Evaluation of a Joint Hysteresis Model in a Robot Actuated by Pneumatic Muscles

Michael Kastner, Hubert Gattringer, Ronald Naderer

2012

Abstract

Passively compliant drives are interesting alternatives to classical stiff actuators in emerging fields like human–robot cooperation, service and rehabilitation robotics. Pneumatic muscles have been found to be interesting low–cost actuators for such purposes. To fully realize the (desired) higher sensitivity and at the same time maintain a good control quality, detailed models of the robot’s own components are required. For pneumatic muscles, their hysteresis characteristic is a challenging property. In this paper we present a hysteresis model based on a Prandtl–Ishlinskii operator approach and evaluate the resulting performance when the inverse model is used for compensation in the position controller. The evaluation is done on a real multi–axes robot arm.

References

  1. Aschemann, H. and Schindele, D. (2008). Sliding-mode control of a high-speed linear axis driven by pneumatic muscle actuators. Industrial Electronics, IEEE Transactions on, 55(11):3855-3864.
  2. Boblan, I. (2009). Modellbildung und Regelung eines fluidischen Muskelpaares. PhD thesis, Technical University Berlin.
  3. Chou, C.-P. and Hannaford, B. (1994). Static and dynamic characteristics of McKibben pneumatic artificial muscles. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, volume 1, pages 281-286.
  4. Davis, S. and Caldwell, D. G. (2006). Braid effects on contractile range and friction modeling in pneumatic muscle actuators. The International Journal of Robotics Research, 25(4):359-369.
  5. Ferreau, H., Bock, H., and Diehl, M. (2008). An online active set strategy to overcome the limitations of explicit MPC. International Journal of Robust and Nonlinear Control, 18(8):816-830.
  6. Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences, 126(843):136-195.
  7. Kerscher, T., Albiez, J., Z öllner, J., and Dillmann, R. (2006). Evaluation of the dynamic model of fluidic muscles using quick-release. First IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics.
  8. Klute, G. K., Czerniecki, J. M., and Hannaford, B. (2002). Artificial muscles: Actuators for biorobotic systems. The International Journal of Robotics Research, 21(4):295-309.
  9. Krichel, S., Sawodny, O., and Hildebrandt, A. (2010). Tracking control of a pneumatic muscle actuator using one servovalve. In American Control Conference (ACC), 2010, pages 4385-4390.
  10. Kuhnen, K. (2003). Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach. European Journal of Control, 9:407-418.
  11. Minh, T., Tjahjowidodo, T., Ramon, H., and Van Brussel, H. (2009). Control of a pneumatic artificial muscle (PAM) with model-based hysteresis compensation. In Advanced Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International Conference on, pages 1082-1087.
  12. Minh, T. V., Kamers, B., Tjahjowidodo, T., Ramon, H., and Van Brussel, H. (2010). Modeling torqueangle hysteresis in a pneumatic muscle manipulator. In Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME International Conference on, pages 1122-1127.
  13. Minh, T. V., Tjahjowidodo, T., Ramon, H., and Van Brussel, H. (2011). A new approach to modeling hysteresis in a pneumatic artificial muscle using the Maxwell-slip model. Mechatronics, IEEE/ASME Transactions on, 16(1):177-186.
  14. Reynolds, D. B., Repperger, D. W., Phillips, C. A., and Bandry, G. (2003). Modeling the dynamic characteristics of pneumatic muscle. Annals of Biomedical Engineering, 31:310-317.
  15. Tondu, B. and Lopez, P. (2000). Modeling and control of McKibben artificial muscle robot actuators. Control Systems, IEEE, 20(2):15-38.
  16. Tondu, B. and Zagal, S. (2006). McKibben artificial muscle can be in accordance with the Hill skeletal muscle model. In Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International Conference on, pages 714-720.
  17. Van Damme, M. (2009). Towards Safe Control of a Compliant Manipulator Powered by Pneumatic Muscles. PhD thesis, Vrije Universiteit Brussel.
Download


Paper Citation


in Harvard Style

Kastner M., Gattringer H. and Naderer R. (2012). Evaluation of a Joint Hysteresis Model in a Robot Actuated by Pneumatic Muscles . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-22-8, pages 230-235. DOI: 10.5220/0004024102300235


in Bibtex Style

@conference{icinco12,
author={Michael Kastner and Hubert Gattringer and Ronald Naderer},
title={Evaluation of a Joint Hysteresis Model in a Robot Actuated by Pneumatic Muscles},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2012},
pages={230-235},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004024102300235},
isbn={978-989-8565-22-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Evaluation of a Joint Hysteresis Model in a Robot Actuated by Pneumatic Muscles
SN - 978-989-8565-22-8
AU - Kastner M.
AU - Gattringer H.
AU - Naderer R.
PY - 2012
SP - 230
EP - 235
DO - 10.5220/0004024102300235