ROBUST ESTIMATION OF THE PAN-ZOOM PARAMETERS FROM A BACKGROUND AREA IN CASE OF A CRISS-CROSSING FOREGROUND OBJECT

J. Bruijns

2008

Abstract

In the field of video processing, a model of the background motion has application in deriving depth from motion. The pan-zoom parameters of our background model are estimated from the motion vectors of parts which are a priori likely to belong to the background, such as the top and side borders (”the background area”). This fails when a foreground object obscures the greater part of this background area. We have developed a method to extract a set of pan-zoom parameters for each different part of the background area. Using the pan-zoom parameters of the previous frame, we compute from these sets the pan-zoom parameters most likely to correspond to the proper background parts. This background area partition method gives more accurate pan parameters for shots with the greater part of the background area obscured by one or more foreground objects than application of the entire background area.

References

  1. Armstrong, M. (1996). Self-Calibration from Image Sequences. PhD thesis, Department of Engineering Science, University of Oxford, Oxford, UK.
  2. Armstrong, M., Zisserman, A., and Hartley, R. (1996). Selfcalibration from image triplets. In Proc. ECCV, volume I, pages 3-16, Cambridge, UK.
  3. Azarbayejani, A. and Pentland, A. (1995). Recursive estimation of motion, structure, and focal length. IEEE Trans. Pattern Anal. Machine Intell., 17(6):562-575.
  4. Barenbrug, B. (2006). 3D throughout the video chain. In Proc. IS&T ICIS'06, pages 366-369, Rochester, NY, USA.
  5. Beardsley, P., Torr, P., and Zisserman, A. (1996). 3D model acquisition from extended image sequences. In Proc. ECCV, volume II, pages 683-695, Cambridge, UK.
  6. Berretty, R.-P., Peters, F., and Volleberg, G. (2006). Realtime rendering for multiview autostereoscopic displays. In Proc. SPIE, Vol. 6055, 60550N, Stereoscopic Displays and Virtual Reality Systems, pages 208-219, San Jose, CA, USA.
  7. de Beeck, M. O., Wilinski, P., Fehn, C., Kauff, P., Ijsselsteijn, W., Pollefeys, M., van Gool, L., Ofek, E., and Sexton, I. (2002). Towards an optimized 3D broadcast chain. In Proc. SPIE, Vol. 4864, Three-Dimensional TV, Video, and Display., pages 42-50, Boston, MA, USA.
  8. de Haan, G. and Biezen, P. (1994). Sub-pixel motion estimation with 3D recursive search block matching. Signal Processing: Image Communication, 6(3):229- 239.
  9. de Haan, G. and Biezen, P. (1998). An efficient true-motion estimator using candidate vectors from a parametric motion model. IEEE Trans. Circuits Syst. Video Technol., 8(1):85-91.
  10. Ernst, F., Wilinski, P., and van Overveld, C. (2002). Dense structure-from-motion: an approach based on segment matching. In Proc. ECCV, LNCS 2531, pages 217- 231, Copenhagen, Denmark.
  11. Falkenhagen, L. (1997). Block-based depth estimation from image triples with unrestricted camera setup. In Proc. IEEE Workshop on Multimedia Signal Processing, pages 280-285, Princeton, New Jersey, USA.
  12. Fehn, C. (2004). Depth-image-based rendering (DIBR) compression and transmission for a new approach on 3D-TV. In Proc. SPIE, Vol. 5291, Stereoscopic Displays and Applications, pages 93-104, San Jose, CA, USA.
  13. Fehn, C., Kauff, P., de Beeck, M. O., Ernst, F., IJsselsteijn, W., Pollefeys, M., van Gool, L., Ofek, E., and Sexton, I. (2002). An evolutionary and optimised approach on 3D-TV. In Proc. IBC'02, pages 357-365, Amsterdam, The Netherlands.
  14. Frederix, G. (2005). Beyond Gaussian Mixture Models: Unsupervised Learning with applications to Image Analysis. PhD thesis, Katholieke Universiteit of Leuven, Belgium.
  15. Hartley, R. and Zisserman, A. (2001). Multiple View Geometry in computer vision. Cambridge University Press, Cambridge, UK.
  16. Huang, T. and Netravali, A. (1994). Motion and structure from feature correspondences: A review. Proc. IEEE, 82(2):252-268.
  17. Marazzi, A. (1987). Subroutines for robust estimation of location and scale in ROBETH. Technical Report Cah. Rech. Doc. IUMSP, No. 3 ROB 1, Institut Universitaire de Medecine Sociale et Preventive, Lausanne, Switzerland.
  18. Pollefeys, M. (1999). Self-Calibration and Metric 3D Reconstruction from Uncalibrated Image Sequences. PhD thesis, Katholieke Universiteit of Leuven, Belgium.
  19. Pollefeys, M., Koch, R., and van Gool, L. (1998). Selfcalibration and metric reconstruction in spite of varying and unknown internal camera parameters. In Proc. ICCV, pages 90-95, Bombay, India.
  20. Pollefeys, M., Koch, R., Vergauwen, M., Deknuydt, B., and van Gool, L. (2000). Three-dimensional scene reconstruction from images. In Proc. SPIE, Vol. 3958, Electronic Imaging, Three-Dimensional Image Capture and Applications III, pages 215-226, San Jose, CA, USA.
  21. Redert, P., Berretty, R.-P., Varekamp, C., van Geest, B., Bruijns, J., Braspenning, R., and Wei, Q. (2007). Challenges in 3DTV image processing. In Proc. of SPIE, Vol. 6508, Visual Communications and Image Processing 2007, San Jose, CA, USA.
  22. Silverman, B. (1986). Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London, UK.
  23. Xu, G. and Zhang, Z. (1996). Epipolar Geometry in Stereo, Motion and Object Recognition. A Unified Approach. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  24. Zhang, Z., Deriche, R., Faugeras, O., and Luong, Q.-T. (1995). A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence Journal, 78(1-2):87-119.
Download


Paper Citation


in Harvard Style

Bruijns J. (2008). ROBUST ESTIMATION OF THE PAN-ZOOM PARAMETERS FROM A BACKGROUND AREA IN CASE OF A CRISS-CROSSING FOREGROUND OBJECT . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 327-334. DOI: 10.5220/0001072103270334


in Bibtex Style

@conference{visapp08,
author={J. Bruijns},
title={ROBUST ESTIMATION OF THE PAN-ZOOM PARAMETERS FROM A BACKGROUND AREA IN CASE OF A CRISS-CROSSING FOREGROUND OBJECT},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={327-334},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001072103270334},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - ROBUST ESTIMATION OF THE PAN-ZOOM PARAMETERS FROM A BACKGROUND AREA IN CASE OF A CRISS-CROSSING FOREGROUND OBJECT
SN - 978-989-8111-21-0
AU - Bruijns J.
PY - 2008
SP - 327
EP - 334
DO - 10.5220/0001072103270334