocol for industrial automation. Its basic 
idea is promising, however, at the current stage, it is 
rather a pre-release standard than a working, platform 
independent solution. Most of the issues come from 
various, incomplete implementations. 

The Sensor Markup Language (SenML) (Network 
Working Group: Sensor Markup Language, 2013) is 
created to describe sensor measurements and devices, 
which could fit into our scenario, but SenML allows 
to use XML, JSON, Concise Binary Object 
Representation (CBOR) and Efficient XML 
Interchange (EXI) formats only. This is not suitable 
in our case because of the limitation of the sensors. 

The Data Format Description Language (DFDL) 
(Open Grid Forum: Data Format Description 
Language, 2014) (McGrath et al., 2009) is perhaps the 
nearest to provide a solution to our challenges. It is a 
modeling language for describing general text and 

binary data in a standard way. The schemas in DFDL 
allow any text or binary data to be read from its native 
format and written into a destination language. The 
standard has several implementations available, and 
it can be integrated with several system technologies. 
Even by understanding its promising capabilities, we 
could not use DFDL. The most important reason for 
this is that DFDL implementations have a concrete 
platform to apply the conversion on. In contrast, the 
implementation platform of our data conversion 
framework must be modifiable (e.g., instead of Java, 
we should be able to switch to a JavaScript platform).  
Moreover, we wanted to optimize the conversion and 
to ensure its safety. By defining a new script language 
with limited, but efficient features and creating an 
environment around it (e.g., compiler, execution 
framework), we could achieve these goals easier. 

3 THE LANGUAGE FOR SENSOR 
DATA DESCRIPTION 

By creating L4SDD, a new, purpose developed script 
language, our primary aim was to devise a dynamic 
data description solution. Before discussing the 
language, it is useful to introduce, how the data 
processing algorithm is applied in our framework. 
When the script is created, it is compiled to source 
code to the target platform, currently to JavaScript, 
but it is configurable. The generated data processor 
function is then registered by the framework. Later, if 
the framework receives a sensor data message, the 
registered data processors are queried. All processors 
have a filter that decides, whether the processor is 
applicable for the data, or not. If the answer of the 
filter is positive, the data transformation is applied.  

L4SDD scripts consist of several sections: (i) an 
Output definition that describes the format of the 
output data; (ii) a Filter definition that is used, when 
the framework tries to find scripts applicable to the 
specific data; (iii) a Mapping definition that defines 
the conversion itself, namely how the output data is 
produced from the input data; (iv) the script may also 
contain a Params definition, where additional 
parameters can be passed (e.g., the current location), 
which can affect the result of Mapping. These 
parameters are not sent by the sensor to the 
framework, instead, the framework appends the 
information as an additional input parameter for the 
script when it is executed.  

The Output and Params sections use the same 
language elements and syntax (they are static format 
descriptions), while the Filter and Mapping sections 
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also share their syntax (they are transformation logic 
descriptors). The four sections together allow us to 
specify the interpretation of all kinds of sensor data to 
our universal, self-describing data format used in later 
steps of data processing. 

 

Figure 2: Steps of sensor data processing. 

Figure 2 shows the typical steps of processing the 
sensor data. First, the data is received by the Data 
Processor Manager (DPM) inside the Sensor Data 
Management module. DPM forwards the data to the 
Filter algorithm (Step 2.1), which also receives 
additional parameters (Step 2.2). It should be noted 
that the section Params describes only the structure of 
additional parameter data, the concrete values are 
calculated by the Data Processor Manager. This later 
relation is not shown in the figure for the sake of 
simplicity. When the filter is processed, it sends back 
its result (Step 3) to DPM. If the result is positive, the 
data is forwarded to the Mapping algorithm (Step 4.1) 
accompanied by parameters (Step 4.2). Finally, the 
result of Mapping is sent to the Data Storage module. 
It is worth noting that the format in Step 5 fits the 
Output definition provided in the script. 

The Output and Params sections describe the data 
structure produced as the result/accepted as a 
parametrization at the beginning respectively. The 
syntax of these sections is relatively simple: we 
define data tags with names and types. The type can 
be one of the built-in types (e.g., integer, string or 
DateTime), or a complex type composed from other 
types hierarchically. A complex type is similar to a 
struct in the C language. The multiplicity of the tags 
can be altered by allowing optional multiplicity (the 
tag can be omitted), and arrays. Fixed-length and 
variable length arrays are both supported.  

There are a few restrictions to follow as well: the 
multiplicity of the outermost element of the hierarchy 
must be exactly one, namely, it must not be optional 
or an array, and it must have a name. This seems to 
be a limitation, however, we can always create a 
nesting (outermost) type and use an arbitrary 
multiplicity within. Another restriction is that we do 
not support empty hierarchies (hierarchies without 
any data tag). These restrictions do not limit the 

expressivity of the solution, however, they do 
simplify the processing of the data. 

3.1 The Data Transformation Logic  

The dynamic part, i.e., the data transformation 
description of L4SDD is a Java-like imperative 
language with several restrictions (compared to Java), 
but, on the other hand, supporting custom functions 
in order to simplify the transformation.  

3.1.1 The Type System 

The language of L4SDD is strongly typed. It supports 
many types known from programming languages, 
such as integer, double, string or DateTime. We will 
refer to these types like primitive types from now on 
in order to distinguish them from complex types 
composed of several fields. The users cannot define 
new primitive types, but they are allowed to combine 
existing types to create new complex types. 
Moreover, we can also create arrays from any known 
type. These arrays can be of fixed or variable length.  
All types (primitive and complex) are able to serialize 
and deserialize themselves to/from string format. The 
conversion between the type and string is implicitly 
supported thus simplifying value assignments.  

3.1.2 Variables 

The scripts have built-in variables accessible from the 
Filter/Mapping sections of the script: (i) INPUT: Can 
be accessed from both Filter and Mapping. The input 
data of the script (the data to process) represented as 
a variable. The type of the variable is byte array. (ii) 
SOURCE: Can be accessed from both Filter and 
Mapping. The source of the input data (i.e., the 
identifier of the sensor sending the data) as a string. 
(iii) OUTPUT: Can be accessed from Mapping only. 
The structure of the output variable is specified by the 
Output section. (iv) PARAMS: Can be accessed from 
both Filter and Mapping. Parameters passed to the 
script. The structure of the variable follows the 
definition of the Params section. 

Note that in Filter, we do not have an explicit 
output variable, since Filter definitions consist of 
assert statements. The result of Filter is true if none 
of the assertions fails. 

Besides these global variables, it is also possible to 
define and use local variables. The scope of local 
variables are handled as usual: they end at the end of 
their defining block. The type of the local variables 
can be any valid type according to the aforementioned 
type system. 
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3.1.3 Language Statements 

The language borrows several concepts and solutions 
from modern programming languages such as Java. 
These concepts include arithmetic, relational, bit and 
logical operations, assignment, conditional branches 
and loops (for, while). The language also supports a 
foreach statement providing an easy to use way to 
iterate through a collection. Specifying the type of the 
iterator variable is not necessary in case of foreach, 
since it can be resolved from the collection. 

Compared to classic programming languages, 
L4SDD is limited to several extents since it does not 
support (i) user-defined functions in the scripts, (ii) 
visibility settings of data tags in complex types, (iii) 
reference types, (iv) custom primitive types (as 
mentioned before) and custom error types. 

The language also contains several special 
constructs to simplify data processing. Since 
processing of sensor data often requires working with 
byte and bit arrays, the feature is supported by various 
built-in functions. For example, the expression 
Bit(x, 3, 4) returns the third to sixth bit of 
variable x. For the sake of simplicity, this can also be 
expressed by array indexers, such as x[3..6].  

Besides byte arrays, the input data tend to contain 
JSON or CSV (comma separated value) data 
fragments. To support JSON, the language has a 
function that produces a hierarchy of key-value pairs 
based on a string representation of JSON-encoded 
data. Similarly, there is a function that produces a 
two-dimensional array from CSV data, where the 
item/row separating characters can be specified. It is 
also a common case that we encode key-value pairs 
as CSV data. For example the string "ack":false, 
"port":4, "cls":0 describes three pairs (the keys 
are “ack”, ”port” and “cls”). Moreover, the two CSV 
styles can also be mixed (some of the values have a 
key, others have only an index). 

Finally, it is a common task to extend an array 
with a new element and to initialize it just before it is 
added to the collection. In order to support this, we 
have an Add function, which is somewhat 
unconventional, since it also has a statement block 
after the function call. When calling the function, we 
can pass a variable that will point to the newly created 
item. This variable can be an existing one (defined 
previously somewhere earlier), or a new one (the 
variable is then freed when the execution of the block 
is ended). If an unhandled error occurs inside the 
block, the new element is not added to the array. 

 
 

3.1.4 Error Handling 

Safety plays an important role in our project, thus 
having a stable and safe error handling solution is also 
important. The error handling follows the well-known 
try-catch pattern. If an error occurs inside a try block, 
the execution is stopped, and the appropriate catch 
blocks are executed. However, L4SDD handles each 
block automatically as a try block: the users can 
attach error handling (catch) blocks to them matching 
a specific type of error or specifying that all errors 
must be caught. It is also possible to specify multiple 
error types for a specific catch block.  

If there is no matching catch block for the error, 
then it is forwarded to the container block and so on, 
until the outermost block is reached. The outermost 
block automatically handles all unhandled errors and 
creates a log message about them. If there is an 
unhandled error in the Filter section, it returns false, 
which means the automatic rejection of the message 
(the script is not meant to process the data). Besides 
the implicit “try” statement behavior of blocks, 
assignments also act as try blocks. If the assignment 
cannot be applied, the value of the destination 
variable remains untouched, and no errors are thrown. 
If the user wants to change this behavior, it is possible 
by explicitly overriding it.  

4 THE WORKBENCH 

We have built a compiler for L4SDD based on Xtext 
(Eysholdt and Behrens, 2010) (The Xtext 
Framework, 2018). In order to make the definition of 
L4SDD scripts as user-friendly as possible, we 
provide a feature rich integrated development 
environment (IDE) based on Xtext. Originally, we 
were working with the standard, Eclipse-based 
version of Xtext, but later we decided to switch to a 
JavaScript-based web editor also based on Xtext. The 
web-based editor (Figure 3) is reachable from 
anywhere, and it is easier to integrate into our system. 
The editor communicates with an Xtext servlet, 
which contains the compiler, and does the parsing. 
From the viewpoint of the user, there is no functional 
difference compared to using a standard IDE. The 
editor provided by Xtext supports many features that 
make the editing process of the L4SDD scripts as 
user-friendly as possible, e.g., syntax highlight, 
semantic highlight, content assist, validation 
(semantic analysis).  

During the compilation process, we generate the 
source code for the target language, which is currently 
JavaScript. It is worth mentioning that we can also  
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Figure 3: L4SDD Web Editor. 

simultaneously support code generation for 
multiple target languages if needed. The types we 
defined in L4SDD are all mapped to types in the 
target language. This is done by a configurable type 
system. Hierarchical types can also be mapped 
(usually to classes or structures), if the target 
language is object-oriented. In the cases of weakly-
typed target languages like JavaScript, there is no 
need for the type conversion. L4SDD also supports 
the mapping of commonly-used functions to the 
target language. The functions of L4SDD are mapped 
to custom functions in the target language with the aid 
of our function mapping system similarly to type 
mapping. Note that in this case, the implementation 
of the functions must exist in the target language, 
thus, a function library is required for each language 
supported. The function library is written by hand by 
the framework provider when the new target language 
is added. For example, the Base64 function (the 
purpose of which is to encode a binary array to 
Base64) in L4SDD is mapped to the toBase64 
function written in JavaScript as part of the 
framework. The generated code then calls toBase64 
everywhere Base64 is called in the script.  

5 ANALYZING THE SOLUTION 

Our original goal was to create a language that 
supports the conversion of sensor data given in any 
format to a common data format that is easily 
processed in later steps. An additional goal was to 
create a user-friendly workbench around the language 
that allows the users to benefit from the advantages of 
the language in a comfortable way. While these goals 
are clearly reached by L4SDD and its workbench, the 
solution has additional advantages as well. 

Possibly the most important benefit is that the 
scripts are not bound to a specific programming 
library or even to an execution platform. While 

L4SDD is similar to general purpose programming 
languages and thus, easy to learn by programmers, the 
scripts can be compiled into any modern 
programming language. Currently, we produce 
JavaScript code from the scripts, but if we would need 
to use another language, we only need to replace the 
code generator of our compiler. This means that we 
can change the target platform without touching the 
scripts. By taking into account how fast the evolution 
of programming libraries are especially in web-based 
areas, this advantage can efficiently simplify the 
maintenance of the data transformation logic.  

As the direct consequence of the previous benefit, 
it is also possible to generate code for different 
platforms from the same script. For example, we can 
generate code for a JavaScript and a Java 
environment simultaneously, thus, supporting several 
environments at the same time. The key is the 
separation of data processing logic and its 
implementation. 

The fact that we have full control over the 
scripting language makes it possible to add efficient 
features to the language. Currently, this is mainly 
limited to bit, byte, JSON and CSV processing 
functions, but later, we can extend the language based 
on user feedback. Obviously, this would also be 
possible in a general programming language by 
creating utility functions, but in a purpose developed 
script language, we have more flexibility (e.g., the 
function Add) and more options to customize and 
adapt to the user requests. 

The usage of a purpose developed script language 
not only simplifies the code generation, but it also 
helps in avoiding dangerous, malicious codes. By 
restricting the available functionality, we can 
guarantee the safety of the scripts much easier. As 
mentioned in the language description, safety is also 
supported by custom error handling.  

Safety is supported not only by the language itself 
but also with the script management lifecycle. The 
scripts must be editable by the users, but this does not 
necessarily mean that the generated code must also be 
shared with them. The users edit the scripts, then the 
scripts are uploaded to the server. They are compiled 
there, and the data transformation algorithm 
(described by the script) is registered and later used 
by the framework and not by the user. By hiding the 
generated source code from the users, it is much 
easier to avoid security issues, since the users do not 
know how their script is implemented. They do not 
even know to which programming language we 
compile their scripts. Moreover, this also allows us to 
replace the target platform any time, transparently. 
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By completely controlling the compiling process 
and hiding the generated source code from the user, 
we can also add debugging and logging instructions 
to the code if it is required, for example, while testing. 
This solution also makes it possible to map usual 
function calls, create statistics from them and 
optimize the generated code based on the results.  

To sum it up, by following our approach, the users 
obtain a high performant, secure and easy-to-use 
solution to transform their data to an easily processed, 
self-describing, universal data structure. 

6 CASE STUDY 

In the following, we illustrate our approach on a 
simple, smart parking scenario. In this scenario, we 
use the Libelium Smart Parking sensor solution 
(Libelium Smart Parking, 2018). We apply the 
sensors to detect available parking slots in a parking 
area based on the measured values. 

Our goal is to convert the data sent by the parking 
sensors to a common data format. The raw sensor data 
of our example can be seen in Code 1.  For the sake 
of understandability, we omit some details 

{"ack":false,freq":"868.1",snr":"8.5",  
"deveui":"00-00-00-00-00-1a-fb-1d", 
"data":"ArEDwQAAAAsAAAA=", ... } 

Code 1: Raw sensor data. 

The data in the frame are described in JSON, 
because our system appends extra information 
(metadata) to the raw data sent by the sensor. The raw 
data can be found in the highlighted data field. The 
sensor does not maintain a strict ordering between the 
fields, their order may change between messages. 
Most of the data (e.g., ID, frequency) can be 
converted without further processing. However, the 
raw data parts are sent in a hexadecimal format that 
needs to be processed. Moreover, it can happen that 
different sensors (or the same sensor at different 
intervals) send the data in different structures. We can 
solve this problem by writing multiple scripts, or by 
processing the data dynamically, based on the 
markers in it (not used in the presented example). 
The first step of data conversion is the format 
description, namely, how we describe the input data 
in our universal schema. This is accomplished in the 
Output section. The schema description for the 
parking sensor example can be seen in Code 2. The 
type definitions in the description (e.g., byte, int) are 
specific to L4SDD, and they can be mapped to types 
in the target language that we generate the code for. 

OUTPUT { 
 deviceEui : byte[32]; 
 raw: 
 { 
  type : int; 
  occ : int; 
  meas : float; 
 }; 
 freq : float;      
 snr : int; } 

Code 2: The Output definition. 

The second step is to define the processing logic 
in the script. The purpose of the Filter section (Code 
33) is to check if the data can be processed by the 
script. Here, we check the first byte of the raw data, 
which identifies the message type sent by the sensor.  

FILTER { 
var decData = Base64(INPUT.data); 
Assert (decData [0] & 0xF == 2){…} } 

Code 3: The Filter definition. 

Then, the Mapping section (Code 4) contains the 
processing logic for the script. In the example, we 
process the raw data by using standard instructions in 
the L4SDD language. The rest of the data can be 
directly copied to the output without processing. 

MAPPING { 
 var item = JSON(INPUT); 
 OUTPUT.deviceEui = item.deveui; 
 var raw = Base64(item.data); 
 OUTPUT.raw.type = Int(SStr(…)); 
 OUTPUT.raw.occ = (Int(SStr(…) === 1); 
 OUTPUT.raw.meas = raw[2]*256+raw[3]; 
 OUTPUT.freq = item.freq; 
 OUTPUT.snr = item.lsnr; } 

Code 4: The Mapping definition. 

The third step of the data conversion is the code 
generation for the target language(s). Later, the 
system will execute this generated code on the data 
accepted by the Filter. Currently, we generate 
JavaScript code (referred to as L4JS), but the code 
generation can easily be extended to other languages, 
e.g. to Java.  

A snippet of the generated code of our example 
can be seen in Code . Filter and Mapping are both 
mapped to a JavaScript function (isAccepted and 
processData). The system calls these functions with 
the specific sensor data. 
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function isAccepted(input) { 
    let decData = Base64(input.data); 
    if ((decData [0] & 0xF) != 2)  
    {   return false;    } 
    return true; } 
 

function processData(input, params,  
                            message) { 
    let item = JSON(message); 
    let raw = Base64(item.data); 
    strOutput.deviceEui = item.deveui; 
    strOutput.raw.type = Int(…); 
    strOutput.raw.occ = ((Int(…))===1); 
    strOutput.raw.meas =  
                  raw[2]* 256 + raw[3]; 
    strOutput.freq = item.freq; 
    strOutput.snr = item.lsnr; 
    return structuredOutput; } 

Code 5: The generated source code. 

Finally, Code  6 depicts the structured JSON 
output for the parking sensor example, containing the 
value information. The type information (which 
contains the structure of the output) is omitted. We 
can use this information later, durint the storage of the 
data. 

{"deviceEui":"00-00-00-00-00-1a-fb-1d", 
"raw": { 
  "type": 2, 
  "occ": false, 
  "meas": 961}, 
"freq":"868.1", 
"snr":"8.5" } 

Code 6: The structured output. 

In the example, the structure and syntax of the 
generated L4JS code are very similar to that of the 
L4SDD script, since the example is simple. However, 
in case of more sophisticated, real-life scenarios, 
L4SDD can also simplify the syntax of the script.  

7 CONCLUSIONS 

With the steeply growing popularity of IoT devices, 
there is an increasing need to simplify interoperability 
between these devices. Defining a universal data 
format is not enough since most of the sensors do not 
support adapting to a specified format. Our research 
aims to create a new method that includes a universal 
self-describing data format and a transformation 
language able to convert data of all kinds to this 
format. Our solution is based on a new language 

referred to as the Language for Sensor Data 
Description. The paper elaborated on the main 
properties of the language and also discussed its 
environment, the workbench and showed how the 
language fits into the ecosystem of our generic IoT 
framework.  

Our current results are promising, but we have 
many plans for the future. Currently we are working 
on a debugging system for the script to simplify 
finding and correcting the errors in the script. We also 
plan to add semantic interpretation of the input data 
(supporting semantic interoperability) and to apply 
more case studies in real, industrial environments. 
Moreover we plan to give access for a wider audience 
to use and therefore test our solution. 
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