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Abstract: Novel data intensive applications and the diversification of data processing platforms have changed data man-
agement significantly over the last decade. In this changed environment, the expressiveness of the traditional
relational algebra is often insufficient and data management systems have started to provide more powerful
special purpose programming languages. However, these languages create a tight coupling between applica-
tions and specific systems that can hinder further development on both sides of the equation. The goal of this
article is to start a discussion on the future of platform independent programming models for data processing
that re-establish the separation of application logic and implementation details that used to be a cornerstone of
data management systems. As a guide for that discussion, we introduce several recent related works on that
topic and also outline our own contribution, the Analytical Calculus.

1 INTRODUCTION

Over the last decade, two important drivers of spe-
cialization and adaptation have shaped the landscape
of data processing. On the one hand, new data heavy
applications, such as advanced statistical analyses,
have created the need for new expressive program-
ming models that exceed the capabilities of the tradi-
tional relational algebra. On the other hand, nonfunc-
tional requirements on data processing, such as data
volume or low latency, have resulted in the creation
of a large number of special purpose systems and li-
braries that achieve very high performance in particu-
lar scenarios. In the early days of the one size does
not fit all era (Stonebraker et al., 2007), those two
forces have been reconciled in a mostly ad-hoc fash-
ion where individual applications use low-level data
processing APIs to implement their business logic.
Unfortunately, this ad-hoc reconciliation has created a
strong binding between applications and special pur-
pose processing systems that can hinder further de-
velopment on both sides. Applications are bound to
specific system level APIs and can not be migrated
to better technology without significant rewrites and
system providers have to guarantee backwards com-
patibility in order to maintain the good will of their
customers. Furthermore, system level programming
requires specialized knowledge and experience which
increases the cost of using these technologies.

The desire to provide an easy to use high level pro-
gramming interface and to separate application logic
from system level details is certainly well known in
the database community. In database systems these
problems have been solved with the widespread adop-
tion of SQL and the relational algebra as program-
ming abstraction. SQL is an abstract declarative lan-
guage with operations for the selection, combination,
filtering, and aggregation of relational datasets. The
semantics of these operations are defined on the ab-
stract data type Relation and SQL does not stipulate
any further nonfunctional constraints on possible im-
plementations. Database system providers have used
the strong physical abstraction provided by SQL to
create a diverse set of relational database management
systems with widely varying nonfunctional proper-
ties. Application developers write their business logic
using the relatively easy to use abstract SQL interface
and have the freedom to chose an adequate database
system later on.

The relational model provided an excellent solu-
tion until the first driver of specialization, a new set
of popular data heavy applications, has created the
need for a more flexible and expressive approach to
data-oriented programming. In the big data commu-
nity, this need was first answered by flexible but sys-
tem specific low-level APIs. But once the analyses
of large datasets had become more widespread, the
drawbacks of system level programming became ap-

400
Luong, J., Habich, D. and Lehner, W.
Design of a Portable Programming Abstraction for Data Transformations.
DOI: 10.5220/0006945004000408
In Proceedings of the 7th International Conference on Data Science, Technology and Applications (DATA 2018), pages 400-408
ISBN: 978-989-758-318-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



parent very soon and popular systems, such as Apache
Hadoop1, Apache Spark2 or TensorFlow3 began to
introduce higher level languages456 that make pro-
gramming of these systems much more accessible.
Although these languages succeed in simplifying the
use of big data platforms, most of them are special
purpose solutions that bind applications to a particu-
lar system. Further, some of these languages still ex-
pose low level system details, such as explicit caching
of intermediate results, explicit repartitioning of data,
and so forth.

Recently, several authors have recognized and dis-
cussed the problems of system specific programming
models and leaky abstractions in data processing. Jen-
nie Duggan and colleagues (Duggan et al., 2015) dis-
cuss issues that arise when multiple independent data
processing systems have to be integrated to work on a
common goal. They propose the BigDAWG polystore
system which introduces a unified query interface and
organizes data movements between participating sys-
tems. Ionel Gog and colleagues (Gog et al., 2015) ob-
serve that several big data cluster processing systems
use quite similar internal program representations that
can be mapped onto each other in an automated fash-
ion. Based on this finding they are able to decouple
high-level front end languages from the languages na-
tive execution environments and make programs in
those languages portable on all supported engines.
Shoumik Palkar and colleagues (Palkar et al., 2017;
Palkar et al., 2018) investigate a similar scenario
where an application uses multiple data processing
libraries and data movement between those libraries
becomes a bottleneck. They propose Weld, a low-
level in-memory storage and processing system that
libraries can use to access and share datasets. Hol-
ger Pirk and colleagues (Pirk et al., 2017) look at the
problem at a slightly different angle and investigate
a lower level programming model that can be auto-
matically mapped to efficient multicore parallelism,
vector parallelism, as well as GPU programs. Despite
the more technical focus, they tackle the same issue
of decoupling data processing from low level system
details by introducing a language abstraction.

The goal of this paper is to start a discussion on the
decoupling data centric applications from processing
engines with the intention to achieve greater flexibil-
ity, portability, and adaptivity. With this goal in mind,
in Section 2 we begin with a detailed discussion of

1http://hadoop.apache.org/
2https://spark.apache.org/
3https://www.tensorflow.org/
4http://pig.apache.org/
5http://mahout.apache.org/
6https://spark.apache.org/mllib/

each of the previously mentioned papers. In Section 3
we provide an introduction of some of our own work
on this topic and in Section 4 we end the paper with a
short conclusion.

2 RELATED WORK

In recent years, several new flexible and portable
programming abstractions for data intensive appli-
cations have been published. In the following sec-
tions we are going to discuss four exemplary papers
that provide a good overview of the practical work
that has been done recently and that showcase im-
portant design issues of that space. Our selection is
not meant to be comprehensive and we focus exclu-
sively on practical approaches that try to introduce a
layer of abstraction between system specifics and ap-
plications. We also leave out some important works,
such as Alexandrov’s comprehension interface for
Apache Flink (Alexandrov et al., 2015) or Microsoft’s
LINQ (Meijer and Bierman, 2011; Yu et al., 2008),
because they do not raise significant additional points
with regard to our focus.

2.1 BigDAWG

Jennie Duggan and colleagues (Duggan et al., 2015)
motivate their BigDAWG system with an interesting
application scenario that encompasses the use and in-
tegration of several specialized data types, such as
waveform data, plain text, structured records, and
semi structured documents. They argue that each
of these datatypes should be stored in a specialized
database system to benefit from the superior perfor-
mance and query interface that a dedicated system can
provide. However, effectively accessing four differ-
ent database systems increases application complex-
ity and achieving overall high performance might en-
tail a significant effort in application specific tweak-
ing and optimization.

To remedy these issues, Duggan et al. propose the
BigDAWG polystore system. Similar to a federated
database, BigDAWG provides a unified access inter-
face to multiple database systems. But, in contrast to
the federated systems from the 80s and 90s (Chawathe
et al., 1994; Carey et al., 1995; Stonebraker et al.,
1996), BigDAWG supports several data types and
query languages instead of just the relational model.
A given data model and its corresponding query lan-
guage, such as relations and SQL, forms a so called
data lake and each data lake can be backed by multi-
ple database engines that implement that model. For
each data lake, BigDAWG defines a canonical variant
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of the corresponding query language, such as the can-
nonical SQL variant and so forth. To integrate with
BigDAWG, engines have to provide a shim program
that can translate a data lake’s canonical language
variant into the engine’s own query language. For
example, a particular relational database system has
to be able to translate BigDAWG’s SQL into its own
SQL dialect and so forth. Users can combine queries
of different data lakes using special SCOPE and CAST
operators. The authors provide the following example
to showcase this feature:

RELATIONAL(
SELECT ∗
FROM R , CAST(A, r e l a t i o n )
WHERE R . v = A. v

) ;

In this case, RELATIONAL is a scope operator that an-
notates the following program as SQL query and CAST
converts an array A into a relation so it can be used in
the relational context. Unfortunately, the authors do
not provide any more comprehensive code examples
which makes it hard to judge the convenience of com-
bining data lakes in a real world setting.

BigDAWG choses a mostly hands-off approach to
query languages. For the most part, it reuses exist-
ing database languages and simply forwards queries
to implementations of the respective data lakes. This
approach has several benefits that, in theory, make
BigDAWG easy to adopt and easy to extend. First,
users can easily pick up the system and integrate it
with their existing software as they don’t have to
adopt a new language. Second, the reuse of existing
languages allows BigDAWG to rely on the query op-
timization that is provided by many existing database
engines. Third, in principle, the hands-off approach
also facilitates the straight forward incorporation of
a broad set of data lakes into the BigDAWG poly-
store, because interactions between lakes are mini-
mal. However, each data lake still requires a canon-
ical query language and a shared data format. The
canonical language acts as a common denominator
for all possible implementations and therefore has to
be conservative with language features. This might
especially hinder the integration of data lakes that do
not offer a widely accepted query language, such as
vector query languages or flexible UDF oriented in-
terfaces.

2.2 Musketeer

Ionel Gog and colleagues (Gog et al., 2015) inves-
tigate big data cluster processing engines, such as
Hadoop, Spark, or Naiad (Murray et al., 2013), and
the high-level query languages that these engines pro-

vide. The authors find that different engines show
widely different performance characteristics for the
same workload and conclude that it is advisable to
chose an engine based on the specific task at hand.
Further, the authors also find that the engine specific
high-level languages for relational and graph work-
loads create a certain lock in effect that prevents users
from switching engines once they have mastered its
languages.

Gog et al. solve these issues with their Musketeer
system which decouples high-level languages from
their native runtimes and can automatically select
an adequate processing engine for a given workload.
Conceptually, Musketeer implements a modern com-
piler architecture where a set of frontend languages
are translated into a common internal representation
and the internal representation is compiled into ex-
ecutable code for a particular runtime environment.
But instead of generating executables, Musketeer pro-
duces workloads for big data processing engines and
is even able to split a program into partial workloads
that are executed on different engines. The internal
representation is a data flow language that is espe-
cially designed for parallel data processing. The data
flow language provides a set of typical data-parallel
operators, such as MAP, GROUP BY, JOIN, and AGG,
but also a dynamic WHILE operator for iterative algo-
rithms.

Musketeer provides parsers for Hive SQL7,
Lindi (Murray et al., 2013), and the authors’ own
BEER DSL that supports relational and graph pro-
cessing. It can create workflows for Hadoop8, Spark9,
Naiad (Murray et al., 2013), PowerGraph (Gonzalez
et al., 2012), GraphChi (Kyrola et al., 2012), and
Metis (Mao et al., 2010) and for testing purposes it
can also generate serial C code. When Musketeer re-
ceives a new program it first translates it, using the
adequate frontend, into the data flow representation.
SQL like languages can be easily mapped to the in-
ternal representation because the relational algebra is
a data flow language with data parallel operators it-
self. Even more, Musketeer provides operators, such
as GROUP BY, JOIN, or AGG, which more or less di-
rectly implement relational semantics. Graph pro-
cessing, on the other hand, has a somewhat different
processing model, making the translation more com-
plicated and the resulting intermediate representation
shares little resemblance with the input program. In
general, there are several different graph processing
models but in this article the authors only consider
the popular Gather Apply Scatter model that is also

7https://hive.apache.org/
8http://hadoop.apache.org/
9http://spark.apache.org/
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used by systems like Pregel (Malewicz et al., 2010).
In this model, processing happens as a sequence of
uniform steps and each step consists of three phases:
1) each node of the graph gathers incoming messages
from its neighbours, 2) each node updates its inter-
nal state using an update function, and 3) each node
scatters outgoing messages to its neighbours. The au-
thors do not go into detail on how they translate graph
programs but one possible approach would create an
internal data flow program that groups messages by
node IDs, joins the message groups with node states,
and maps over each (messages, state) tuple to gener-
ate new messages and node states for the next pro-
cessing step.

A similar mismatch between processing mod-
els arises at the other end of the translation when
internal programs are mapped to executable work-
loads. Processing engines, such as Hadoop, Spark,
or Naiad, use parallel data flow languages themselves
and Musketeer operators can be mapped to those lan-
guages in a straight forward manner10. Dedicated
graph engines on the other hand, usually implement
a graph specific processing model like Gather Apply
Scatter which can neither express all Musketeer data
flow programs in a straight forward manner nor ef-
ficiently execute those programs. The authors solve
this issue by introducing the notion of code idioms.
A code idiom is a certain well known data flow pat-
tern that can be easily recognized by program analy-
ses and mapped to a different processing model like
Gather Apply Scatter. To make this approach work,
frontends have to be careful to actually generate the
appropriate data flow patterns, otherwise the backend
will not be able to detect the idioms and can not target
graph engines.

In contrast to BigDAWG, Musketeer does not
chose a hands off approach to query languages but de-
fines its own internal processing model. The data flow
model is broadly applicable and can express typical
query languages in a natural way. However, the model
is also more generic than some of the processing en-
gines that the authors want to address. This makes it
necessary to add a meta language of idioms which can
capture the semantics of certain compositions of data
flow operators.

2.3 Weld

Shoumik Palkar and colleagues (Palkar et al., 2017;
Palkar et al., 2018) investigate modern analytics ap-
plications and how they make use of external libraries

10With the exception of the WHILE operator which some-
times has to be handled in an external driver program.

such as Pandas11 or NumPy12. In contrast to database
systems that usually apply sophisticated query opti-
mization, these libraries are often not able to perform
any kind of cross function optimizations, especially
if the functions belong to different libraries. To im-
prove the performance of analytics libraries, Palkar et
al. propose Weld an in-memory data store for shared
memory systems that offers a flexible processing ori-
ented query interface. If libraries are adapted to use
Weld as storage and low-level processing backend, the
system can perform important optimizations, such as
pipelining or loop fusion, across function calls and
across libraries. To achieve this cross function be-
haviour, Weld implements a lazy query evaluation ap-
proach, where computations are only executed once
their results are actually required. Applications and
libraries use the Weld runtime API to allocate mem-
ory objects and to perform data parallel operations on
those objects. The result of these operations is an ab-
stract handle that can be passed to the host applica-
tion and subsequently to other Weld enabled libraries.
Only when a library has to return an actual value will
it force evaluation of the handle and the Weld runtime
can chose an optimized plan to perform the requested
transformations.

Weld offers a flexible functional query interface
that revolves around parallel loops and a set of
builders. The data model includes primitive scalars,
structures, vectors, and dictionaries. Loops are used
to process individual elements of vectors or dictionar-
ies and builders are used to aggregate values. List-
ing 1 shows a basic sample query. Some of the
builders include:
• appender[T] which appends values of type T to

a vector of type vector[T]

• merger[T, func, id] which aggregates val-
ues of type T using an associative function
(T, T) → T and an identity value

• vecmerger[T, func] which inserts values of
type (Int, T) into a vector at a specific position
using func to merge the new value with the pre-
vious value at that position.

Weld makes the bold choice to ignore existing query
languages and instead proposes its own flexible lan-
guage that has close ties to monad and monoid com-
prehensions (Grust, 2003; Fegaras and Maier, 1995).
In their 2018 paper (Palkar et al., 2018), the authors
demonstrate that Weld can be integrated into popular
libraries, handle real world application scenarios, and
significantly improve overall performance in many
cases. In contrast to the previously discussed papers,

11https://pandas.pydata.org/
12http://www.numpy.org/
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Listing 1: Basic Weld example.

/ / v e c t o r l i t e r a l
i n := [ 1 , 2 , 3 ] ;

/ / a p p e n d e r c r e a t e s a new v e c t o r
a := a p p e n d e r [ i n t ] ;

/ / f o r r e t u r n s i t s b u i l d e r
/ / merge i n s e r t s i n t o a b u i l d e r
q := f o r ( in , a ,

( in , v ) => merge ( in , v∗v )
) ;

/ / r e t u r n s [ 1 , 4 , 9 ]
r e s u l t ( q ) ;

Weld binds its programming model to a particular ex-
ecution environment which limits the portability of
applications that decide to use the system. However,
shared memory performance is an important use case
that is often overlooked in the design of modern an-
alytics programming models and the authors clearly
demonstrate the importance of optimized low-level
machine access. What is more, we have good reasons
to believe that the Weld programming model could be
ported to other data engines without too much effort
as well.

2.4 Vodoo

Similar to Weld, Holger Pirk and colleagues (Pirk
et al., 2017) investigate a programming model for
data intensive processing on shared memory systems.
However, their work is less focused on creating a con-
venient processing environment for libraries and end
users, but rather on providing a portable way to ad-
dress different types of hardware parallelism, such as
multi core parallelism, SIMD vector instructions, or
GPU programming environments. Vodoo is a pro-
gramming environment and runtime system that al-
lows users to easily tune their programs for different
hardware scenarios. That is, users define their appli-
cation logic in an abstract data flow language but an-
notate the abstract logic with additional information
on how the data is to be partitioned and distributed
at runtime. These annotations are used by Vodoo in
a predictable manner, to decide whether an operator
should use a multi threaded implementation, a SIMD
vector implementation, or a GPU implementation and
how each of these possibilities is configured in detail.
In contrast to the previously discussed models, this
approach gives users fine grained control over how
their applications are executed.

Listing 2 shows a basic Vodoo example that cal-
culates the sum of a vector of doubles. A program

of a typical data flow language would probably only
consist of the first and last line of the program and
leave it to a runtime or compiler to decide how to
best compute the sum over a vector. Vodoo how-
ever offers much more explicit control over the de-
sired execution strategy. In particular, the input data
is first partitioned into batches of size 1024 that are
aggregated independently before computing the over-
all result. This particular configuration will result in
a multithreaded execution strategy where Vodoo as-
signs data batches to a set of worker threads. How-
ever, by simply changing the calculation of the IDs
to

/ / a s s i g n v a l u e s t o 2 SIMD l a n e s
IDs := r a n g e ( d a t a ) % 2

the execution strategy can be changed into to a SIMD
based implementation, where four values are added in
parallel using vector instructions.

Listing 2: Basic Vodoo example.

d a t a := l o a d ( ” DoubleVec ” )

/ / c r e a t e b a t c h e s o f s i z e 1024
IDs := r a n g e ( d a t a ) / 1024
p o s i t i o n s := p a r t i t i o n ( IDs )
p a r t i t i o n s := s c a t t e r (

z i p ( da t a , IDs ) ,
p o s i t i o n s

)

/ / compute t h e sum of each b a t c h
p a r t i a l S u m := foldSum (

p a r t i t i o n s . va l ,
p a r t i t i o n s . i d

)

/ / compute t h e o v e r a l l sum
sum := foldSum ( p a r t i a l S u m )

Vodoo offers an interesting approach to applica-
tion portability with regards to low-level parallelism.
The system makes it easy to explore implementation
variants and facilitates hardware specific tuning of
applications. Similar to GPU programming models,
Vodoo code is supposed to be compiled lazily, just
in time when the results are needed. This approach
enables very dynamic changes to execution strategies
even during runtime of an application. Unfortunately,
the authors limit their discussion to the implementa-
tion of traditional relational databases and do not ex-
plore richer semantics at the moment. We believe,
that the approach could be of good use in a broader
environment as well.
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3 THE ANALYTICAL CALCULUS

The separation of logic and execution in data inten-
sive applications is an important theme in our own re-
search as well. In a recent paper (Luong et al., 2017),
we have introduced the Analytical Calculus which is
our own proposal for a flexible, rich, and portable pro-
gramming interface for data analytics. The Analytical
Calculus is a lighweight pure functional language
with a small core library of abstract data types for
parallelized data processing. The language has a sim-
ple static type system and contains few constructs be-
sides functions and function application. In the cur-
rent version, recursion is prohibited but we plan to
enable certain important recursion patterns (Meijer
et al., 1991) in future versions. A deliberate choice of
core types and the explicit support of domain specific
concepts allow the Analytical Calculus to support a
wide range of application scenarios. At the same time
these properties also allow the Analytical Calculus
to drive a large number of execution strategies that
scale from fast shared memory systems, such as Weld,
to large systems of systems, such as BigDAWG. The
Analytical Calculus enables adaptivity in data man-
agement by separating application logic from appli-
cation execution and by facilitating flexibility on both
sides of that separation. This flexibility can be ex-
ploited, for example, by a dynamic runtime system
that quickly adapts physical execution strategies to
changed workloads or data characteristics.

Similar to the relational algebra, the Analytical
Calculus is not meant to be written manually, but acts
as an intermediate representation that is generated by
high-level frontend languages, such as SQL, and that
is consumed by a runtime that translates the abstract
statements into physical operations. The lack of side
effects, the static type system, and the structured re-
cursion simplify code analyses and transformations
to a great degree and therefore make the Analytical
Calculus a very good fit for a flexible internal pro-
gram representation. Another similarity to the rela-
tional algebra is that the Analytical Calculus is not de-
signed for a specific runtime system but is supposed to
establish a general programming abstraction for data
processing that can be implemented by various run-
times. For example, we are currently developing a hy-
brid runtime that uses the Analytical Calculus to drive
a system that integrates a PostgreSQL13 database,
a MongoDB14 database, and a Spark cluster. The
Analytical Calculus is not designed for a particular
frontend language but can serve as intermediate lan-
guage for a wide set of purposes. However, we are in

13https://www.postgresql.org/
14https://www.mongodb.com/

〈BagUnion〉( λcn. {(c.name, c.phone, n.name)} |
c← customer,
n← nation,
λcn. c.nationkey = n.key )

with BagUnion := ( Bags, ∪, /0 )

Figure 1: Join with a monoid comprehension.

the process of developing the ACQL query language, a
superset of SQL that will contain extensions for linear
algebra. ACQL is the first language for the Analytical
Calculus and will help us understand the capabilities
and limits of our model.

3.1 Monoid Comprehensions

The Analytical Calculus uses monoid comprehen-
sions (Fegaras and Maier, 1995) as core computa-
tional concept to perform tasks such as filtering, trans-
forming, aggregating, and grouping values and to
build joins. Figure 1 shows how a monoid com-
prehension can be used to perform a natural equiv-
alence join and subsequent projection over two rela-
tions. The definition consists of two main parts: (i) a
monoid and (ii) a comprehension over that monoid.
A monoid is an algebraic structure that consists of a
set, an associative binary operation over that set, and a
neutral element for the operation. In the example, the
BagUnion monoid consists of (i) the set of all finite
bags, i.e. multisets, (ii) the bag union operation, and
(iii) the empty bag. A comprehension over a monoid
is a function that uses one or several datasources to
generate an element of its monoid. For example, the
comprehension in Figure 1 uses the two datasource
customer and nation to create a bag of tuples. Com-
prehensions consist of two parts that are separated by
a vertical bar: the head and the tail. The tail is a se-
quence of bindings that bind the elements of a data-
source to a variable and filters that accept or discard
the bindings left of the filter. A tail that contains mul-
tiple bindings computes the cross product of all bound
sources. The head is a function over the comprehen-
sion’s bindings that returns an element of the com-
prehension’s monoid. For example, the head function
in Figure 1 returns a bag that contains an individual
result tuple. The head is applied to each sequence
of bindings that is not discarded by one of the filters
and all head results are eventually combined using the
monoid’s binary operation.

Figure 2 shows an example of a monoid compre-
hension which is defined over the set of integers with
the addition as operation and zero as neutral element.
The comprehension’s tail contains the two bindings n
and d which will generate cross product of the two
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〈Sum〉( λnd.
n
d
|
n← [1,2,3,4,5,6,7,8],
d← [2,3,4],
λnd. n mod d = 0 )

with Sum := ( N,+, 0 )

Figure 2: Aggregation using a comprehension.

sources: (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), . . . ,
(8,2), (8,3), (8,4). The filter accepts all bindings
where the second number is a divisor of the first num-
ber, such as (2,2), (3,3), (4,2), or (4,4). The head
simply returns the fraction of first and second number
for each accepted binding tuple and the comprehen-
sions builds the sum of all head results:

2
2
+

3
3
+

4
2
+

4
4
+ . . .+

8
2
+

8
4

This example demonstrates how different
monoids can be used to produce various result types.
Even greater expressiveness can be achieved by
nesting comprehensions which allows, for example,
to build groups and outer joins.

We are, of course, not the first to promote the
use of comprehensions in data processing systems.
Authors like Grust (Grust, 2003) or Fegaras and
Maier (Fegaras and Maier, 1995) have pointed out
the theoretical benefits of comprehensions, such as
expressiveness and strong support of optimizations,
a long time ago. Microsoft’s language integrated
queries (Meijer and Bierman, 2011) provide an im-
plementation of comprehensions in a mainstream pro-
gramming language that can be used to access a vari-
ety of data sources in a convenient manner. More re-
cently, Alexandrov and colleagues (Alexandrov et al.,
2015) have demonstrated that comprehensions can be
nicely mapped to the data flow model of the big data
stream processing system Apache Flink15 and in Sec-
tion 2 we have discussed the Weld system which uses
a language that is closely related to comprehensions
to drive a shared memory system and applies a va-
riety of important optimizations, such as pipelining
and loop fusion, to achieve very good performance
in that environment. In summary, we are very confi-
dent in the usefulness of comprehensions as a flexi-
ble and widely applicable basic building block of the
Analytical Calculus.

15https://flink.apache.org/

3.2 Explicit Domain Representation

A monoid comprehension is a generic transformation
operator that can be used to express a wide array
of important data processing functions. For exam-
ple the entirety of the relational algebra can be eas-
ily mapped onto comprehensions and the same is true
for many basic operations of the linear algebra. Even
basic path matching in graphs can be achieved using
comprehensions. However during this mapping from
a special purpose model to the more generic com-
prehensions, some information can be lost or obfus-
cated. For example, it might be easy to map a graph
analysis into a comprehension representation, but it is
much less obvious how to reverse this mapping and
decide whether a sequence of comprehensions repre-
sents a graph analysis. However, this reverse trans-
formation can be useful for several reasons. First,
many special purpose domains, such as the relational
algebra, the linear algebra, graph analysis, statistical
analysis, and so forth, define domain specific opti-
mization rules that can not be applied conveniently in
the comprehension representation. Therefore it would
be beneficial to reverse the comprehension mapping
and apply the optimizations in the original represen-
tation. Second, for some of these special purpose do-
mains there are dedicated processing systems with op-
timized support for the particular domain, such as re-
lational database systems or graph engines. The goal
of the Analytical Calculus is to be usable as common
intermediate language for all data intensive process-
ing and it should therefore be able to drive these spe-
cial purpose systems by reversing the mapping of do-
main logic to monoid comprehensions.

In our discussion of Musketeer in Section 2, we
have already encountered this issue as well. Gog and
colleages (Gog et al., 2015) want to use a generic data
flow model to drive special purpose graph processing
engines and rely on implicit code idioms to enable
the necessary reverse mapping. However, in contrast
to the implicit idioms of Musketeer, we decided give
domain specific functions an explicit representation
in the Analytical Calculus. For this purpose, we add a
set of domain libraries to the Analytical Calculus that
capture domain specific concepts with a set of well
known functions. These functions, such as Select,
Filter, NaturalJoin, or GroupBy are implemented us-
ing ordinary language elements of the core Analytical
Calculus libraries, but their names are visible in the
program code and can be used to create domain spe-
cific behaviour in optimizations or code generation.
In contrast to implicit idioms, these explicit domain
functions can give guarantees. For example, the Fil-
ter function of the relational library can guarantee
that the provided predicate definition can be translated
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Listing 3: The Analytical Calculus filter function.

f i l t e r ( r e l a t i o n : BagT , p red : FuncT ) {
comprehens ion (

r e l a t i o n , / / b i n d i n g
pred , / / f i l t e r
bagOf , / / head
bagUnion / / monoid o p e r a t i o n
bagEmpty / / monoid i d e n t i t y

)
}

main ( ) {
p re d = Func ( row : RowT) {

q t y = row ( ” q u a n t i t y ” )
g t100 = q t y > 100
p r c = row ( ” p r i c e ” )
g t25 = p r c > 2 5 . 0
g t100 && gt25

}
l i = c a t a l o g . sym ( ” l i n e i t e m ” )
f i l t e r ( l i , p r e d )

}

into a SQL WHERE statement and reject incompati-
ble predicates at compile time.

Listing 3 shows a simplified version of the rela-
tional filter function of the Analytical Calculus.
The function takes a target relation and a predicate
function as arguments and simply forwards those pa-
rameters to the comprehension function. The rela-
tion is used as only binding of the comprehension and
the predicate function is used as comprehension filter.
The BagOf constructor provides the comprehension’s
head function and the bag union and empty bag con-
structor define the comprehension’s monoid. In the
main function, filter is used to select lineitems that
have a quantity greater than 100 and a price greater
than 25. In itself, the filter function is rather unre-
markable. However, the significance of the function
lies in its well known name “filter” which is visible
to analysis, transformations and and code generators.
Using that name, it is relatively easy to provide an
analysis that checks whether predicate functions can
actually be translated into SQL or not.

4 CONCLUSIONS

Over the last decade, novel data intensive applications
and the need for scaleable and very fast hardware ar-
chitectures have reshaped the landscape of data pro-
cessing. At the beginning of this transition, appli-
cations and processing engines were closely coupled
into expensive single purpose solutions. Over time,
more accessible big data systems started to emerge
and these systems often provide their own dedicated

programming languages to simplify application de-
velopment. However, these languages create a tight
coupling between application and processing system
that can hinder further development of both applica-
tions and processing engines.

The goal of this article is to start a discussion
on the future of processing models for data inten-
sive applications. In the first part of the article
we provided an in-depth look at four recent related
works: BigDAWG, Musketeer, Weld, and Vodoo. The
BigDAWG polystore system integrates a set of dedi-
cated data processing engines behind a unified query
interface that mostly reuses existing query languages
and their optimizers. Musketeer defines a unified data
flow language that can be used to decouple special
purpose languages from their native processing en-
gines. Weld is a data processing engine for shared
memory systems that can be used by data analytics li-
braries to coordinate and optimize computations and
memory access and Vodoo is an abstract data pro-
cessing language and code generator that gives users
the ability to easily access different types of hardware
parallelism.

In the second part of the article, we have outlined
the Analytical Calculus, our own proposal for a mod-
ern programming model for data processing. The
Analytical Calculus is a small functional language
that uses monoid comprehensions as primary compu-
tational abstraction. The Calculus is used as an in-
termediate language that can be used as translation
target of high-level frontend languages, such as SQL,
and that can drive a wide array of data processing run-
times. The Analytical Calculus contains domain spe-
cific libraries with well known function names to fa-
cilitate domain specific optimizations and to enable
code generation for special purpose data processing
systems, such as RDBMS.
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