SACCADES GENERATION - From the Visual Input to the Superior Colliculus

Wahiba Taouali, Nicolas Rougier, Frédéric Alexandre

2010

Abstract

The superior colliculus is an important structure in the visuomotor pathway of mammals, that is known to be deeply involved in visual saccadic behavior. We present a model of this structure based on biological data, the specificity of which is related to the homogeneity of the underlying substratum of computation. This makes it more suitable to process massive visual flows on a distributed architecture, as it could be requested in a realistic task in autonomous robotics. The model presented here is embedded in the exogenous part of the visual pathway, from the retina to the superior colliculus.

References

  1. Amari, S.-I. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2):77-87.
  2. Bear, M., Connors, B., and Paradiso, M. (1996). Neuroscience: Exploring the Brain. Lippincott Williams & Wilkins.
  3. Findlay, J. and Walker, R. (1999). A model of saccade generation based on parallel processing and competitive inhibition. Behavioral and Brain Sciences, 22(4):661- 674.
  4. Fix, J., Vitay, J., and Rougier, N. (2006). A computational model of spatial memory anticipation during visual search. In Anticipatory Behavior in Adaptive Learning Systems.
  5. Girard, B. and Berthoz, A. (2005). From brainstem to cortex: computational models of saccade generation circuitry. Progress in Neurobiology, 77(4):215-251.
  6. Godijn, R. and Theeuwes, J. (2002). Programming of endogenous and exogenous saccades: evidence for a competitive integration model. Journal of experimental psychology: human perception and performance, 28(5):1039-1054.
  7. Isa, T. (2002). Intrinsic processing in the mammalian superior colliculus. Current opinion in Neurobiogy, 12(6):668-677.
  8. Kramer, A., Irwin, D., Theeuwes, J., and Hahn, S. (1999). Oculomotor capture by abrupt onsets reveals concurrent programming of voluntary and involuntary saccades. Behavioral and Brain Sciences, 22(4):689- 690.
  9. Lee, C., Rohrer, W., and Sparks, D. (1988). Population coding of saccadic eye movements by neurons in the superior colliculus. Nature, 332(6162):357-360.
  10. Marilly, E., Mercier, A., Coroyer, C., Faure, A., and Cachard, O. (1999). Proprits d'un pr-processeur de vision fovale. Dix-septime colloque GRETSI.
  11. McIlwain, J. (1976). Large receptive fields and spatial transfor- mations in the visual system. Int. Rev. Physiol., 10:223-248.
  12. Muller, J., Philiastides, M., and Newsome, W. (2005). Microstimulation of the superior colliculus focuses attention without moving the eyes. Proceedings of the National Academy of Sciences, 102(3):524-529.
  13. Munoz, D. and Istvan, P. (1998). Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J. Neurophysiol., 79:1193-1209.
  14. Ottes, F., Gisbergen, J. V., and Eggermont, J. (1986). Visuomotor fields of the superior colliculus: a quantitative model. Vision Res, 26(6):857-873.
  15. Purves, D. (2004). Neurosciences. De Boeck, second edition.
  16. Rizzolatti, G., Riggio, L., Dascola, I., and Umil, C. (1987). Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1):31-40.
  17. Robinson, D. (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vision Research, 12(11):1795-1808.
  18. Rougier, N. and Vitay, J. (2006). Emergence of attention within a neural population. Neural Networks, 19(5):573-581.
  19. Schneider, S. and Erlhagen, W. (2002). A neural field model for saccade planning in the superior colliculus: speedaccuracy tradeoff in the double-target paradigm. Neurocomputing, 44-46:623-628.
  20. Sparks, D., Holland, R., and Guthrie, B. (1976). Size and distribution of movement fields in the monkey superior colliculus. Brain Res., 113(1):21-34.
  21. Sparks, D., Lee, C., and Rohrer, W. (1990). Population coding of the direction, amplitude, and velocity of saccadic eye movements by neurons in the superior colliculus. Cold Spring Harbor symposia on quantitative biology, 55:805-811.
  22. Taylor, J. (1999). Neural bubble dynamics in two dimensions: foundations. Biological Cybernetics, 80:393- 409.
  23. Trappenberg, T., Dorrisn, M., Munoz, D., and Klein, R. (2001). A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience, 13(2):256-271.
  24. Wilson, H. and Cowan, J. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biological Cybernetics, 13(2):55-80.
  25. Wurtz, R. and Optican, L. (1994). Superior colliculus cell types and models of saccade generation. Current Opinion in Neurobiology, 4(6):857-861.
Download


Paper Citation


in Harvard Style

Taouali W., Rougier N. and Alexandre F. (2010). SACCADES GENERATION - From the Visual Input to the Superior Colliculus . In Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010) ISBN 978-989-8425-32-4, pages 176-181. DOI: 10.5220/0003065501760181


in Bibtex Style

@conference{icnc10,
author={Wahiba Taouali and Nicolas Rougier and Frédéric Alexandre},
title={SACCADES GENERATION - From the Visual Input to the Superior Colliculus},
booktitle={Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)},
year={2010},
pages={176-181},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003065501760181},
isbn={978-989-8425-32-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)
TI - SACCADES GENERATION - From the Visual Input to the Superior Colliculus
SN - 978-989-8425-32-4
AU - Taouali W.
AU - Rougier N.
AU - Alexandre F.
PY - 2010
SP - 176
EP - 181
DO - 10.5220/0003065501760181